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A Theoretical Framework for Value-Based MORL Algorithms

In this section, we introduce a theoretical framework for analyzing and designing the value-based multi-objective
reinforcement learning algorithms. This framework is based on the well-known Banach’s Fixed-Point Theorem,
which guarantees the existence and uniqueness of fixed-point of a contraction on a complete metric space.
Therefore, generalizing this theorem a bit, we can imagine all value functions of reinforcement learning are in
some metric space, and finding the optimal value or policy is to find the fixed point of a certain contraction on
that space. We first recall the following concepts.

A.1 General Framework for Value-Based Reinforcement Learning

Definition 1 (Contraction). Let (X, d) be a metric space. We say that T is a contraction, if there is a real
number γ ∈ [0, 1) such that

d(T (x), T (x′)) ≤ γd(x, x′) (11)

for all points x, x′ ∈ X , where γ is called a Lipschitz coefficient for the contraction T .

Theorem 4 (Banach’s Fixed-Point Theorem). Let (X, d) be a complete metric space and let T : X → X be a
contraction. Then there exists a unique fixed point x∗ ∈ X such that T (x∗) = x∗. Moreover, if x is any point
in X and T n(x) is inductively defined by T n(x) = T (T n−1(x)), then we have T n(x)→ x∗ as n→∞.

The above introduced Banach fixed-point theorem is well-known. Readers may refer to the book [39] for more
details. Practically, this provides us with an iterative method for converging to any desired solution in the large
solution space, by repeatedly applying a properly designed contraction. For example, the foundation for standard
value-based single-objective reinforcement learning is the use of Bellman’s optimality equation [10]:

Q∗(s, a) = r(s, a) + γEs′∼P(·|s,a) sup
a′∈A

Q∗(s′, a′), (12)

where γ ∈ [0, 1) is the discount factor and the optimal Q-value function Q∗(s, a) is the desired solution in the
spaceQ ⊆ RS×A consisting of all the bounded functions with `∞-distance metric

d(Q,Q′) := sup
s∈S,a∈A

|Q(s, a)−Q′(s, a)|. (13)

Since the all the functions in this space is bounded, it follows that with this `∞-distance metric, the space (Q, d)
is complete. Besides, according to the equation (12), we can design an Bellman optimality operator T such that

(T Q)(s, a) := r(s, a) + γEs′∼P(·|s,a) sup
a′∈A

Q(s′, a′), (14)

which can be shown as a contraction on (Q, d). Many popular value-based reinforcement algorithms, such as
deep Q-learning [34], can be seen as asynchronous iteration methods with approximately applied contraction.

We can verify that the Bellman optimality operator T indeed is a contraction on (Q, d), and the optimal value
functionQ∗ is a fixed point in (Q, d). Therefore, we can find the unique optimal Q-value function by applying the
optimality operator iteratively many times on any initial Q-value function. Similarly, we can also define Bellman
evaluation operator Tπ using the Bellman expectation equation (TπQ)(s, a) := r(s, a) + γEτ∼(P,π)Q(s′, a′),
which is also a contraction.

Knowing that the optimality operator is a contraction is important. In practice, we use a minibatch to update
previous Q-value function approximated by neural networks, not updating all states and actions. Thus the
updated Q-value function is not a strict T Q, but only close to T Q on some state and action pairs. We can still
provide a theoretical guarantee that a minibatch iterative algorithm can still converge to a promising result, under
certain extra assumptions.

Definition 2 (Minibatch Iteration). Consider the Q-value function Q as a composition of {QS,A}S⊆S,A⊆A
such that in each iteration,

Qk+1
S,A (s, a) :=

{
T QkS,A(s, a), if s ∈ S and a ∈ A;

QkS,A(s, a), otherwise.
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Theorem 5 (Minibatch Convergence Theorem). Suppose each restricted Q-value function QS,A can be update
an arbitrary number of times, and there is a nest sequence of nonempty sets {Qk}k∈Z withQk+1 ⊆ Qk ⊆ Q,
k = 0, 1, . . . such that if {Qk}k∈N is any sequence with Qk ∈ Qk for all k ≥ 0, then {Qk} converges
pointwisely to Q∗. Assume further the following:

1. Convergence Condition: We have

∀Q ∈ Qk, T Q ∈ Qk+1; (15)

2. Box Condition: For all k,Qk is a Cartesian product of the form

Qk = ×s∈S,a∈AQk{s},{a}, (16)

whereQkS,A is a set of bounded real-valued functions on states S and actions A.

Then for every Q0 ∈ Q0 the sequence {Qk} generated by the minibatch iteration algorithm converges to
Q∗ [40].

Proof. Showing the convergence of the algorithm is equivalent to showing that the iterations of elements from
Qk will get in toQk+1 eventually, i.e., for each k ≥ 0, there is a time tk such that Qt ∈ Qk for all t ≥ tk. We
can prove it by mathematical induction.

When k = 0, the statement is true since Q0 ∈ Q0. Assuming the statement is true for a given k, we will show
there is a time tk+1 with the required properties. For each s ∈ S, a ∈ A, let set Ls,a = {t : st = s, at = a}
record the time a minibatch update happens on the state s and action a. Let t(s, a) be the first element in Ls,a
such that t(s, a) ≥ tk. Then by the convergence condition, we have T Qt(s,a) ∈ Qk+1 for all s ∈ S and a ∈ A.
In the view of the box condition, it implies Qt+1(s, a) ∈ Qk+1

s,a for all t ≥ t(s, a) for any s ∈ S and a ∈ A.
Therefore, let tk+1 = maxs,a t(s, a) + 1, using the box condition, we have Qt ∈ Qk+1 for all t ≤ tk+1. By
mathematical induction, the statement holds, andQk will shrink in toQk+1 eventually. Hence, we have proved
{Qt} converges to Q∗ finally.

The above theorem indicates that minibatch update with experience replay will not affect the convergence of
iteratively applying the optimality operator T . This gives us the flexibility to design value-based algorithm’s
updating scheme. Besides, even though we use deep Q-network to approximate the Q-value function and
update it by using gradient descent, this will not impair the magical function of optimality operator too much.
This is because if after n-round neural network updates, we always have sups∈S,a∈A

∣∣Qt+n − T Qt∣∣ ≤ ε,
where n is an arbitrary bounded integer, by applying the triangle inequality we conclude that the final error
d(Qfinal, Q

∗) ≤ ε/(1− γ) is bounded.

We summarize a general theoretical framework for value-based RL algorithm design, which consists of five
elements:

• Value Space X : A common choice of X is the space of value functions in RS or the space of Q-value
functions in RS×A. There are many other choices such as the space of ordered pair of (V,Q) (see 2.6.2 in
book [41] for example), or the space of vectorized value functions as we show in the following sections.

• Value Metric d: It defines the “distance" between two points in the value space. Besides the basic four
requirements, the metric d should ensure a complete metric space (X , d) to validate the Banach’s fixed-point
theorem. A compatible selection of value metric will make the convergence analysis easier.

• Evaluation Operator Tπ: We have constructed a recursive expression of a certain value point in the value
space associated with some policy, e.g., the Bellman expectation equation, to depict the value of a policy vπ
as a fixed point we desire. Carefully verify that the contraction property holds for Tπ .

• Optimality Operator T : A recursive expression of the optimal point in the value space, e.g., the Bellman
optimality equation. Note that when the metric d is the supremum of the absolute value of the difference,
and Tπ is a contraction, we can prove the contraction property of T is always automatically satisfied.

• Updating Scheme: To make a reinforcement learning algorithm practical and scalable, we need to consider
many factors in terms of updating scheme. For example: How do we approximate the value and policies? If
it is an online algorithm, how do we trade off exploration and exploitation? All these details will significantly
influence the performance of our algorithm on real-world tasks.

In summary, there are five essential components for analyzing and designing general value-base reinforcement
learning algorithms: (1) value space, (2) value metric, (3) evaluation operator, (4) optimality operator, and
(5) updating scheme. In fact, there is some work [42] developing distributional reinforcement learning in a
way similar to this framework. We will discuss how to design these five elements of our framework to develop
envelope multi-objective reinforcement learning algorithms in the next section.
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A.2 MORL with envelope updates

The deep MORL algorithm with scalarized update is capable of solving unknown linear preference scenarios
of multi-objective reinforcement learning. However, there are several limitations of this algorithm restrict its
applicability and performance in practice. Aiming at solving problems stated in Section 2, we design a new
algorithm called envelope deep MORL algorithm. Following the value-based theoretical framework introduced
in Section A.1, our key idea to upgrade the scalarized algorithm is to consider a different value space, where
every Q-value function is a mapping to multi-objective solutions, not utilities, and therefore maintains the
necessary information for prediction in the adaptation phase. Furthermore, we generalize the optimality filterH
to use that information to boost up the alignment in the learning phase.

We consider a new value space Q ⊆ (Ω→ Rm)S×A, containing all bounded functions Q(s, a, ω) returning
the estimates of preferred expected total rewards under preference ω, which are m-dimensional vectors. Besides,
we employ a value metric d defined by

d(Q,Q′) := sup
s∈S,a∈A

ω∈Ω

|ωᵀ(Q(s, a,ω)−Q′(s, a,ω))|. (17)

Notice that this metric is a pseudo-metric, since the identity of indiscernibles does not hold for it. It is easy to
show that metric space (Q, d) is complete.

We refer the Q-value functions in this Q multi-objective value functions. Similar to the scalarized one, we
design an evaluation operator and an optimality operator for this envelope version algorithm. As for the updating
scheme, we use hindsight experience replay and a homotopy optimization trick.

A.2.1 Multi-Objective Bellman Optimality Operator

In this section, we give the evaluation operator and the optimality operator in the new envelope version value
space (Q, d) as stated above. The evaluation operator now is even simpler than that of the scalarized version.
Give a policy π, the evaluation operator is defined by

(TπQ)(s, a,ω) := r(s, a) + γEτ∼(P,π)Q(s′, a′,ω). (18)
Since now the multi-objective Q-value function is also in a vector form, this evaluation operator is almost the
same as that of the single-objective reinforcement learning. It can be easily verified as a contraction.

As for the envelope version of optimality operator, we employ a stronger optimality filter H, defined by
(HQ)(s,ω) := argQ supa′∈A,ω′∈Ω ωᵀQ(s, a′,ω′), where the argQ takes the multi-objective value corre-
sponding to the supremum, i.e., Q(s, a′′,ω′′) such that (a′′,ω′′) ∈ arg supa′∈A,ω′∈Ω ωᵀQ(s, a′,ω′). The
return of argQ depends on scalarization weights ω, and we use argQ for simplicity of notation. This filter
is solving the convex envelope of the current Pareto frontier, therefore we name this algorithm as “envelope"
version. We can write the optimality operator T in terms of the optimal filter:

(TQ)(s, a,ω) := r(s, a) + γEs′∼P(·|s,a)(HQ)(s′,ω). (19)
Theorem 1 (Fixed Point of Evelope Optimality Operator for MORL). Use above definitions in the envelope
version value space. Let Q∗ ∈ Q be the preferred optimal value function in the value space, such that

Q∗(s, a,ω) = argQ sup
π∈Π

ωᵀEτ∼(P,π)|s0=s,a0=a

[
∞∑
t=0

γtr(st, at)

]
, (20)

where the argQ takes the multi-objective value corresponding to the supremum, then Q∗ = TQ∗ holds.

Proof. First, we observe that d(Q∗, TQ∗) = sups∈S,a∈A
ω∈Ω

|ωᵀ(Q∗(s, a,ω) − TQ∗(s, a,ω))| = 0 ⇔

ωᵀTQ∗(s, a,ω) = ωᵀQ∗(s, a,ω) for all s, a,ω. Then, by substituting the definition of Q∗ into T Q∗,

ω
ᵀTQ

∗
(s, a,ω) = ω

ᵀ
r(s, a) + γ · ωᵀEs′∼P(·|s,a)(HQ

∗
)(s
′
,ω)

(def. ofH) = ω
ᵀ
r(s, a) + γ · ωᵀEs′∼P(·|s,a) argQ sup

a′∈A,ω′∈Ω

ω
ᵀ
Q
∗
(s
′
, a
′
,ω
′
)

(linearity of exp. & cancel ωᵀ and argQ) = ω
ᵀ
r(s, a) + γ · Es′∼P(·|s,a) sup

a′∈A,ω′∈Ω

ω
ᵀ
Q
∗
(s
′
, a
′
,ω
′
)

(insert eq. (20), def. of Q∗) = ω
ᵀ
r(s, a) + γ · Es′∼P(·|s,a) sup

a′∈A,ω′∈Ω

ω
ᵀ

argQ sup
π∈Π

ω
′ᵀE τ∼(P,π)

|s0=s′,a0=a′

[ ∞∑
t=0

γ
t
r(st, at)

]
(use def. of argQ , explained below) = ω

ᵀ
r(s, a) + γ · Es′∼P(·|s,a) sup

a′∈A
ω

ᵀ

argQ sup
π∈Π

ω
ᵀE τ∼(P,π)

|s0=s′,a0=a′

[ ∞∑
t=0

γ
t
r(st, at)

]
(rearrange expectation and sup) = ω

ᵀ
r(s, a) + γ · ωᵀ

argQ sup
π∈Π

ω
ᵀE τ∼(P,π)
s0∼P(·|s,a)

[ ∞∑
t=0

γ
t
r(st, at)

]

(merge 1st term to sum & use def. of Q∗ again) = ω
ᵀ

argQ sup
π∈Π

ω
ᵀE τ∼(P,π)
|s0=s,a0=a

[ ∞∑
t=0

γ
t
r(st, at)

] = ω
ᵀ
Q
∗
(s, a,ω)
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The fourth equation is due to a sandwich inequality, ω
ᵀ

argQ sup
π∈Π

ω
ᵀ
Q
π ≤ sup

ω′∈Ω

ω
ᵀ

argQ sup
π∈Π

ω
′ᵀ
Q
π

=

ω
ᵀ

argQ sup
π∈Π

ω
ᵀ
∗Q

π
= ω

ᵀ
Q
π′
ω′∗ ≤ ω

ᵀ
argQ sup

π∈Π
ω

ᵀ
Q
π, where ω′∗ and π′ω′∗ are preference and policy corre-

sponding to the supremums. According to the observation stated at the beginning, d(Q∗, TQ∗) = 0. The
preferred optimal value function is a fixed point of the proposed envelope version optimality operator.

Theorem 1 tells us the preferred optimal value function is one of the fixed-points of envelope optimality operator
T in the value space. And we still need to show that this T is a contraction.

Theorem 2 (Envelope Optimal Operator is a Contraction). Let Q,Q′ be any two multi-objective Q-value
functions in the envelope value spaceQ as defined above, the Lipschitz condition d(TQ, TQ′) ≤ γd(Q,Q′)
holds, where γ ∈ [0, 1) is the discount factor of the underlying MOMDPM (see Section 2).

Proof. Without the loss of generality, we assume supa∈A,ω′∈Ω ωᵀQ(s, a,ω′) ≥
supa∈A,ω′∈Ω ωᵀQ′(s, a,ω′) for some state s and ω of interest. Expand the expression of d(TQ, TQ′) we
have

d(TQ, TQ′)(s, a) = sup
s∈S,a∈A

ω∈Ω

∣∣ωᵀ((TQ)(s, a)− (TQ′)(s, a))
∣∣

= sup
s∈S,a∈A

ω∈Ω

∣∣γ · ωᵀEs′∼P (·|s,a)(HQ)(s′,ω)− γ · ωᵀEs′∼P (·|s,a)(HQ′)(s′,ω)
∣∣

≤ γ · sup
s′∈S,ω∈Ω

∣∣∣∣∣ωᵀ
[

argQ sup
a′∈A,ω′∈Ω

ωᵀQ(s′, a′,ω′)− argQ sup
a′′∈A,ω′′∈Ω

ωᵀQ′(s′, a′′,ω′′)

]∣∣∣∣∣
≤ γ · sup

s′∈S,ω∈Ω

∣∣∣∣∣ sup
a′∈A,ω′∈Ω

ωᵀQ(s′, a′,ω′)− sup
a′′∈A,ω′′∈Ω

ωᵀQ′(s′, a′′,ω′′)

∣∣∣∣∣
Step 2 to 3 is because |E[·]| ≤ E[| · |] ≤ sup | · |, and step 3 to 4 results from the cancellation between ωᵀ and
argQ (as justified above). According to our assumption, let a′ and ω′ be the action and preference chosen to
maximize the value of ωᵀQ for some state s′ and preference ω of interest, then we derive

d(TQ, TQ′)(s, a) ≤ γ · sup
s′∈S,ω∈Ω

∣∣∣∣∣ωᵀQ(s′, a′,ω′)− sup
a′′∈A,ω′′∈Ω

ωᵀQ′(s′, a′′,ω′′)

∣∣∣∣∣
= γ · sup

s′∈S,ω∈Ω

|ωᵀQ(s′, a′,ω′)− ωᵀQ′(s′, a′,ω′)

+ωᵀQ′(s′, a′,ω′)− sup
a′′∈A,ω′′∈Ω

ωᵀQ′(s′, a′′,ω′′)|

≤ γ · sup
s′∈S,ω∈Ω

∣∣ωᵀQ(s′, a′,ω′)− ωᵀQ′(s′, a′,ω′)
∣∣

≤ γ · sup
s′∈S,a′∈A

ω∈Ω

∣∣ωᵀQ(s′, a′,ω′)− ωᵀQ′(s′, a′,ω′)
∣∣ = γd(Q,Q′)

The step 2 to 3 arises from the w.l.o.g. assumption that ωᵀQ(s′, a′,ω′)− sup
a′′,ω′′

ωᵀQ′(s′, a′′,ω′′) ≥ 0, as stated

in lines 612 and 615. Thus, the whole expression in |·| is nonnegative and ωᵀQ(s′, a′,ω′)−ωᵀQ′(s′, a′,ω′) ≥
0 . We can discard the last two terms since ωᵀQ′(s′, a′,ω′) ≤ sup

a′′∈A,ω′′∈Ω

ωᵀQ′(s′, a′′,ω′′). Step 3 to 4 is

because sup
s′,ω′

f(s′, a′,ω′) ≤ sup
s′,a′′,ω′

f(s′, a′′,ω′) holds for any a′ and f(·).

This completes our proof that T is a contraction.

Remember that in our design, envelope version value distance d is a pseudo-metric. In a pseudo-metric space
iteratively applying contraction may not shrink to the desired fixed point. To assert the convergence effectiveness
of our design for optimality operator, we need to investigate a generalized Banach’s Fixed-Point Theorem in the
pseudo-metric space.
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A.2.2 Generalized Banach’s Fixed-Point Theorem

Theorem 3 (Generalized Banach Fixed-Point Theorem). Given that T is a contraction mapping with Lipschitz
coefficient γ on the complete pseudo-metric space 〈Q, d〉, and Q∗ is defined as that in Theorem 1, it is always
true that limn→∞ d(T nQ,Q∗) = 0 for any Q ∈ Q.

Proof. By the symmetry and triangle inequality of pseudo-metric, for any Q,Q′ ∈ Q,

d(Q,Q′) ≤ d(Q, TQ) + d(TQ, TQ′) + d(TQ′,Q′)
≤ d(Q, TQ) + γd(Q,Q′) + d(TQ′,Q′)

⇒ d(Q,Q′) ≤ [d(TQ,Q) + d(TQ′,Q′)]/(1− γ)

Consider two points T `Q, T mQ in the sequence {T nQ}. Their distance is bounded by

d(T `Q, T mQ) ≤ [d(T `+1Q, T `Q) + d(T m+1Q, T mQ)]/(1− γ)

≤ [γ`d(TQ,Q) + γmd(TQ,Q)]/(1− γ)

≤ γ` + γm

(1− γ)
d(TQ,Q)

since γ ∈ [0, 1) the distance d(T `Q, T mQ) converge to 0 as `,m → ∞, proving that {T nQ} is a Cauchy
sequence. Because 〈Q, d〉 is a complete pseudo-metric space, limn→∞ d(T nQ,Q�) = 0 for some Q� ∈ Q.
Therefore,

d(TQ�,Q�) = lim
n→∞

d(T n+1Q,Q�) = lim
n→∞

d(T nQ,Q�) = 0

We claim that Q� and Q∗ must lie in the same equivalent class partitioned by relation d(·, ·) = 0. Suppose
d(Q�,Q∗) 6= 0, then we can get a contradiction

d(Q�,Q∗) = d(Q�, TQ�) + d(TQ�, TQ∗) + d(TQ∗,Q∗)
≤ 0 + γd(Q�,Q∗) + 0

< d(Q�,Q∗)

This proves our claim. Therefore, limn→∞ d(T nQ,Q∗) = 0 for any Q ∈ Q.

In other words, Theorem 3 guarantees that iteratively applying optimal operator T on any multi-objective Q-value
function, the algorithm will terminate with a function Q� which is equivalent to Q∗ under the measurement of
pseudo-metric d. Actually, these Q�’s are as good as Q∗, since they all have the same utilities for each ω, and
only differ in the real value when the utility corresponds a recess in the utility control frontier.

A.2.3 Updating Scheme

Hindsight Experience Replay (HER) Paper [11] presents a technique for training a reinforcement
learning to serve multiple goals. For each episode, the agent performs following a policy according to a randomly
sampled goals. When updating, the agent uses the past trajectory update for multiple other goals in parallel.
They referred this method as hindsight experience replay (HER). Though our settings are completely different, a
similar method can be employed to update utility-based multi-objective Q-network here.

In the learning phase of the unknown linear preference scenario, for each training episode, the MORL agent
randomly sample a preference ω from a certain distribution Dω . When updating the multi-objective Q-network
accordingly, for each sampled transition record (sit, a

i
t, r

i
t, s

i
t+1) from replay buffer Dτ , we associate it with

Nω preferences {ω1,ω2, . . . ,ωNω} sampled from Dω . The update is applied to an expended batch of size
minibatch_size× Nω . Note that the preferences sampled for actions only influence the agent’s actions, not the
environment dynamics. In this way, the trajectories can be replayed with arbitrary preferences with “hindsight".

Homotopy Optimization We use deep neural networks to approximate bounded functions inQ ⊆ (Ω→
Rm)S×A with parameters θ. We refer to this neural network as a multi-objective Q-network. To drag Q close to
TQ at each update step, the multi-objective Q-network can be trained by minimizing a series of loss functions

LA
k(θ) = Es,a,ω

[
‖yk −Q(s, a,ω; θ)‖22

]
, (21)

which changes at each iteration k, where yk = Es′ [r(s, a) + γ(HQ)(s′, a′,ω; θk)] is the target of iteration k.
The target is fixed during optimizing this loss function.

Minimizing the loss function LA is trying to drag the vector Q close to TQ. This ensures the correctness of
our algorithm, to predict a Q as the real solution, while this means the square error is hard to be optimized in
practice. To address this problem, we use a sequence of auxiliary loss function LB to directly optimized the
value metric d, which is defined by

LB
k(θ) = Es,a,ω[|ωᵀyk − ωᵀQ(s, a,ω; θ)|] (22)
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Our final loss function sequence Lk(θ) = (1 − λk) · LA
k(θ) + λk · LB

k(θ), where λk is a weight to trade off
between losses LA

k and LB
k. We increase the value of λk from 0 to 1, to shift our loss function from LA to LB.

This method called homotopy optimization [12] is effective since for each update step, it uses the optimization
result from the previous step as the initial guess. In the envelope deep MORL algorithm, LA first ensure the
prediction of Q is close to any real expected total reward, though it is hard to be optimal. And then LB can
provide an auxiliary force to pull the current guess along the direction with better utility. Figure 6 illustrate an
explanation for this homotopy optimization.

The parameters of the multi-objective Q-network will be updated by θk+1 ← θk − η, where

η ∝ ∇θ=θkLk(θ) = −Es,a,s′
[(
r + γ(HQ)(s′, a′,ω; θk)−Q(s, a,ω; θk)

)ᵀ∇θ=θkQ(s, a,ω; θ)
]
. (23)
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Many local Minima, 
Hard for optimization.
(λ = 0.0 )
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Too flat to be optimized.
(λ = 1.0 )

λ increases 
from 0.0 to 1.0

Trade-off between 
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Figure 6: An explanation for homotopy optimization method used in the envelope deep MORL algorithm.
The MSE loss LA is hard for optimization since there are many local minima over its landscape. Although the
value metric loss LB has fewer local minima, it is also hard for optimization since there are many vectors Q
minimizing value metric d. The landscape of LB is too flat. The homotopy path connecting LA and LB provides
better opportunities to find the global optimal parameters θ∗

When updating, we sample a minibatch of transition records from this replay buffer with HER. Theorems 1-3
and 5 guarantees the convergence of this minibatch updating, with an extra assumption that we can update
the Q-function according to equation 23 for each ω ∈ Ω infinite times. We use hindsight experience replay
(HER) to ensure this. Notice that we will apply our optimality filter on the HER expended batch. Therefore the
cost of solving the convex envelope is acceptable. Our multi-objective Q-network can also be replaced with
other models similar to those in single-objective off-policy RL algorithms. In the experiment, we also use some
popular deep reinforcement learning techniques to stabilize and speed up our algorithms. The skeleton of our
envelope deep MORL is shown as Algorithm 1.

B Experimental Details

We first demonstrate our experimental results on two synthetic domains, Deep Sea Treasure (DST) and Fruit
Tree Navigation (FTN), as well as two complex real domains, Task-Oriented Dialog Policy Learning (Dialog)
and SuperMario Game (SuperMario). We also elaborate specific model architecture and and implementation
details in this section.

B.1 Domain Details

Deep Sea Treasure (DST) Our first experiment domain is a grid-world navigation problem, Deep Sea
Treasure. This episodic problem was first explicitly created to highlight the limitations of linear scalarization [14]
. However, in this paper, we use this environment as a delayed linear preference scenario. We ensure the Pareto
frontier of this environment is convex, therefore the Pareto frontier itself is the its CCS.

In DST, an agent controls a submarine searching for treasures in a 10 × 11-grid world while trading off
time-cost and treasure-value. The grid world contains 10 treasures of different values. Their values
increase as their distances from the starting point s0 = (0, 0) increase. An agent’s action spaces are formed
by navigation in four directions. The reward has two dimensions: the first dimension indicates a time penalty,
which is −1 on all turns; and the second dimension is the treasure value which is 0 except when the agent moves
into a treasure location. We ensure the Pareto frontier of this environment to be convex. We depicted the map in
Figure 7.
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Figure 8: Fruit Tree Navigation (FTN): An agent travels from the root node to one of the leaf node to pick a
fruit according to a post-assigned preference ω on the components of nutrition, treated as different objectives.
The observation of an agent is its current coordinates (row, col), and its valid actions are moving to the left or
the right subtree.
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Figure 7: Deep Sea Treasure (DST): An agent
controls a submarine searching for treasures in
a 10 × 11-grid world. The state st consists of
the agent’s current coordinates (x, y). An agent’s
action spaces is navigation in four directions. The
reward received by the agent is a 2-dimensional
vector (time penalty, treasure value).

Fruit Tree Navigation (FTN) Our second ex-
periment domain is a full binary tree of depth d with
randomly assigned vectorial reward r ∈ R6 on the
leaf nodes. These rewards encode the amounts of six
different components of nutrition of the fruits on the tree:
{Protein, Carbs, Fats, Vitamins, Minerals, Water}.
For every leaf node, ∃ω for which its reward is optimal,
thus all leaves lie on the CCS. The goal of our MORL agent
is to find a path from the root to a leaf node that maximizes
utility for a given preference, choosing between left or
right subtrees at every non-terminal node.

Figure 8 shows an instance of the fruit tree navigation task
when d = 6, in which every non-leaf node is associated
with zero reward and every fruit is a potential optimal
solution in the convex cover set of the Pareto frontier. To
construct this, we sample r(i) = (v

(i)
+ + v

(i)
− )/‖v(i)‖2,

where v(i) ∼ N6(0, I), for each fruit i on a leaf node.
The optimal multiple-policy model for this tree structured
MOMDP should contain all the paths from the root to
different desired fruits. In experiments, we also test on
d = 5 and d = 7 cases.

In this multi-objective environment, an optimal policy can be easily learned if we know the preference function
fω(·) = 〈ω, ·〉 for scalarization. However, since here we are interested in evaluating whether a multiple-policy
neural network, trained with deep MORL algorithms, can find and maintain all the potential optimal policies
(i.e., paths to every leaf node) when the preference function is unknown, and adapt to the optimal policy when a
specific preference is given or hidden during execution.

Task-Oriented Dialog Policy Learning (Dialog) Our third experimental domain is a modified task-
oriented dialog system in the restaurant reservation domain based on PyDial [36], where an agenda-base user
simulator [43] with an error model to simulate the recognition and understanding errors arisen in the real system
due to in the speech noise and ambiguity. A. We consider the task success rate and the dialog brevity (measured
by number of turns) as two competing objectives of this domain.

Finding a good trade-off between multiple potentially competing objectives is usually domain-specific and
not straightforward. For example, in the case when the objectives are brevity and success, if the relative
importance weight for success is too high, the resulting policy is insensitive to potentially annoying actions such
as repeat() provided that the dialogue is eventually successful. In this case, the obtained optimal policy cannot
fit all users’ preference, and sometimes is out of our expectation. Adaptation to user preferences and balancing
these objectives is rarely considered.

In the standard single-objective reinforcement learning formulation, the goal of the policy model is to interact
with a human user by choosing actions in each turn to maximize future rewards. We define the dialogue state
shared by dialogue state tracker in the t-th turn as state st . The action taken by policy model under current
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policy πθ with parameters θ in the t-th turn as at , and at ∼ π(·|st). The stochastic transition kernel is unknown
but determined by human users or user simulators. In an ideal dialogue environment, once the policy model
emits an action at , the human user will give an explicit feedback, like a normal response or a feedback of
whether the dialogue is successful, which will be converted to a reward signal rt delivering to the policy model
immediately, and then the policy model will transit to next state st . The reward signal is an average of values of
two objectives, brevity and success, e.g., rt = 0.5rturnt + 0.5rsucct . Typically, rturnt is fixed for each turn as a
negative constant Rturn, while rsucct equals a positive constant Rsucc only when the dialogue terminates and
receives a successful user feedback otherwise it equals zero.

To address this problem, we transform the dialogue learning process into a MORL scenario with vectorized
(2-D) rewards: rt =

[
rturnt rsucct

]ᵀ, where rturnt is a turn penalty for the brevity objective and rsucct is a reward
provided on successful completion of the task. In the learning phase, the linear preference ω over these two
objectives are unknown, while the computational resources are abundant. The task-oriented dialogue system
needs to learn all the possible optimal policies with sampled ω’s (achieved by user simulators or collected
interactions with real users). While in the adaptation phase, learning is unaffordable because of the limitation of
resources. The task-oriented dialogue system needs to respond the user with a specified user preference. User’s
utility increase is aligned with the system’s utility increase ωᵀrt. Paper [44] proposes a structured method,
which is equivalent to the scalarized baseline without hindsight experience replay, for finding the optimal weights
for a multi-objective reward function.

As for more experimental details, our dialog domain is a restaurant reservation hotline which provides information
about restaurants in Cambridge. There are 3 search constraints, 9 informational items that the user can request,
and 110 database entities. The reward Rturn is −1 for each turn, and Rsucc = 20. The maximal length
of dialogue is 25. We apply our envelope deep MORL algorithm to this dialogue policy learning task, and
compare to traditional single-objective methods and other baselines. All the single-objective and multi-objective
reinforcement learning are trained for 3,000 sessions with 15% simulated speech recognition and understanding
error rate.

Multi-Objective SuperMario Game (SuperMario) Our final environment is a version of the popular
video game Super Mario Bros. We modify the open-source environment from OpenAI gym [37] to provide
vectorized rewards encoding five different objectives: x-pos: value corresponding to the difference in Mario’s
horizontal position between current and last time point, time: a small negative time penalty, deaths: a large
negative penalty given each time Mario dies3, coin: rewards for collecting coins, and enemy: rewards for
eliminating an enemy. The state is a stack of four continuous frames of game images rendered by the simulator,
and there are seven valid actions each step: {‘NOOP’,‘right’,‘right+A’,‘right+B’,‘right+A+B’, ‘A’, ‘left’}, where
the button ‘A’ is used to jump and the button ‘B’ is used to run. We restrict the Mario to only play the stage I.

We use an A3C [38] variant of our envelope MORL algorithm. During the learning phase, the agent does
not know the underlying preference, and hence needs to learn a multi-objective policy within 32k training
episodes. During the adaptation phase, we test our agents under 500 uniformly random preferences and test
the its preference elicitation ability (as described in Section 3) within 100 episodes to uncover the underlying
preference that maximizes utility.

B.2 Implementation Details

Our multi-objective Q-network can be replaced with any model similar to that in single-objective off-policy RL
algorithms like DDPG [45], NAF [46] or SDQN [47]. In the experiment, we use a variate of deep reinforcement
learning techniques including double Q-learning [48] with a target network and prioritized experience replay [49],
which stabilize and speed up our algorithms.

Architectures of the Multi-objective Q-Network We implement the Multi-objective Q-networks
(MQNs) by 4 fully connected hidden layers with {16, 32, 64, 32} × (dim(S) + m) hidden unites respec-
tively. The multi-objective Q-networks are similar to Deep Q-Networks (DQNs) [34], but differs on inputs.
An input of the multi-objective Q-network is a concatenation of state representation and parameters of a linear
preference function. The output layer of the scalarized MORL algorithm is of size |A|, and that of envelope
version is of size m× |A|. Here dim(S) is the dimensionality of the state space, |A| is the cardinality of the
action set, and m is the number of objectives.

Multi-Objective A3C We use the multi-objective A3C (MoA3C) algorithms for Mario experiment. The
skeleton of the envelope MoA3C algorithm is provided in Algorithm 2. Im MoA3C Both critic and actor
networks contain three shared convolutional layers for feature extraction from raw images input. The extracted
features are then concatenated with preferences, and fed into two-layer fully connected networks for output.
For the scalarized version MoA3C, the output of the critic network is just one-dimensional utility prediction,
whereas the output of the envelope version critic network is m-dimensional returns prediction. Both scalarized

3Mario has up to three lives in one episode.
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Figure 9: Quantitative evaluation metrics for multi-objective reinforcement learning. (a.) Coverage ratio
measures an agent’s ability to find all the potential optimal solutions in the convex coverage set of Pareto frontier.
(b.) Adaptation quality measures an agent’s ability of policy adaptation to real-time specified preferences.

and envelope versions have the same actor network architecture to output the probability distribution over the
action space. We train them with 16 workers in parallel with different sampled preferences, and it take around
10 hours for the envelope version MoA3C to converge to a good level of performance.

Training with Prioritized Double Q-Learning When training the with our MORL algorithm on DST
and FTN tasks, we employ techniques of prioritized experience reply [49] and double Q-learning [48] to speed
up the training process and to yield more accurate value estimates. Double Q-Learning introduces a target
network Qtarget to replace the estimate of T Q(s, a,ω), yt(ω) = ωᵀr + γQtarget(s

′, a,ω) with ydouble
t (ω) =

ωᵀr + γQtarget(s
′, arg maxaQ(s′, a,ω),ω) for scalarized version of algorithm, and similarly we replace

yt(ω) = ωᵀr + γωᵀQtarget(s
′, a,ω) with ydouble

t (ω) = ωᵀr + γωᵀQtarget(s
′, arg maxa ω

ᵀQ(s′, a,ω),ω)
for envelope version of MORL algorithm. We update the target network by coping from Q-network every
100 steps. The priority of sampling transition τi = (s, a, r, s′) is pscalarized

i = |ydouble(ω)−Q(s, a,ω)| for the
scalarized version of MORL algorithm, and similarly penvelope

i = |ydouble(ω)− ωᵀQ(s, a,ω)| for the envelope
version of algorithm, where ω is sampled from the distribution Dω . When updating the network, a trajectory is
sampled by τi ∼ P (i) = pi/

∑
i pi. The replay memory size is 4000 and the batch size is 32. For the deep tree

navigation task, we train each model for total 5000 episodes, and update it by Adam optimizer every step after at
least a batch experiences are stored in reply buffer, with a learning rate lr = 0.001.

Training Details for Dialogue Policy Learning All the single-objective and multi-objective reinforce-
ment learning are trained for 3,000 sessions. We evaluate learned policies on 5,000 sessions with randomly
assigned user preferences. The preference distribution Dω is same as the one we used in previous deep sea
treasure experiment (see Section 4.3.1), which is a nearly uniform distribution. For the single-objective rein-
forcement learning algorithms, we set three groups of ω as {(0.5, 0.5), (0.2, 0.8), (0.8, 0.2)}. For the envelope
deep MORL algorithms, the homotopy path is a monotonically increasing track where λ increases from 0.0 to
1.0 exponentially. The number of sampled preferences Nω is 32 for both scalarized and envelope deep MORL
algorithms. The exploration policy used for training these reinforcement learning algorithms is ε-greedy, where
ε = 0.5 initially and then decays to zero linearly during the training process. For all the single-objective and
multi-objective algorithms, we employ the same deep Q-network architecture, which comprises 3 fully connected
hidden layers with {16, 32, 32} × (dim(S) + m) hidden units. The minibatch size is 64 for all. An Adam
optimizer is used for updating the parameters of all these algorithms with an initial learning rate rl = 0.001.

Computing Infrastructure We ran the synthetic experiments and the dialog experiments on a workstation
with one GeForce GTX TITAN X GPU, 12 Intel(R) Core(TM) i7-5820K CPUs @ 3.30GHz, and 32G memory
and ran the SuperMario experiments on a cluster with twenty 2080 RTX GPUs, 40 CPUs and 200GB memory.

C Additional Experimental Results

C.1 Evaluation Metrics

We design two metrics to evaluate the empirical performance of our algorithms on test tasks. Slightly different
from the main article, we introduce adaptation quality (AQ) here other than adaptation error to adjust the value
range and get a score in (0, 1].

Coverage Ratio (CR). The first metric is coverage ratio (CR), which evaluates the agent’s ability to recover
optimal solutions in the convex coverage set (CCS). If F ⊆ Rm is the set of solutions found by the agent (via
sampled trajectories), we define F ∩ε CCS := {x ∈ F | ∃y ∈ CCS s.t. ‖x− y‖1/‖y‖1 ≤ ε} as the intersection
between these sets with a tolerance of ε. The CR is then defined as:

CRF1(F) = 2 · precision · recall
precision + recall

, (24)
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Algorithm 2: Envelope Multi-Objective A3C (EMoA3C) Algorithm - Pseudocode for each actor-
learner thread
Input:

• a preference sampling distribution Dω;
• minibatch sizes for transitions Nτ and for preference Nω;
• a multi-objective critic-network V parameterized by θv;
• an actor-network π parameterized by θπ;
• a balance weight λ for critic losses LA and LB.

Initialize replay buffer Dτ .
for episode = 1, . . . ,M do

Synchronize thread-specific parameters θ′v = θv and θ′π = θπ .
Sample a linear preference ω ∼ Dω .
for t = 0, . . . , N − 1 do

Observe state st.
Sample an action at using according to policy π(at|st,ω; θ′π).
Receive a multi-objective reward rt and observe new state st+1.
Store transition (st, at, rt, st+1) in Dτ .
if update then

Sample random minibatch of transitions (sj , aj , rj , sj+1) from Dτ .
Sample Nω preferences W = {ω1,ω2, . . . ,ωNω} ∼ Dω .
Compute

(T V )ij =

{
rj . for terminal sj+1;

rj + γ argV maxa∈A,ω′∈W ωᵀ
i V (sj+1,ω

′; θ), for non-terminal sj+1.
Calculate dθv according to similar equations 6 and 7 w.r.t. θ′v:

dθv = (1− λ) · ∇θ′vLA(θ′v) + λ · ∇θ′vLB(θ′v).

Calculate dθπ using the advantage w.r.t. θ′v and θ′π

dθπ =
1

NωNτ

∑

i,j

∇θ′π log π(aj |sj ,ωi; θ′π) [ωᵀ
i ((T V )ij − V (sj ,ωi; θ

′
v))] .

Perform asynchronous update of θv using dθv and of θπ using dθπ .

where the precision = |F ∩ε CCS|/|F|, indicating the fraction of optimal solutions among the retrieved
solutions, and the recall = |F ∩ε CCS|/|CCS|, indicating the fraction of optimal instances that have been
retrieved over the total amount of optimal solutions (see Figure 3(a)). The F1 score is their harmonic mean. In
our evaluation of both synthetic tasks DST and FTN, we set ε = 0.00 for FΠL (executive frontier) and ε = 0.20
for FQ (frontier predicted by Q-function). Figure 9 (a.) illustrates an example of the computation of coverage
ratio.

Adaptation Quality (AQ). Our second metric compares the retrieved control frontier with the optimal one,
when an agent is provided with a specific preference ω during the adaptation phase. The adaptation quality is
defined by

AQ(C) =
1

1 + α · errDω
, (25)

where the errDω = Eω∼Dω [|C(ω)− Copt(ω)|/Copt(ω)] is the expected relative error between optimal control
frontier Copt : Ω → R with ω 7→ maxr̂∈CCS ω

ᵀr̂ and the agent’s control frontier Cπω = ωᵀr̂πω , and α is a
scaling coefficient to amplify the discrepancy.

Similarly, CQ is the control frontier guessed by an agent (via predictions from Q-network) and we can compute
the predictive AQ(CQ) to evaluate the quality of multi-objective Q-network on the value prediction accuracy.

In all experiment domains, we use Gaussian distributions which are restricted to be positive part and `1-
normalized as our Dω . We set α = 0.01 for the DST task (because the penalty range is large), and α = 10.0 for
the FTN task (because the value differences are small). Figure 9 (b.) shows examples of optimal control frontier,
retrieved control frontier, and the control discrepancy. Overall, CR provides an indication of agent’s ability to
learn the space of optimal policies in the learning phase, while AE tests its ability to adapt to new scenarios.
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C.2 Deep Sea Treasure (DST)

We show more experimental results on DST tasks in this section. We train all agent for 2000 episodes. After
training in the learning phase, our envelope MORL algorithms find all the potential optimal solutions and their
corresponding policies.

Figure 10 presents the real CCS and the retrieved solutions of a MORL algorithm. The scalarized and envelope
algorithm can find all the whole CCS. Figure 10 (b.) illustrates the real control frontier (the blue curve),
retrieved control frontier (the green curve), and the predicted control frontier (the orange line). The retrieved
control frontier is almost overlapped with the real control frontier, which indicates that the alignment between
preferences and optimal policies is perfectly well. The agent can respond any given preference with the policy
resulting in best utility.

Figure 10: The solutions and control frontier found
by MORL algorithm in the deep sea treasure task. (a.)
The real CCS and the retrieved solutions. (b.) The
real control frontier, predicted control frontier, and
retrieved control frontier in the adaptation phase.

Method DST

CR F1 Exe-AQ (α = 0.01) Pred-AQ (α = 0.01)

MOFQI 0.639 ± 0.421 0.417 ± 0.134 0.226 ± 0.138
CN+OLS 0.751 ± 0.163 0.743 ± 0.008 0.177 ± 0.089
Scalarized 0.989 ± 0.024 0.998 ± 0.001 0.950 ± 0.034
Envelope 0.994 ± 0.001 0.998 ± 0.000 0.850 ± 0.045

Table 4: Performance comparison of different MORL al-
gorithm in learning and adaptation phases on the DST en-
vironment. The Exe-AQ is the AQ measured on the real
trajectories in the adaptation phase, and the Pred-AQ is
the AQ values measured on the predictions of Q func-
tions.

Table 4 provides the coverage ratio (CR) and adaptation quality (AQ) comparisons of different MORL algorithms.
We trained all the algorithm in 2000 episodes and test for another 2000 episodes. Each data point in the table is
an average of 5 train and test trails. For the CN+OLS baseline, we allow it to iterate for 25 corner weights. The
envelope algorithm achieves best CR and execution AQ, and the scalarsized algorithm achieves best predictive
adaption quality. Note that traditional evaluations rarely test the algorithm’s ability in learning phase and
adaptation phase separately. Thus our setting is more challenging.

The classical deep sea treasure task shows the effectiveness of our deep multi-objective reinforcement learning
algorithms, while it is relatively easy for the agent to find all the good policies. It only contains 10 potentially
optimal solutions in the real CCS, therefore scalarized algorithm can efficiently solve this problem.

C.3 Fruit Tree Navigation (FTN)

a. b. c.

Figure 11: Coverage Ratio (CR) and Adaptation Quality (AQ) comparison of the scalarized deep MORL
algorithm and the envelope deep MORL algorithm tested on fruit tree navigation tasks of depths d = 5, 6, 7.
Trained on 5000 episodes and test on 2000 and 5000 episode to estimate CR and AQ, respectively. Each data
point in the figure is an average of 5 trails of training and test.

Sample Efficiency To compare sample efficiency during the learning phase, we train envelope MORL
algorithm and baselines on the FTN task of depth 5, 6, 7 for 5000 episodes. We compute coverage ratio (CR)
over 2000 episodes and adaptation quality (AQ) over 5000 episodes. Figure 11 (blue and orange curves for
d = 6) shows plots for the metrics computed over a varying number of sampled preferences Nω from 1 to 128.
When Nω = 1, both algorithms only update under single preference each time, therefore runs fast while it makes
wasteful use of interactions. When Nω = 128, both algorithm needs to update for 128 sampled preferences in a
batch. In this case the algorithms run slowly, while can make better use of interactions. Each point on the curve
is averaged over 5 experiments. We observe that the envelope MORL algorithm consistently has a better CR
and AQ scores than the scalarized baseline, with smaller variances. As Nω increases, CR and AQ both increase,
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which shows better use of historical interactions for both algorithms when Nω is larger. This reinforces our
theoretical analysis that the envelope MORL algorithm has better sample efficiency than the scalarized baseline.

Table 5 compares their coverage ratios. Each entry in the table is an average of 5 experiments (train and test).
Due to the property of FTN task that every solution is potentially optimal, the CR precision is always 1 for
both scalarized and envelope algorithm. While for the recall, which indicates the ability to find unseen optimal
solutions in the learning phase, the envelope deep MORL algorithm is better than the scalarized version for all
numbers of sampled preferences, and has relatively lower variances. Therefore the same to F1 scores. As Nω
increases, the CR value increases for both scalarized version and envelope version algorithms, which verifies aa
better use of historical interactions for both algorithm when Nω is larger. As here the initial performance for the
envelope version algorithm is good enough, it suddenly surpasses 0.98 of CR F1 score when it can sample more
than one preference each update.

Execution AQ Prediction AQ CR F1
Nω Scalarized Envelope Scalarized Envelope Scalarized Envelope
1 0.7037± 0.012 0.759± 0.066 0.6474± 0.054 0.6915± 0.105 0.625± 0.057 0.924± 0.051
4 0.7701± 0.026 0.9101± 0.006 0.7216± 0.034 0.7853± 0.049 0.7654± 0.077 0.9856± 0.004
8 0.8205± 0.023 0.9261± 0.015 0.7714± 0.02 0.7675± 0.033 0.856± 0.067 0.9808± 0.007

16 0.8255± 0.044 0.9306± 0.007 0.8097± 0.016 0.8417± 0.007 0.8976± 0.062 0.9952± 0.004
32 0.8597± 0.035 0.9402± 0.011 0.7989± 0.032 0.8513± 0.01 0.914± 0.044 0.987± 0.021
64 0.877± 0.031 0.9506± 0.001 0.7778± 0.032 0.8497± 0.018 0.9452± 0.02 0.9904± 0.007
128 0.8705± 0.03 0.9536± 0.002 0.8081± 0.04 0.868± 0.025 0.9258± 0.024 0.9952± 0.011

Table 5: Sample Efficiency - Coverage Ratio (CR) and Adaptation Quality (AQ) comparison of the scalarized
deep MORL algorithm and the envelope deep MORL algorithm tested on fruit tree navigation task, where the
tree depth d = 6. Trained on 5000 episodes.

Execution AQ Prediction AQ CR F1
Nω Scalarized Envelope Scalarized Envelope Scalarized Envelope
1 0.7943± 0.039 0.8578± 0.036 0.7153± 0.079 0.6254± 0.041 0.9364± 0.023 0.9706± 0.027
4 0.8836± 0.01 0.9041± 0.005 0.8195± 0.021 0.7843± 0.055 0.984± 0.016 1± 0
8 0.8975± 0.003 0.9099± 0.001 0.8427± 0.022 0.7952± 0.023 0.9968± 0.007 1± 0
16 0.9047± 0.003 0.9109± 0.001 0.8698± 0.01 0.8488± 0.032 1± 0 1± 0
32 0.9054± 0.003 0.9113± 0.001 0.8647± 0.014 0.8847± 0.006 0.9968± 0.007 1± 0
64 0.9096± 0.003 0.9119± 0 0.8761± 0.024 0.8731± 0.008 0.9968± 0.007 1± 0
128 0.9071± 0.004 0.9121± 0 0.8535± 0.033 0.8809± 0.026 1± 0 1± 0

Table 6: Sample Efficiency when d = 5 - Coverage Ratio (CR) and Adaptation Quality (AQ) comparison of the
scalarized and the envelope deep MORL algorithms tested on fruit tree navigation task, where the tree depth
d = 5. Trained on 5000 episodes.
Table 5 also compares MORL algorithms’ adaptation quality in the adaptation phase. Each entry in the table is
an average of 5 experiments (train and test). For all numbers of sampled preferences, the envelope deep MORL
algorithm has better execution AQ than the scalarized algorithm, in spite of better CR of the envelope version, it
also indicates the envelope version algorithm has better alignment between preferences and policies. As Nω
increases, the values of execution AQ and prediction AQ of both algorithms keep increase. Note that even though
when Nω = 1 the execution AQ of the scalarized version and the envelope version differs only around 0.5,
when Nω increase to 4, the envelope version algorithm better utilizes the sampled preferences to improve the
execution AQ to above 0.9. This agrees with our theoretical analysis that our envelope deep MORL algorithm
has better sample efficiency than the scalarized version.

We also investigate how the size of optimality frontiers will affect the performance of our algorithms. We train
our deep MORL algorithms on two new FTN environments with d = 5 and d = 7 respectively. One is smaller
than the previous environment, which contains only 32 optimal solutions, the other is larger than the previous
environment, containing 128 solutions on the CCS. We fix the number of episode for training as 5000, and test
2000 episode to obtain coverage ratio, and test 5000 episode for policy adaptation quality.

Table 6 shows the results of coverage ratio evaluation in the environment of tree depth d = 5. As it shows,
both scalarized and envelope algorithms work well in that environment. the CR F1 scores are very close to 1.
The envelope version algorithm is more stable than the scalarized version deep MORL algorithm. Besides, the
envelope deep MORL algorithm can predict multi-objective solutions, while the scalarized algorithm cannot.
The prediction ability will also be improved as Nω increases.

Visualizing Frontiers We also provide a visualization of the convex coverage set (CCS) and control frontier
for our envelope algorithm and the scalarized baseline in Figure 12. The left figure shows the real CCS and
retrieved CCS of both MORL algorithms using t-SNE [50]. We observe that the envelope algorithm (green dots)
almost completely covers the entire set of optimal solutions in the real CCS whereas the scalarized algorithm
(pink dots) does not. The right figure presents the slices of optimal control frontier and the control frontier of our
algorithms along the Minerals-Water plane. The envelope version retrieves almost the entire optimal frontier,
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Execution AQ Prediction AQ CR F1
Nω Scalarized Envelope Scalarized Envelope Scalarized Envelope
1 0.3748± 0.038 0.6348± 0.063 0.624± 0.012 0.6646± 0.025 0.5847± 0.061 0.60± 0.029
4 0.5112± 0.063 0.6846± 0.067 0.6704± 0.006 0.730± 0.018 0.6969± 0.057 0.6544± 0.066
8 0.5376± 0.046 0.7516± 0.039 0.6763± 0.022 0.7237± 0.018 0.6837± 0.097 0.7437± 0.04
16 0.6052± 0.061 0.7328± 0.043 0.6867± 0.025 0.7473± 0.023 0.6532± 0.029 0.7936± 0.015
32 0.5646± 0.061 0.7862± 0.049 0.6828± 0.022 0.7204± 0.05 0.6829± 0.037 0.7997± 0.017
64 0.6168± 0.043 0.743± 0.086 0.671± 0.06 0.7429± 0.015 0.7284± 0.03 0.8112± 0.018
128 0.6308± 0.058 0.8138± 0.038 0.6916± 0.015 0.7586± 0.024 0.6719± 0.076 0.8199± 0.008

Table 7: Sample Efficiency when d = 7 - Coverage Ratio (CR) and Adaptation Quality (AQ) comparison of the
scalarized and the envelope deep MORL algorithms tested on fruit tree navigation task, where the tree depth
d = 7. Trained on 5000 episodes.
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Figure 12: Comparison of CCS and control frontiers of deep MORL algorithms. The left figure (a) is visualizing
the real CCS and retrieved CCS of scalarized and envelope MORL algorithms using t-SNE. The right figure
(b) presents the slices of optimal control frontier and the control frontier of scalarized and envelope MORL
algorithms along the Mineral-Waters plane.

while the scalarized version algorithm has larger control discrepancies. The small discrepancy between the real
control frontier and the one retrieved by envelope version algorithm at the indentation of the frontier indicates an
alignment issue between the preferences and optimal policies.

C.4 Task-Oriented Dialog Policy Learning (Dialog)

Single-(0.5,0.5) Single-(0.2,0.8) Single-(0.8,0.2) Scalarized Envelope
SR 88.18 ± 0.90 85.30 ± 0.98 87.62 ± 0.91 86.38 ± 0.95 89.52 ± 0.85
#T 8.93 ± 0.13 9.40 ± 0.16 7.42 ± 0.10 8.08 ± 0.12 8.08 ± 0.12
UT 2.13 ± 0.23 1.84 ± 0.23 2.53 ± 0.22 2.38 ± 0.22 2.65 ± 0.22
AQ 0.660 0.279 0.728 0.614 0.814

Table 8: The average success rate (SR), number of turns (#T), user utility (UT), and adaptation quality (AQ,
α = 0.1) of policies obtained by single-objective RL baselines and two MORL algorithms.

Table 8 shows that envelope MORL algorithm achieves best success rate (SR) on average, while the single-
objective method with equal weight on both dimensions (0.5) achieves competitive performance. However, on
metrics of average utility (UT) and adaptation quality (AQ) (with α = 0.1, envelope MORL is significantly
better than the other methods, including scalarized MORL. This again demonstrates that adaptability of envelope
MORL to tasks with new preferences. The single-objective method with 0.8 success weight has the worst
performance on success rate eventually. This is might because lack of turn level reward guidance directly
optimize for success is very difficult for the single-objective RL learner.

Figure 13 illustrates utility-weight curves during a policy adaptation phase with given preferences, where each
data point is a moving average of closest 500 dialogues in the interval of around ± 0.05 weight of success over
three trained policies. We find the envelope deep MORL algorithm is almost always better than other methods
in terms of utility under certain given preferences, and the scalarized MORL baseline keeps a good level of
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Figure 13: Utility-weight curves for the MORL and single-objective RL dialog policy learning after 3,000
training dialogues. We evaluate policies on 5,000 dialogues with near-uniformly randomly sampled preference.
For each curve, each data point is a moving average of the closest 500 dialogues in the interval of around ± 0.05
weight of success over three trained policies.

utility under almost all user preferences. Single-objective RL algorithms are good only when the user’s weight
of success is close to their fixed preferences while training.

C.5 Multi-Objective SuperMario Game (SuperMario)

Method Super Mario

Avg.UT (0.5 x-pos & 0.5 time) Avg.UT (0.5 coin & 0.5 enemy) Avg.UT (uniform preference)

Scalarized 317.1 ± 123.7 76.7 ± 36.5 301.7 ± 49.2
Envelope 600.9 ± 114.9 233.3 ± 31.2 319.7 ± 34.4

Table 9: Performance comparison of different MORL algorithm in learning and adaptation phases on the
SuperMario environment under three different preferences. The first preference emphasizes the fast completion
of the task so it is 0.5 on x-pos and 0.5 time, the second preference emphasizes collecting coin and eliminating
enemy. The third is a uniform preference which has weights 0.2 for all five objectives {x-pos, time, death,
coin, enemy}

We compared the average utility of the scalarized baseline and the MORL algorithm with envelope update.
The first preference emphasizes the fast completion of the task so it is 0.5 on x-pos and 0.5 time, the second
preference emphasizes collecting coin and eliminating enemy. The third is a uniform preference which has
weights 0.2 for all five objectives {x-pos, time, death, coin, enemy}. The envelope algorithm outperforms
the scalarized algorithm under all these preferences.

X-pos

Death Coin

Time

Enemy

Score

Figure 14: The training curves of the Envelope Multi-Objective A3C (EMoA3C) algorithm.
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Table 10: Inferred preferences of the scalarized
multi-objective A3C algorithm in different Mario
Game variants with 100 episodes.

x-pos time life coin enemy
g1 0.2315 0.2569 0.335 0.0522 0.1243
g2 0.1600 0.1408 0.2822 0.1955 0.2216
g3 0.1865 0.1837 0.0874 0.3759 0.1665
g4 0.1250 0.3062 0.3522 0.1240 0.0926
g5 0.2378 0.1673 0.1820 0.3432 0.0698

Table 11: The difference between the inferred pref-
erences of the envelope and the scalarized multi-
objective A3C algorithms.

x-pos time life coin enemy
g1 +0.2973 -0.0799 -0.1850 -0.0052 -0.0271
g2 +0.0385 +0.0829 -0.0337 -0.0533 -0.0348
g3 +0.0331 -0.0541 +0.2667 -0.1967 -0.0490
g4 -0.1039 -0.0658 -0.3311 +0.5720 -0.0715
g5 -0.1663 -0.0635 +0.0249 +0.0490 +0.1555

The training curves of EMoA3C algorithm are shown in Figure 14. To plot Figure 14, we use a uniform
preference [0.2 0.2 0.2 0.2 0.2] as the probe preference to sample trajectories for evaluation. We observe the
algorithm converges within around 5k episodes of training.

Finally we compare the difference between the inferred preferences of the envelope and the scalarized multi-
objective A3C algorithm on different variants of SuperMario game, g1 to g5, where only corresponding scalar
rewards are available. We only consider maximizing one objective in each game variant, because this orthogonal
design helps us characterize the behaviors of agents and compare their inferred preferences. We allow agents to
make 100 episodes interactions in each game variance, to determine the preference. Note that only 100 episodes
are far from enough for training a single objective reinforcement learning agent, even the model is pre-trained on
other tasks.

As Table 11 illustrates, the preferences inferred by the envelope MoA3C agent is more concentrate on the
diagonal than that of scalarized MoA3C agent, which is more closer to the true underlying preferences.

Even though the EMoA3C agent can do better, our experiments show that the inferred preferences are not exactly
the true underlying preferences. It is mainly for two reasons: First, the trade-off frontiers and policy-preference
alignment learned by the algorithm is not ideal. There might be some discrepancies between the obtained control
frontier and the real optimal control frontier just like what Figure 12 (b) illustrates. Second, even the agent
perfectly learned the frontier and the alignment, close preferences may correspond to the policies with the same
expected returns.

We also deploy the trained EMoA3C agents in a Mario Game where only game scores are available. After 100
episodes adaptation, the EMoA3C agent infers that the underlying preference for the achieving higher score
mainly focuses on x-pos (0.3725) and time (0.2307), which is coincident with the strategy human players
commonly use – to achieve higher score, especially the stage accomplishment bonus, the first priority is to
ensure Mario can move forward towards the flag within the time limit.
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