
Supplementary Materials for “Twin Auxiliary Classifiers GAN”1

This supplementary material provides the proofs and more experimental details2

which are omitted in the submitted paper. The equation numbers in this material are3

consistent with those in the paper.4

S1. Proof of Theorem 15

Proof. The optimal Q∗Y |X is obtained by the following optimization problem:6

min
QY |X

− E
(X,Y )∼QXY

[logQc(Y |X)] = − E
X∼QX

[

K∑
i=1

Q(Y = i|X) logQc(Y = i|X)],

s.t.

K∑
i=1

Q(Y = i|X = x) = 1 and Q(Y = i|X = x) ≥ 0. (E1)

The optimization problem in (E1) is equivalent to minimizing the objective point-wisely for each x,7

i.e.,8

min
QY |X=x

−
K∑
i=1

Q(Y = i|X = x) logQc(Y = i|X = x),

s.t.

K∑
i=1

Q(Y = i|X = x) = 1 and Q(Y = i|X = x) ≥ 0, (E2)

which is a linear programming (LP) problem. The optimal solution must lie in the extreme points of9

the feasible set, which are those points with posterior probability 1 for one class and 0 for the other10

classes. By evaluating the objective values of these extreme points, the optimal solution is (5) with11

objective value − logQc(Y = k|X = x), where k = argmaxiQ
c(Y = i|X = x).12

S2. Proof of Theorem 213

Proof. The minimax game (7) can be written as14

min
G

max
Cmi

V (G,Cmi) = E
Z∼PZ ,Y∼PY

[log(Cmi(G(Z, Y ), Y ))]

= E
X∼QXY

[log(Cmi(X,Y ))]

=
1

K

K∑
k=1

E
X∼QX|Y =k

[log(Cmi(X,Y = k))]

s.t.

K∑
k=1

Cmi(X,Y = k) = 1, (E3)

where the constraint is because Cmi is forced to have probability outputs that sum to one. In the15

following proposition, we will give the optimal Cmi for any given G, or equivalently QXY .16

Proposition 1. Let for a fixed generatorG, the optimal prediction probabilities Cmi(X = x, Y = k)17

of Cmi are18

Cmi∗(x, Y = k) =
Q(x|Y = k)∑K

k′=1Q(x|Y = k′)
. (E4)
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Proof. For a fixed G, (E3) reduces to maximize the value function V (G,Cmi) w.r.t. Cmi(x, Y =19

1), . . . , Cmi(x, Y = K):20

{Cmi∗(x, Y = 1), . . . , Cmi∗(x, Y = K)}

=argmaxCmi(x,Y=1),...,Cmi(x,Y=K)

K∑
k=1

∫
x

Q(x|Y = k) log(Cmi(x, Y = k))dx

s.t.

K∑
k=1

Cmi(x, Y = k) = 1. (E5)

By maximizing the value function pointwisely and applying Lagrange multipliers, we obtain the21

following problem:22

{Cmi∗(x, Y = 1), . . . , Cmi∗(x, Y = K)}

=argmaxCmi(x,Y=1),...,Cmi(x,Y=K)

K∑
k=1

Q(x|Y = k) log(Cmi(x, Y = k))

+ λ(

K∑
k=1

Cmi(x, Y = k)− 1). (E6)

Setting the derivative of (E6) w.r.t. Cmi(x, Y = k) to zeros, we obtain23

Cmi∗(x, Y = k) = −Q(x|Y = k)

λ
. (E7)

We can solve for the Lagrange multiplier λ by substituting (E7) into the constraint
∑K

k=1 C
mi(x, Y =24

k) = 1 to give λ = −
∑K

k=1Q(x|Y = k). Thus we obtain the optimal solution25

Cmi∗(x, Y = k) =
Q(x|Y = k)∑C

k′=1Q(x|Y = k′)
. (E8)

26

Now we are ready the prove the theorem. If we add K logK to U(G), we can obtain:27

U(G) +K logK

=

K∑
k=1

EX∼Q(X|Y=k)

[
log

Q(X|Y = k)∑K
k′=1Q(X|Y = k′)

]
+K logK

=

K∑
k=1

EX∼Q(X|Y=k)

[
log

Q(X|Y = k)
1
K

∑K
k′=1Q(X|Y = k′)

]
=

K∑
m=1

KL
(
Q(X|Y = k)

∣∣∣∣∣∣ 1
K

K∑
k=1

Q(X|Y = k′)
)
. (E9)

By using the definition of JSD, we have28

U(G) = −K logK +K · JSD(QX|Y=1, . . . , QX|Y=K). (E10)

Since the Jensen-Shannon divergence among multiple distributions is always non-negative, and zero29

if they are equal, we have shown that U∗ = −K logK is the global minimum of U(G) and that the30

only solution is QX|Y=1 = QX|Y=2 = · · · = QX|Y=K .31

S3. Proof of Theorem 332

According to the triangle inequality of total variation (TV) distance, we have33

dTV (PXY , QXY ) ≤ dTV (PXY , PY |XQX) + dTV (PY |XQX , QXY ). (E11)
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Using the definition of TV distance, we have34

dTV (PY |XPX , PY |XQX) =
1

2

∫
|PY |X(y|x)PX(x)− PY |X(y|x)QX(x)|µ(x, y)

(a)

≤ 1

2

∫
|PY |X(y|x)|µ(x, y)

∫
|PX(x)−QX(x)|µ(x)

≤ c1dTV (PX , QX), (E12)

where P andQ are densities, µ is a (σ-finite) measure, c1 is an upper bound of 1
2

∫
|PY |X(y|x)|µ(x, y)35

, and (a) follows from the Hölder inequality.36

Similarly, we have37

dTV (PY |XQX , QY |XQX) ≤ c2dTV (PY |X , QY |X), (E13)

where c2 is an upper bound of 1
2

∫
|QX(x)|µ(x) . Combining (E11), (E12), and (E13), we have38

dTV (PXY , QXY ) ≤ c1dTV (PX , QX) + c2dTV (PY |X , QY |X)

≤ c1dTV (PX , QX) + c2dTV (PY |X , Q
c
Y |X) + c2dTV (QY |X , Q

c
Y |X). (E14)

According to he Pinsker inequality dTV (P,Q) ≤
√

KL(P ||Q)
2 [1], and the relation between TV and39

JSD, i.e., 1
2dTV (P,Q)2 ≤ JSD(P,Q) ≤ 2dTV (P,Q) [2], we can rewrite (E14) as40

JSD(PXY , QXY ) ≤ 2c1
√

2JSD(PX , QX) + c2
√
2KL(PY |X ||Qc

Y |X) + c2
√

2KL(QY |X ||Qc
Y |X).

(E15)

S4. 1D MoG synthetic Data41

S4.1. Experimental Setup42

For all the networks in AC-GAN, Projection cGAN, and our TAC-GAN, we adopt the three layer43

Multi-Layer Perceptron (MLP) with hidden dimension 10 and Relu [3] activation function. The only44

difference is the number of input and output nodes. We choose Adam [4] as the optimizer and set the45

learning rate as 2e-4 and the hyperparameter of Adam as β = (0.0, 0.999). We train 10 steps for D,46

C, and Cmi and 1 step for G in every iteration. The batch size is set to 256.47
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S4.2. More Results48

distance = 1

Ground Truth AC-GAN TAC-GAN Projection cGAN

distance = 1.5

distance = 2.0

distance = 2.5

distance = 3.0

distance = 3.5

distance = 4.0

distance = 4.5

distance = 5.0

Figure 1: Change distance between the means of adjacent 1-D Gaussian Components, in this figure,
all models adopt cross entropy loss.
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distance = 1

Ground Truth AC-GAN TAC-GAN Projection cGAN

distance = 1.5

distance = 2.0

distance = 2.5

distance = 3.0

distance = 3.5

distance = 4.0

distance = 4.5

distance = 5.0

Figure 2: Change distance between the means of adjacent 1-D Gaussian Components, in this figure,
all models adopt hinge loss.
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S5. 2D MoG Synthetic Data49

distance = 1

Ground Truth AC-GAN TAC-GAN Projection cGAN

distance = 1.5

distance = 2.0

distance = 2.5

distance = 3.0

distance = 3.5

distance = 4.0

distance = 4.5

distance = 5.0

Figure 3: Change distance between the means of adjacent 2-D Gaussian Components in x-axis, in
this figure, all models adopt cross entropy loss.
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S6. Overlapping MNIST50

S6.1. Experimental Setup51

For the network settings, theG network consists of three layers of Res-Block and relies on Conditional52

Batch Normalization (CBN) [5] to plug in label information. The network structure of D mirrors G53

network without CBN. To stabilize training, D,C,Cmi share the the convolutional layers and differ54

in the fully-connected layers. The chosen dimension of latent z is 128 and optimizer is Adam with55

learning rate lr=2e-4 and β = {0.0, 0.999} for both G and D networks. Each iteration contains 256

steps of D,C,Cmi training and 1 step of G training. The batch size is set to 100.57

S6.2. More Results58

In this experiment, we fix the training data and change the weight of classifier from λc = 0.5 to59

λc = 3.0 with step 0.5 for our model TAC-GAN and AC-GAN. For AC-GAN, when the value of λc60

becomes larger, the proportion of the generated digit ‘0’, which is the overlapping digit, goes smaller.61

However, our model is still able to replicate the true distribution.62

Real	Data

AC-GAN,	
𝜆" = 1.0

TAC-GAN,
𝜆" = 1.0

AC-GAN,	
𝜆" = 2.0

TAC-GAN,	
𝜆" = 2.0

AC-GAN,	
𝜆" = 0.5

TAC-GAN,	
𝜆" = 0.5

AC-GAN,	
𝜆" = 1.5

TAC-GAN,
𝜆" = 1.5

AC-GAN,	
𝜆" = 2.5
TAC-GAN,	
𝜆" = 2.5

AC-GAN,	
𝜆" = 3.0

TAC-GAN,	
𝜆" = 3.0

Figure 4: More generated results for the overlapping MNIST dataset.
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S7. CIFAR10063

S7.1. Experimental Setup64

Due to the complexity and diversity of this dataset, we apply the latest SN-GAN [6] as our base65

model, the implementation is based on Pytorch implementation of Big-GAN [7] and SN layer is66

added to both G and D networks [8]. On this dataset, there is no need to add Self-Attention layer67

[8] and only three Res-Blocks layers are applied due to the low resolution as 32× 32. As done by68

SN-GAN [6], we replace the loss term a© by the hinge loss in order to stabilize the GAN training69

part. For all evaluated methods, the batch size is 100 and total number of training iterations is 60K.70

The optimizer parameters are identical to those used in the overlapping MNIST experiment.71

S7.2. PAC-GAN improvement72

pacGAN is a great method that significantly increases11the performance of AC-GAN, though73

the performance is still lower than our method in terms of both scores and visual12quality. This74

indicates that the drawbacks in AC-GAN loss cannot be fully addressed by pacGAN. We can see75

that13combining pacGAN and TAC-GAN increases the performance, suggesting that pacGAN and76

TAC-GAN are compatible.77

Apple

Grass

pacGAN4+Ours pacGAN4+AC-GAN

Figure 5: Generated Images
MetricMethod Ours pacGAN4+Ours AC-GAN pacGAN4+AC-GAN
IS 9.34 ± 0.077 9.85 ± 0.116 5.37 ± 0.064 8.54 ± 0.143
FID 7.22 6.79 82.45 20.94

tableIS and FID scores

S7.3. More Results78

We show the generated samples for all classes in Figure 6 and report the FID and LPIPS scores for79

each class in Figure 7 and Figure 8, respectively.80
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AC-GAN, 𝜆c = 0.2

TAC-GAN , 𝜆c = 1.0

Projection cGAN

Figure 6: 100 classes of CIFAR100 generated samples, we choose the classifier weight λc = 0.2 for
AC-GAN model.
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Figure 7: The FID score is reported for each class on CIFAR100 generated data, lower is better. The
y axis denotes class label and x axis denotes FID score.
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Figure 8: The LPIPS score is reported for each class on CIFAR100 generated data, larger values
means better variance inner class. The y axis denotes class label and x axis denotes LPIPS score.
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S8. ImageNet100081

S8.1. Experimental Setup82

We adopt the full version of Big-GAN model architecture as the base network for AC-GAN, Projection83

cGAN, and TAC-GAN. In this experiment, we apply the shared class embedding for each CBN84

layer in G model, and feed noise z to multiple layers of G by concatenating with class embedding85

vector. We use orthogonal initialization for network parameters [7]. In addition, following [7], we add86

Self-Attention layer with the resolution of 64 for ImageNet. Due to limited computational resources,87

we fix the batch size to 256. To boost the training speed, we only train one step for D network and88

one step for G network.89

S8.2. More Results90

TAC-GAN (Ours) Projection cGANAC-GAN

Figure 9: In this figure, we randomly select some generated samples from 1000 classes. It contains
birds, snakes, bug, dog, food, scene, etc. Our model shows a very competitive fidelity and diversity.
Generative models are all trained on ImageNet1000 and the image resolution is 128× 128.
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Figure 10: The FID score is reported for each class on ImageNet1000 generated data, we randomly
select 100 classes from our generated samples for comparison between our model TAC-GAN and
Projection cGAN. The method with a lower FID score is better. The y axis denotes class label and x
axis denotes FID score.
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Figure 11: The LPIPS score is reported for each class on ImageNet1000 generated data. we randomly
select 100 classes from our generated samples for comparison between our model TAC-GAN and
Projection cGAN, higher LPIPS socre means larger intra-class variance. The y axis denotes class
label and x axis denotes LPIPS score.
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S9. VGGFace20091

S9.1. Experimental Setup92

We adopt the full version of Big-GAN model architecture as the base network for AC-GAN, Projection93

cGAN, and TAC-GAN. In this experiment, we apply the shared class embedding for each CBN94

layer in G model, and feed noise z to multiple layers of G by concatenating with class embedding95

vector. We use orthogonal initialization for network parameters [7]. In addition, following [7], we add96

Self-Attention layer with the resolution of 32 for VGGFace. Due to limited computational resources,97

we fix the batch size to 256. In this setting, we train two steps for D network and two steps for G98

network. The only difference of the networks applied on ImageNet and VGGFace is that the network99

on ImageNet has one additional up-sampling block and one more down-sampling block added to G100

and D Networks to accommodate higher resolution.101

S9.2. More Results102

Projection cGANTAC-GAN (Ours)

Figure 12: In this figure, we randomly select some generated samples for illustration. All the
generative models are trained on 200 classes on the randomly sampled 200 classes from the VGGFace2
dataset.
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Figure 13: The LPIPS score is reported for each class on VGGFace200 generated data. we randomly
select 100 classes from our generated samples for comparison between our model TAC-GAN and
Projection cGAN, higher LPIPS score means larger intra-class variance. The y axis denotes class
label and x axis denotes LPIPS score.
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