
Supplementary Material
We establish properties of the destructive interference which make it possible to recover a linear
transformation from the superposition. Appendix A provides intuition that after offline training, the
models can be stored in superposition and retrieved with small noise. Appendix B shows that the
models in superposition can be trained online. Appendix D describes how complex vectors can be
generated compositionally.

Properties of this recovery process are more clearly illustrated by substituting Equation 1 into
Equation 3. By unpacking the inner product operation, Equation 3 can be rewritten as the sum of two
terms which is shown in Equation 9.

yi =
∑
j

∑
s

W (s)ijc(s)
−1
j c(k)jxj

=
∑
j

W (k)ijxj +
∑
j

∑
s 6=k

W (s)ijc(s)
−1
j c(k)jxj

which is written more concisely in matrix notation as:

y =W (k)x+ ε (9)

ε =
∑
s6=k

W (s)(c(s)−1 � c(k)� x)

The first term, W (k)x, is the recovered linear transformation and the second term, ε, is a residual. For
particular formulations of the set of context vectors c(S), ε is a summation of terms which interfere
destructively. For an analysis of the interference, please see the Appendix A.

A Analysis of retrieval noise

In this section, we use Propositions 1 and 2 to provide the intuition that we can superimpose individual
models after training and the interference should stay small. Assume w and x are fixed vectors and c
is a random context vector, each element of which has a unit amplitude and uniformly distributed
phase.

A.1 Proposition 1: superposition bias analysis

Proposition 1. ε in expectation is unbiased, Es[ε]→ 0.

Proposition 1 states that, in expectation, other models within the superposition will not introduce a
bias to the recovered linear transformation.

Proof. We consider three cases: real value network with binary context vectors, complex value
network with complex context vectors, and real value network with orthogonal matrix context. For
each case we show that if the context vectors / matrices have uniform distribution on the domain of
their definition the expectation of the scalar product with the context-effected input vector is zero.

Real-valued network with binary context vectors. Assuming a fixed weights vector w for a
given neuron, a fixed pre-context input x, and a random binary context vector b with i.i.d. components

E [(w � b, x)] = E
[∑

wibixi

]
=
∑

wixiE [bi]

= 0

because E [bi] = 0.
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Complex-valued network with complex context vectors. Again, we assume a fixed weights
vector w for a given neuron, a fixed pre-context input x, and a random complex context vector c with
i.i.d. components, such that ‖ci‖ = 1 for every i and the phase of ci has a uniform distribution on a
circle. Then

E [(w � c, x)] = E
[∑

w∗i c
∗
i xi

]
=
∑

w∗i xiE [c∗i ]

= 0

where w∗i is a conjugate of wi. Here E [c∗i ] = 0 because ci has a uniform distribution on a circle.

Real-valued network with real-valued rotational context matrices. Let w ∈ RM be a vector
and the context vector Ck be a random orthogonal matrix drawn from the O(M) Haar distribution
[13]. Then Ckw for fixed w defines a uniform distribution on sphere SM−1r , with radius r = ‖w‖.
Due to the symmetry,

E [〈Ckw, x〉] = 0.

A.2 Proposition 2: Variance induced by context vectors

Proposition 2. For x, w ∈ CM , when we bind a random c ∈ CM with w, Var [〈c�w,x〉]
‖w‖2‖x‖2 ≈ 1

M

under mild conditions. For x, w ∈ RM , let Ck be a random orthogonal matrix s.t. Ckw has a
random direction. Then Var (〈Ckw,x〉)

‖w‖2‖x‖2 ≈ 1
M . In both cases, let |〈w, x〉| = ‖w‖‖x‖η. If η is large,

then |〈c� w, x〉| and |〈Ckw, x〉| will be relatively small compared to |〈w, x〉|.

If we assume that ‖w(k)‖’s are equally large and denote it by γ, then ε ∝ K−1
M |〈w, x〉|2. When K−1

M
is small, the residual introduced by other superimposed models will stay small. Binding with the
random keys roughly attenuates each model’s interference by a factor proportional to 1√

M
.

Proof. Similarly to Proposition 1, we give an estimate of the variance for each individual case: a
real-valued network with binary context vectors, a complex-valued network with complex context
vectors, and a real-valued network with rotational context matrices. All the assumptions are the same
as in Proposition 1.

Real-valued network with binary context vectors.

E
[
|(w � b, x)|2

]
= E

[(∑
wibixi

)(∑
wjbjxj

)]
= E

∑
i,j

wibixiwjbjxj


=
∑
i,j

wixiwjxjE [bibj ]

=
∑
i

w2
i x

2
iE
[
b2i
]

=
∑
i

|wi|2|xi|2

= ‖w � x‖2.

Here we made use of the facts that bi and bj are independent variables with zero mean, and that
b2i = 1.

Note that
|〈w, x〉| = ‖w‖‖x‖η.
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If η � 0, then |〈w � b, x〉| will be relatively small compared to |〈w, x〉|. Indeed, we can assume that
each term w∗i xi has a comparably small contribution to the inner product (e.g. when using dropout)
and

|wi|
‖w‖

|xi|
‖x‖
≈ η

M
.

Then

E [|(w � b, x)|2] ≈ η2

M
‖w‖2‖x‖2

Complex-valued network with complex context vectors.

E
[
|(c� w, x)|2

]
= E

[(∑
wix

∗
i ci

)(∑
w∗jxjc

∗
j

)]
= E

∑
i,j

wix
∗
i ciw

∗
jxjc

∗
j


=
∑
i,j

wix
∗
iw
∗
jxjE

[
cic
∗
j

]
=
∑
i

wix
∗
iw
∗
i xiE [cic

∗
i ]

=
∑
i

|wi|2|xi|2

= ‖w � x‖2

Here we make use of the fact that E [c∗i cj ] = E [ci]E [c∗j ] = 0 for i 6= j, which in turn follows from
the fact that ci and cj are independent variables.

Let’s assume each term w∗i xi has a comparable small contribution to the inner product (e.g. when
using dropout). Then it is reasonable to assume that |wi||xi| ≈ η

M ‖w‖‖x‖, whereM is the dimension
of x. Then

E [|(w, x� c)|2] ≈ η

M
‖w‖2‖x‖2

Real-valued network with real-valued rotational context matrices. We show the case in high
dimensional real vector space for a random rotated vector. Let w ∈ RM again be a vector and Ck be
a random matrix drawn from the O(M) Haar distribution. Then Ckw for fixed w defines a uniform
distribution on sphere SM−1r , with radius r = ‖w‖.
Consider a random vector w′, whose components are drawn i.i.d. from N(0, 1). Then one can
establish a correspondence between Ckw and w′:

Ckw = ‖w‖ w′

‖w′‖
.

thus Ckw is w under a random rotation in RM . Let w′ = (w′1, . . . , w
′
M ) be a random vector

where w′i are i.i.d. normal random variables N(0, 1). Ckw ∼ ‖w‖ w′

‖w′‖ , 〈w′, x〉 =
∑M
i=1 xiw

′
i and

〈Ckw, x〉 = ‖w‖
‖w′‖ 〈w

′, x〉. Then we have:

Var (〈Ckw, x〉) = E
[
〈Ck w, x〉2

]
= E

[
‖w‖2

‖w′‖2
〈w′, x〉2

]
= ‖w‖2‖x‖2E

[
〈 w

′

‖w′‖
,
x

‖x‖
〉2
]
.

We further show that E
[
〈 w′

‖w′‖ ,
x
‖x‖ 〉

2
]
= 1

M and hence
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Var (〈Ck · w, x〉) =
1

M
‖w‖2‖x‖2.

Due to the symmetry,

E

[
〈 w

′

‖w′‖
,
x

‖x‖
〉2
]
= E

[
〈 w

′

‖w′‖
, (1, 0, . . . , 0)〉2

]
= E

[
(
w′1
‖w′‖

)2
]

Let yi =
w′i
‖w′‖ , E

[
y2i
]
= γ. Then

γ = E
[
y21
]
= E

[
1−

M∑
i=2

y2i

]
= 1− (M − 1)γ

So Mγ = 1 and γ = 1
M . Thus E

[
(
w′1
‖w′‖ )

2
]
= 1

M .

Let |〈w, x〉| = ‖w‖‖x‖η, if we consider the case η is large, we have std (〈Ckw, x〉) ∝ 1√
M
|〈w, x〉|.

B Online learning with unitary transformations

In this section, we describe having individual models in superposition during training.

Proposition 3. Denote the cost function of the network with PSP as JPSP used in context k, and the
cost function of the kth network without as Jk.

1. For the complex context vector case, ∂
∂W JPSP ≈

(
∂

∂W (k)Jk

)
� c(k), where c(k) is the

context vector used in JPSP and W (k) are the weights of the Jk network.
2. For the general rotation case in real vector space, ∂

∂W JPSP ≈ ( ∂
∂W (k)Jk)Ck, where Ck is

the context matrix used in JPSP and W (k) are the weights of the Jk network.
Proposition 3 shows parameter updates of an individual model in superposition is approximately equal
to updates of that model trained outside of superposition. The gradient of parameter superposition
creates a superposition of gradients with analogous destructive interference properties to Equation 3.
Therefore, memory operations in parameter superposition can be applied in an online fashion.

Proof. Here we show that training a model which is in superposition with other models using
gradient descent yields almost the same parameter update as training this model independently
(without superposition). For example imagine two networks with parameters w1 and w2 combined
into one superposition network using context vectors c1 and c2, such that the parameters of the PSP
network w = w1 � c1 + w2 � c2. Then, what we show below is that training the PSP network with
the context vector c1 results in nearly the same change of parameters w as training the network w1

independently and then combining it with w2 using the context vectors.

To prove this we consider two models. The original model is designed to solve task 1. The PSP model
is combining models for several tasks. Consider the original model as a function of its parameters w
and denote it as f(w). Throughout this section we assume w to be a vector.

Note that for every w, the function f(w) defines a mapping from inputs to outputs. The PSP model,
when used for task 1, can also be defined as F (W ), where W is a superposition of all weights.

We define a superposition function ϕ, combining weights w with any other set of parameters, w̃.

W = ϕ(w, w̃)
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We also define an read-out function ρ which extracts w from W possibly with some error e:
ρ(W ) = w + e.

The error emust have such properties that the two models f(w) and f(w+e) produce similar outputs
on the data and have approximately equal gradients∇wf(w) and∇wf(w + e) on the data.

When the PSP model is used for task 1, the following holds:

F (W ) = f(ρ(W )) = f(w + e)

Our goal now is to find conditions of superposition and read-out functions, such that for any in-
put/output data the gradient of f with respect to w is equal (or nearly equal) to the gradient of F with
respect to W , transformed back to the w space. Since for the data the functions f(w) and f(w + e)
are assumed to be nearly equal together with their gradients, we can omit the error term e.

The gradient updates the weights W are
δW = ∇WF

=

(
∂ρ

∂W

)T
∇ρf(ρ(W ))

=

(
∂ρ

∂W

)T
∇wf(w)

Now δw corresponding to this δW can be computed using linear approximate of ρ(W + δW ):

δw = ρ(W + δW )− ρ(W ) ≈ ∂ρ

∂W
δW,

and hence

δw =

(
∂ρ

∂W

)(
∂ρ

∂W

)T
∇wf(w)

Thus in order for δw, which is here computed using the gradient of F , to be equal to the one computed
using the gradient of f it is necessary and sufficient that

(
∂ρ

∂W

)(
∂ρ

∂W

)T
= I (10)

Real-valued network with binary context vectors Assume a weights vector w and a binary
context vector b ∈ {−1, 1}M . We define a superposition function

W = ϕ(w, w̃) = w � b+ w̃.

Since b = b−1 for binary vectors, the read-out function can be defined as:
ρ(W ) =W � b

= w + w̃ � b
= w + e

In propositions 1 and 2 we have previously shown that in case of binary vectors the error e has a
small contribution to the inner product. What remains to show is that the condition 10 is satisfied.

Note that
∂ρ

∂W
= diag(b).

Since bibi = 1 for every element i, the matrix ∂ρ
∂W is orthogonal and hence condition 10 is satisfied.(

∂ρ

∂W

)(
∂ρ

∂W

)T
= diag(b)diag(b)T

= I
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Complex-valued network with complex context vectors. The proof for the complex context
vectors is very similar to that for the binary. Let the context vector c ∈ CM , s.t. |ci| = 1. It is
convenient to use the notation of linear algebra over the complex field. One should note that nearly all
linear algebraic expressions remain the same, except the transposition operator T should be replaced
with the Hermitian conjugate † which is the combination of transposition and changing the sign of
the imaginary part.

We define the superposition operation as
W = ϕ(w, w̃) = w � c+ w̃.

When |ci| = 1, c−1i = c∗i where ∗ is the element-wise conjugate operator (change of sign of the
imaginary part). The read-out function can be defined as:

ρ(W ) =W � c∗

= w + w̃ � c∗

= w + e

The necessary condition 10 transforms into(
∂ρ

∂W

)(
∂ρ

∂W

)†
= I

where I is a complex identity matrix, whose real parts form an identity matrix and all imaginary parts
are zero. This condition is satisfied for the chosen complex vector because(

∂ρ

∂W

)(
∂ρ

∂W

)†
= diag(c)diag(c∗) = I

Real-valued network with real-valued rotational context matrices The proof is again very
similar to the previous cases. The superposition operation is defined as

W = Cw + w̃,

where C is a rotational matrix.

The read-out function is
ρ(W ) = C−1W = CTW

where CT is the transposed of C. Here we use the fact that for rotation matrices CCT = CTC = I .

The condition 10 becomes (
∂ρ

∂W

)(
∂ρ

∂W

)T
= CTC = I,

and hence is satisfied.

C Geometry of Rotations

For each type of superposition, Supplementary Figure 1 left provides the geometry of the rotations
which can be applied to parameters w. This illustrates the topology of the embedding space of
superimposed models.

D From superposition to composition

While a context is an operator on parameter vectors w, the context itself can also be operated on.
Analogous to the notion of a group in abstract algebra, new contexts can be constructed from a
composition of existing contexts under a defined operation. For example, the context vectors in
complex superposition form a Lie group under complex multiplication. This enables parameters to
be stored and recovered from a composition of contexts:

ca+b = ca � cb (11)
By creating functions c(k) over the superposition dimension k ∈ S, we can generate new context
vectors in a variety of ways. To introduce this idea, we describe two basic compositions.
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A B C

Supplementary Figure 1: The topology of all context operators acting on a vector w, e.g. TM · w =
{c�w : c ∈ TM}. A binary operates on a lattice B complex operates on a torus C rotational operates
on a sphere.
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Supplementary Figure 2: Accuracy on rotating MNIST

Mixture of contexts The continuity of the phase φ in complex superposition makes it possible to
create mixtures of contexts to generate a smoother transition from one context to the next. One basic
mixture is an average window over the previous, current and next context:

c(k) = ei
φ(k−1)+φ(k)+φ(k+1)

3 (12)

The smooth transitions reduces the orthogonality between neighboring context vectors. Parameters
with neighboring contexts can ‘share’ information during learning which is useful for transfer-learning
settings and continual learning settings where the domain shift is smooth.

E Additional Results
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Supplementary Figure 3: Comparing the accuracy of various methods for PSP on the first task of
the permutingMNIST challenge over training steps on networks with 2000 units. pspRotation is left
out because it is impractical for most applications because its memory and computation footprint is
comparable with storing independent networks.
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