
Communication-Efficient Distributed Learning via

Lazily Aggregated Quantized Gradients

Jun Sun
†

Zhejiang University
Hangzhou, China 310027
sunjun16sj@gmail.com

Tianyi Chen
†

Rensselaer Polytechnic Institute
Troy, New York 12180
chent18@rpi.edu

Georgios B. Giannakis

University of Minnesota, Twin Cities
Minneapolis, MN 55455
georgios@umn.edu

Zaiyue Yang

Southern U. of Science and Technology
Shenzhen, China 518055
yangzy3@sustc.edu.cn

Abstract

The present paper develops a novel aggregated gradient approach for distributed
machine learning that adaptively compresses the gradient communication. The
key idea is to first quantize the computed gradients, and then skip less informative
quantized gradient communications by reusing outdated gradients. Quantizing and
skipping result in ‘lazy’ worker-server communications, which justifies the term
Lazily Aggregated Quantized gradient that is henceforth abbreviated as LAQ. Our
LAQ can provably attain the same linear convergence rate as the gradient descent
in the strongly convex case, while effecting major savings in the communication
overhead both in transmitted bits as well as in communication rounds. Empirically,
experiments with real data corroborate a significant communication reduction
compared to existing gradient- and stochastic gradient-based algorithms.

1 Introduction

Considering the massive amount of mobile devices, centralized machine learning via cloud computing
incurs considerable communication overhead, and raises serious privacy concerns. Today, the
widespread consensus is that besides in the cloud centers, future machine learning tasks have to be
performed starting from the network edge, namely devices [17, 19]. Typically, distributed learning
tasks can be formulated as an optimization problem of the form

min
✓

X

m2M

fm(✓) with fm(✓) :=
NmX

n=1

`(xm,n;✓) (1)

where ✓ 2 Rp denotes the parameter to be learned, M with |M| = M denotes the set of servers,
xm,n represents the n-th data vector at worker m (e.g., feature and label), and Nm is the number of
data samples at worker m. In (1), `(x;✓) denotes the loss associated with ✓ and x, and fm(✓) denotes
the aggregated loss corresponding to ✓ and all data at worker m. For the ease in exposition, we also
define f(✓) =

P
m2M fm(✓) as the overall loss function.

In the commonly employed worker-server setup, the server collects local gradients from the workers
and updates the parameter using a gradient descent (GD) iteration given by

GD iteration ✓k+1 = ✓k � ↵
X

m2M
rfm

�
✓k� (2)

† Jun Sun and Tianyi Chen contributed equally to this work.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

where ✓k denotes the parameter value at iteration k, ↵ is the stepsize, and rf(✓k) =P
m2Mrfm(✓k) is the aggregated gradient. When the data samples are distributed across workers,

each worker computes the corresponding local gradient rfm(✓k), and uploads it to the server. Only
when all the local gradients are collected, the server can obtain the full gradient and update the
parameter. To implement (2) however, the server has to communicate with all workers to obtain
fresh gradients {rfm

�
✓k
�
}Mm=1. In several settings though, communication is much slower than

computation [16]. Thus, as the number of workers grows, worker-server communications become the
bottleneck [10]. This becomes more challenging when incorporating popular deep learning-based
learning models with high-dimensional parameters, and correspondingly large-scale gradients.

1.1 Prior art

Communication-efficient distributed learning methods have gained popularity recently [10, 22]. Most
popular methods build on simple gradient updates, and are centered around the key idea of gradient
compression to save communication, including gradient quantization and sparsification.

Quantization. Quantization aims to compress gradients by limiting the number of bits that repre-
sent floating point numbers during communication, and has been successfully applied to several
engineering tasks employing wireless sensor networks [21]. In the context of distributed machine
learning, a 1-bit binary quantization method has been developed in [5, 24]. Multi-bit quantization
schemes have been studied in [2, 18], where an adjustable quantization level can endow additional
flexibility to control the tradeoff between the per-iteration communication cost and the convergence
rate. Other variants of quantized gradient schemes include error compensation [32], variance-reduced
quantization [34], quantization to a ternary vector [31], and quantization of gradient difference [20].

Sparsification. Sparsification amounts to transmitting only gradient coordinates with large enough
magnitudes exceeding a certain threshold [27]. Empirically, the desired accuracy can be attained even
after dropping 99% of the gradients [1]. To avoid losing information, small gradient components
are accumulated and then applied when they are large enough. The accumulated gradient offers
variance reduction of the sparsified stochastic (S)GD iterates [12, 26]. With its impressive empirical
performance granted, except recent efforts [3], deterministic sparsification schemes lack performance
analysis guarantees. However, randomized counterparts that come with the so-termed unbiased
sparsification have been developed to offer convergence guarantees [28, 30].

Quantization and sparsification have been also employed simultaneously [9, 13, 14]. Nevertheless,
they both introduce noise to (S)GD updates, and thus deteriorate convergence in general. For problems
with strongly convex losses, gradient compression algorithms either converge to the neighborhood of
the optimal solution, or, they converge at sublinear rate. The exception is [18], where the first linear
convergence rate has been established for the quantized gradient-based approaches. However, [18]
only focuses on reducing the required bits per communication, but not the total number of rounds.
Nevertheless, for exchanging messages, e.g., the p-dimensional ✓ or its gradient, other latencies
(initiating communication links, queueing, and propagating the message) are at least comparable
to the message size-dependent transmission latency [23]. This motivates reducing the number of
communication rounds, sometimes even more so than the bits per round.

Distinct from the aforementioned gradient compression schemes, communication-efficient schemes
that aim to reduce the number of communication rounds have been developed by leveraging higher-
order information [25, 36], periodic aggregation [19, 33, 35], and recently by adaptive aggregation
[6, 7, 11, 29]; see also [4] for a lower bound on communication rounds. However, whether we can
save communication bits and rounds simultaneously without sacrificing the desired convergence
properties remains unresolved. This paper aims to address this issue.

1.2 Our contributions

Before introducing our approach, we revisit the canonical form of popular quantized (Q) GD methods
[24]-[20] in the simple setup of (1) with one server and M workers:

QGD iteration ✓k+1 = ✓k � ↵
X

m2M
Qm

�
✓k� (3)

where Qm

�
✓k
�

is the quantized gradient that coarsely approximates the local gradientrfm(✓k). While
the exact quantization scheme is different across algorithms, transmitting Qm

�
✓k� generally requires

2

fewer number of bits than transmitting rfm(✓k). Similar to GD however, only when all the local
quantized gradients {Qm

�
✓k
�
} are collected, the server can update the parameter ✓.

In this context, the present paper puts forth a quantized gradient innovation method (as simple as
QGD) that can skip communication in certain rounds. Specifically, in contrast to the server-to-worker
downlink communication that can be performed simultaneously (e.g., by broadcasting ✓k), the server
has to receive the workers’ gradients sequentially to avoid interference from other workers, which
leads to extra latency. For this reason, our focus here is on reducing the number of worker-to-server
uplink communications, which we will also refer to as uploads. Our algorithm Lazily Aggregated
Quantized gradient descent (LAQ) resembles (3), and it is given by

LAQ iteration ✓k+1 = ✓k � ↵rk with rk =rk�1+
X

m2Mk

�Qk
m (4)

where rk is an approximate aggregated gradient that summarizes the parameter change at iteration
k, and �Qk

m := Qm(✓k)�Qm(✓̂
k�1
m) is the difference between two quantized gradients of fm at

the current iterate ✓k and the old copy ✓̂
k�1
m . With a judicious selection criterion that will be

introduced later, Mk denotes the subset of workers whose local �Qk
m is uploaded in iteration k,

while parameter iterates are given by ✓̂
k
m := ✓k, 8m 2Mk, and ✓̂

k
m := ✓̂

k�1
m , 8m /2Mk. Instead of

requesting fresh quantized gradient from every worker in (3), the trick is to obtain rk by refining the
previous aggregated gradient rk�1; that is, using only the new gradients from the selected workers in
Mk, while reusing the outdated gradients from the rest of workers. Ifrk�1 is stored in the server, this
simple modification scales down the per-iteration communication rounds from QGD’s M to LAQ’s
|Mk|. Throughout the paper, one round of communication means one worker’s upload.

Compared to the existing quantization schemes, LAQ first quantizes the gradient innovation —
the difference of current gradient and previous quantized gradient, and then skips the gradient
communication — if the gradient innovation of a worker is not large enough, the communication of
this worker is skipped. We will rigorously establish that LAQ achieves the same linear convergence
as GD under the strongly convex assumption of the loss function. Numerical tests will demonstrate
that our approach outperforms existing methods in terms of both communication bits and rounds.

Notation. Bold lowercase letters denote column vectors; kxk2 and kxk1 denote the `2-norm and
`1-norm of x, respectively; and [x]i represents i-th entry of x; while bac denotes downward rounding
of a; and | · | denotes the cardinality of the set or vector.

2 LAQ: Lazily aggregated quantized gradient

To reduce the communication overhead, two complementary stages are integrated in our algorithm
design: 1) gradient innovation-based quantization; and 2) gradient innovation-based uploading or
aggregation — giving the name Lazily Aggregated Quantized gradient (LAQ). The former reduces
the number of bits per upload, while the latter cuts down the number of uploads, which together
guarantee parsimonious communication. This section explains the principles of our two-stage design.

2.1 Gradient innovation-based quantization

Rk
m2!Rk

m

[Qm(��k�1
m)]i

[)

[Qm(�k)]i[�fm(�k)]i

Figure 1: Quantization example (b = 3)

Quantization limits the number of bits to represent a
gradient vector during communication. Suppose we
use b bits to quantize each coordinate of the gradient
vector in contrast to 32 bits as in most computers.
With Q denoting the quantization operator, the quan-
tized gradient for worker m at iteration k is Qm(✓k) = Q(rfm(✓k), Qm(✓̂

k�1
m)), which depends on

the gradient rfm(✓k) and the previous quantization Qm(✓̂
k�1
m). The gradient is element-wise quan-

tized by projecting to the closest point in a uniformly discretized grid. The grid is a p-dimensional
hypercube which is centered at Qm(✓̂

k�1
m) with the radius Rk

m = krfm(✓k) � Qm(✓̂
k�1
m)k1. With

⌧ := 1/(2b� 1) defining the quantization granularity, the gradient innovation fm(✓k)�Qm(✓̂
k�1
m) can

be quantized by b bits per coordinate at worker m as:

[qm(✓k)]i =

$
[rfm(✓k)]i � [Qm(✓̂

k�1
m)]i +Rk

m

2⌧Rk
m

+
1
2

%
, i = 1, · · · , p (5)

3

