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Abstract

Vulnerability identification is crucial to protect the software systems from attacks
for cyber security. It is especially important to localize the vulnerable functions
among the source code to facilitate the fix. However, it is a challenging and tedious
process, and also requires specialized security expertise. Inspired by the work
on manually-defined patterns of vulnerabilities from various code representation
graphs and the recent advance on graph neural networks, we propose Devign, a
general graph neural network based model for graph-level classification through
learning on a rich set of code semantic representations. It includes a novel Conv
module to efficiently extract useful features in the learned rich node representations
for graph-level classification. The model is trained over manually labeled datasets
built on 4 diversified large-scale open-source C projects that incorporate high
complexity and variety of real source code instead of synthesis code used in
previous works. The results of the extensive evaluation on the datasets demonstrate
that Devign outperforms the state of the arts significantly with an average of
10.51% higher accuracy and 8.68% F1 score, increases averagely 4.66% accuracy
and 6.37% F1 by the Conv module.

1 Introduction

The number of software vulnerabilities has been increasing rapidly recently, either reported publicly
through CVE (Common Vulnerabilities and Exposures) or discovered internally in proprietary code.
In particular, the prevalence of open-source libraries not only accounts for the increment, but also
propagates impact. These vulnerabilities, mostly caused by insecure code, can be exploited to attack
software systems and cause substantial damages financially and socially.

Vulnerability identification is a crucial yet challenging problem in security. Besides the classic
approaches such as static analysis [1, 2], dynamic analysis [3–8] and symbolic execution, a number
of advances have been made in applying machine learning as a complementary approach. In these
early methods [9–11], features or patterns hand-crafted by human experts are taken as inputs by
machine learning algorithms to detect vulnerabilities. However, the root causes of vulnerabilities vary
by types of weaknesses [12] and libraries, making it impractical to characterize all vulnerabilities in
numerous libraries with the hand-crafted features.

To improve usability of the existing approaches and avoid the intense labor of human experts on
feature extraction, recent works investigate the potential of deep neural networks on a more automated
way of vulnerability identification [13–15]. However, all of these works have major limitations in
learning comprehensive program semantics to characterize vulnerabilities of high diversity and
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complexity in real source code. First, in terms of learning approaches, they either treat the source
code as a flat sequence, which is similar to natural languages, or represent it with only partial
information. However, source code is actually more structural and logical than natural languages
and has heterogeneous aspects of representation such as Abstract Syntax Tree (AST), data flow,
control flow and etc. Moreover, vulnerabilities are sometimes subtle flaws that require comprehensive
investigation from multiple dimensions of semantics. Therefore, the drawbacks in the design of
previous works limit their potentiality to cover various vulnerabilities. Second, in terms of training
data, part of the data in [14] is labeled by static analyzers, which introduced high percentage of false
positives that are not real vulnerabilities. Another part, like [13], are simple artificial code (even with
“good” or “bad” inside the code to distinguish the vulnerable code and non-vulnerable code) that are
far beyond the complexity of real code [16].

To this end, we propose a novel graph neural network based model with composite programming
representation for factual vulnerability data. This allows us to encode a full set of classical pro-
gramming code semantics to capture various vulnerability characteristics. A key innovation is a
new Conv module which takes as input a graph’s heterogeneous node features from gated recurrent
units. The Conv module hierarchically chooses more coarse features via leveraging the traditional
convolutional and dense layers for graph level classification. Moreover, to both testify the potential
of the composite programming embedding for source code and the proposed graph neural network
model for the challenging task of vulnerability identification, we compiled manually labeled data sets
from 4 popular and diversified libraries in C programming language. We name this model Devign
(Deep Vulnerability Identification via Graph Neural Networks).

• In the composite code representation, with ASTs as the backbone, we explicitly encode the program
control and data dependency at different levels into a joint graph of heterogeneous edges with each
type denoting the connection regarding to the corresponding representation. The comprehensive
representation, not considered in previous works, facilitates to capture as extensive types and
patterns of vulnerabilities as possible, and enables to learn better node representation through
graph neural networks.

• We propose the gated graph neural network model with the Conv module for graph-level classifica-
tion. The Conv module learns hierarchically from the node features to capture the higher level of
representations for graph-level classification tasks.

• We implement Devign, and evaluate its effectiveness through manually labeled data sets (cost
around 600 man-hours) collected from the 4 popular C libraries. We make two datasets public
together with more details (https://sites.google.com/view/devign). The results show that Devign
achieves an average 10.51% higher accuracy and 8.68% F1 score than baseline methods. Mean-
while, the Conv module brings an average 4.66% accuracy and 6.37% F1 gain. We compare Devign
with well-known static analyzers, where Devign outperforms significantly with a 27.99% higher
average F1 score for all the analyzers and on all the datasets. We apply Devign to 40 latest CVEs
collected from the 4 projects and get 74.11% accuracy, manifesting its usability in discovering new
vulnerabilities.

2 The Devign Model
Vulnerability patterns manually crafted with the code property graphs, integrating all syntax and
dependency semantics, have been proved to be one of the most effective approaches [17] to detect
software vulnerabilities. Inspired by this, we designed Devign to automate the above process on code
property graphs to learn vulnerable patterns using graph neural networks [18]. The Devign architecture
is shown in Figure 1, which includes the three sequential components: 1) Graph Embedding Layer
of Composite Code Semantics, which encodes the raw source code of a function into a joint graph
structure with comprehensive program semantics; 2) Gated Graph Recurrent Layers, which learn the
features of nodes through aggregating and passing information on neighboring nodes in graphs; and
3) the Conv module that extracts meaningful node representation for graph-level prediction.

2.1 Problem Formulation

Most machine learning or pattern based approaches predict vulnerability at the coarse granularity
level of a source file or an application, i.e., whether a source file or an application is potentially
vulnerable [10, 17, 13, 15]. Here we analyze vulnerable code at the function level which is a finer
level of granularity in the overall flow of vulnerability analysis. We formalize the identification
of vulnerable functions as a binary classification problem, i.e., learning to decide whether a given
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Figure 1: The Architecture of Devign

function in raw source code is vulnerable or not. Let a sample of data be defined as ((ci, yi)|ci ∈
C, yi ∈ Y), i ∈ {1, 2, . . . , n}, where C denotes the set of functions in code, Y = {0, 1}n represents
the label set with 1 for vulnerable and 0 otherwise, and n is the number of instances. Since ci is a
function, we assume it is encoded as a multi-edged graph gi(V,X,A) ∈ G (See Section 2.2 for the
embedding details). Let m be the total number of nodes in V , X ∈ Rm×d is the initial node feature
matrix where each vertex vj in V is represented by a d-dimensional real-valued vector xj ∈ Rd.
A ∈ {0, 1}k×m×m is the adjacency matrix, where k is the total number of edge types. An element
eps,t ∈ A equal to 1 indicates that node vs, vt is connected via an edge of type p, and 0 otherwise.
The goal of Devign is to learn a mapping from G to Y , f : G 7→ Y to predict whether a function is
vulnerable or not. The prediction function f can be learned by minimizing the loss function below:

min

n∑
i=1

L(f(gi(V,X,A), yi|ci)) + λω(f) (1)

where L(·) is the cross entropy loss function, ω(·) is a regularization, and λ is an adjustable weight.

2.2 Graph Embedding Layer of Composite Code Semantics

As illustrated in Figure 1, the graph embedding layer EMB is a mapping from the function code ci
to graph data structures as the input of the model, i.e.,

gi(V,X,A) = EMB(ci),∀i = {1, . . . , n} (2)

In this section, we describe the motivation and method on why and how to utilize the classical code
representations to embed the code into a composite graph for feature learning.

2.2.1 Classical Code Graph Representation and Vulnerability Identification

In program analysis, various representations of the program are utilized to manifest deeper semantics
behind the textual code, where classic concepts include ASTs, control flow, and data flow graphs
that capture the syntactic and semantic relationships among the different tokens of the source
code. Majority of vulnerabilities such as memory leak are too subtle to be spotted without a joint
consideration of the composite code semantics [17]. For example, it is reported that ASTs alone can
be used to find only insecure arguments [17]. By combining ASTs with control flow graphs, it enables
to cover two more types of vulnerabilities, i.e., resource leaks and some use-after-free vulnerabilities.
By further integrating the three code graphs, it is possible to describe most types except two that need
extra external information (i.e., race condition that depends on runtime properties and design errors
that are hard to model without details on the intended design of a program)

Though the vulnerability templates in [17] are manually crafted in the form of graph traversals, it
conveyed the key insight and proved the feasibility to learn a broader range of vulnerability patterns
through integrating properties of ASTs, control flow graphs and data flow graphs into a joint data
structure. Besides the three classical code structures, we also take the natural sequence of source
code into consideration, since the recent advance on deep learning based vulnerability detection has
demonstrated its effectiveness [13, 14]. It can complement the classical representations because its
unique flat structure captures the relationships of code tokens in a ‘human-readable’ fashion.

2.2.2 Graph Embedding of Code

Next we briefly introduce each type of the code representations and how we represent various
subgraphs into one joint graph, following a code example of integer overflow as in Figure 2(a) and its
graph representation as shown in Figure 2(b).
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Figure 2: Graph Representation of Code Snippet with Integer Overflow

Abstract Syntax Tree (AST) AST is an ordered tree representation structure of source code. Usu-
ally, it is the first-step representation used by code parsers to understand the fundamental structure of
the program and to examine syntactic errors. Hence, it forms the basis for the generation of many
other code representations and the node set of AST V ast includes all the nodes of the rest three code
representations used in this paper. Starting from the root node, the codes are broken down into code
blocks, statements, declaration, expressions and so on, and finally into the primary tokens that form
the leaf nodes. The major AST nodes are shown in Figure 2. All the boxes are AST nodes, with
specific codes in the first line and node type annotated. The blue boxes are leaf nodes of AST and
purple arrows represent the child-parent AST relations.
Control Flow Graph (CFG) CFG describes all paths that might be traversed through a program
during its execution. The path alternatives are determined by conditional statements, e.g., if, for,
and switch statements. In CFGs, nodes denote statements and conditions, and they are connected by
directed edges to indicate the transfer of control. The CFG edges are highlighted with green dashed
arrows in Figure 2. Particularly, the flow starts from the entry and ends at the exit, and two different
paths derive at the if statements.
Data Flow Graph (DFG) DFG tracks the usage of variables throughout the CFG. Data flow is
variable oriented and any data flow involves the access or modification of certain variables. A DFG
edge represents the subsequent access or modification onto the same variables. It is illustrated by
orange double arrows in Figure 2 and with the involved variables annotated over the edge. For
example, the parameter b is used in both the if condition and the assignment statement.
Natural Code Sequence (NCS) In order to encode the natural sequential order of the source code,
we use NCS edges to connect neighboring code tokens in the ASTs. The main benefit with such
encoding is to reserve the programming logic reflected by the sequence of source code. The NCS
edges are denoted by red arrows in Figure 2, connect all the leaf nodes of the AST.

Consequently, a function ci can be denoted by a joint graph g with the four types of subgraphs (or 4
types of edges) sharing the same set of nodes V = V ast. As shown in Figure (2), every node v ∈ V
has two attributes, Code and Type. Code contains the source code represented by v, and the type of v
denotes the type attribute. The initial node representation xv shall reflect the two attributes. Hence,
we encode Code by using a pre-trained word2vec model with the code corpus built on the whole
source code files in the projects, and Type by label encoding. We concatenate the two encodings
together as the initial node representation xv .

2.3 Gated Graph Recurrent Layers

The key idea of graph neural networks is to embed node representation from local neighborhoods
through the neighborhood aggregation. Based on the different techniques for aggregating neigh-
borhood information, there are graph convolutional networks [19], GraphSAGE [20], gated graph
recurrent networks [18] and their variants. We chose the gated graph recurrent network to learn the
node embedding, because it allows to go deeper than the other two and is more suitable for our data
with both semantics and graph structures [21].

Given an embedded graph gi(V,X,A), for each node vj ∈ V , we initialize the node state vector
h
(1)
j ∈ Rz, z ≥ d using the initial annotation by copying xj into the first dimensions and padding

extra 0’s to allow hidden states that are larger than the annotation size, i.e., h1j = [x>j ,0]
>. Let T be

the total number of time-step for neighborhood aggregation. To propagate information throughout
graphs, at each time step t ≤ T , all nodes communicate with each other by passing information via
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edges dependent on the edge type and direction (described by the pth adjacent matrix Ap of A, from
the definition we can find that the number of adjacent matrix equals to edge types), i.e.,

a
(t−1)
j,p = A>p

(
Wp

[
h
(t−1)>
1 , . . . , h(t−1)>

m

]
+ b

)
(3)

where Wp ∈ Rz×z is the weight to learn and b is the bias. In particular, a new state aj,p of node vj is
calculated by aggregating information of all neighboring nodes defined on the adjacent matrix Ap on
edge type p. The remaining steps are gated recurrent unit (GRU) that incorporate information from
all types with node v and the previous time step to get the current node’s hidden state h(t)i,v , i.e.,

h
(t)
j = GRU(h

(t−1)
j , AGG({a(t−1)

j,p }kp=1)) (4)

where AGG(·) denotes an aggregation function that could be one of the functions
{MEAN,MAX,SUM,CONCAT} to aggregate the information from different edge types to
compute the next time-step node embedding h(t). We use the SUM function in the implementation.
The above propagation procedure iterates over T time steps, and the state vectors at the last time step
H

(T )
i = {h(T )

j }mj=1 is the final node representation matrix for the node set V .

2.4 The Conv Layer

The generated node features from the gated graph recurrent layers can be used as input to any
prediction layer, e.g., for node or link or graph-level prediction, and then the whole model can be
trained in an end-to-end fashion. In our problem, we require to perform the task of graph-level
classification to determine whether a function ci is vulnerable or not. The standard approach to graph
classification is gathering all these generated node embeddings globally, e.g., using a linear weighted
summation to flatly adding up all the embeddings [18, 22] as shown in Eq (5),

ỹi = Sigmoid

(∑
MLP ([H

(T )
i , xi])

)
(5)

where the sigmoid function is used for classification and MLP denotes a Multilayer Perceptron
(MLP) that maps the concatenation of H(T )

i and xi to a Rm vector. This kind of approach hinders
effective classification over entire graphs [23, 24].

Thus, we design the Conv module to select sets of nodes and features that are relevant to the
current graph-level task. Previous works in [24] proposed to use a SortPooling layer after the graph
convolution layers to sort the node features in a consistent node order for graphs without fixed
ordering, so that traditional neural networks can be added after it and trained to extract useful features
characterizing the rich information encoded in graph. In our problem, each code representation graph
has its own predefined order and connection of nodes encoded in the adjacent matrix, and the node
features are learned through gated recurrent graph layers instead of graph convolution networks
that requires to sort the node features from different channels. Therefore, we directly apply 1-D
convolution and dense neural networks to learn features relevant to the graph-level task for more
effective prediction1. We define σ(·) as a 1-D convolutional layer with maxpooling, then

σ(·) =MAXPOOL
(
Relu

(
CONV (·)

))
(6)

Let l be the number of convolutional layers applied, then the Conv module, can be expressed as

Z
(1)
i = σ

(
[H

(T )
i , xi]

)
, . . . , Z

(l)
i = σ

(
Z

(l−1)
i

)
(7)

Y
(1)
i = σ

(
H

(T )
i

)
, . . . , Y

(l)
i = σ

(
Y

(l−1)
i

)
(8)

ỹi = Sigmoid
(
AV G(MLP (Z

(l)
i )�MLP (Y

(l)
i ))

)
(9)

where we firstly apply traditional 1-D convolutional and dense layers respectively on the concatena-
tion [H

(T )
i , xi] and the final node features H(T )

i , followed by a pairwise multiplication on the two
outputs, then an average aggregation on the resulted vector, and at last make a prediction.

3 Evaluation

We evaluate the benefits of Devign against a number of state-of-the-art vulnerability discovery
methods, with the goal of understanding the following questions:

1We also tried LSTMs and BiLSTMs (with and without attention mechanisms) on the sorted nodes in AST order, however, the convolution
networks work best overall.
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Table 1: Data Sets Overview
Project Sec. Rel. Commits VFCs Non-VFCs Graphs Vul Graphs Non-Vul Graphs

Linux Kernel 12811 8647 4164 16583 11198 5385
QEMU 11910 4932 6978 15645 6648 8997
Wireshark 10004 3814 6190 20021 6386 13635
FFmpeg 13962 5962 8000 6716 3420 3296
Total 48687 23355 25332 58965 27652 31313

Q1 How does our Devign compare to the other learning based vulnerability identification methods?
Q2 How does our Conv module powered Devign compare to the Ggrn with the flat summation in
Eq (5) for the graph-level classification task?
Q3 Can Devign learn from each type of the code representations (e.g., a single-edged graph with one
type of information)? And how do the Devign models with the composite graphs (e.g., all types of
code representations) compare to each of the single-edged graphs?
Q4 Can Devign have a better performance compared to some static analyzers in the real scenario
where the dataset is imbalanced with an extremely low percentage of vulnerable functions?
Q5 How does Devign perform on the latest vulnerabilities reported publicly through CVEs?

3.1 Data Preparation

It is never trivial to obtain high-quality data sets of vulnerable functions due to the demand of qualified
expertise. We noticed that despite [15] released data sets of vulnerable functions, the labels are
generated by statistic analyzers which are not accurate. Other potential datasets used in [25] are
not available. In this work, supported by our industrial partners, we invested a team of security to
collect and label the data from scratch. Besides raw function collection, we need to generate graph
representations for each function and initial representations for each node in a graph. We describe the
detailed procedures below.

Raw Data Gathering To test the capability of Devign in learning vulnerability patterns, we evaluate
on manually-labeled functions collected from 4 large C-language open-source projects that are
popular among developers and diversified in functionality, i.e., Linux Kernel, QEMU, Wireshark, and
FFmpeg.

To facilitate and ensure the quality of data labelling, we started by collecting security-related commits
which we would label as vulnerability-fix commits or non-vulnerability fix commits, and then
extracted vulnerable or non-vulnerable functions directly from the labeled commits. The vulnerability-
fix commits (VFCs) are commits that fix potential vulnerabilities, from which we can extract
vulnerable functions from the source code of versions previous to the revision made in the commits.
The non-vulnerability-fix commits (non-VFCs) are commits that do not fix any vulnerability, similarly
from which we can extract non-vulnerable functions from the source code before the modification.
We adopted the approach proposed in [26] to collect the commits. It consists of the following two
steps. 1) Commits Filtering. Since only a tiny part of commits are vulnerability related, we exclude
the security-unrelated commits whose messages are not matched by a set of security-related keywords
such as DoS and injection. The rest, more likely security-related, are left for manual labelling. 2)
Manual Labelling. A team of four professional security researchers spent totally 600 man-hours to
perform a two round data labelling and cross-verification.

Given a VFC or non-CFC, based on the modified functions, we extract the source code of these
functions before the commit is applied, and assign the labels accordingly.

Graph Generation We make use of the open-source code analysis platform for C/C++ based on code
property graphs, Joern [17], to extract ASTs and CFGs for all functions in our data sets. Due to some
inner compile errors and exceptions in Joern, we can only obtain ASTs and CFGs for part of functions.
We filter out these functions without ASTs and CFGs or with oblivious errors in ASTs and CFGs.
Since the original DFGs edges are labeled with the variables involved, which tremendously increases
the number of the types of edges and meanwhile complicates embedded graphs, we substitute the
DFGs with three other relations, LastRead (DFG_R), LastWrite (DFG_W), and ComputedFrom
(DFG_C) [27], to make it more adaptive for the graph embedding. DFG_R represents the immediate
last read of each occurrence of the variable. Each occurrence can be directly recognized from the
leaf nodes of ASTs. DFG_W represents the immediate last write of each occurrence of variables.
Similarly, we make these annotations to the leaf node variables. DFG_C determines the sources of a
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Table 2: Classification accuracies and F1 scores in percentages: The two far-right columns give
the maximum and average relative difference in accuracy/F1 compared to Devign model with the
composite code representations, i.e., Devign (Composite).

Method Linux Kernel QEMU Wireshark FFmpeg Combined Max Diff Avg Diff
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Metrics + Xgboost 67.17 79.14 59.49 61.27 70.39 61.31 67.17 63.76 61.36 63.76 14.84 11.80 10.30 8.71
3-layer BiLSTM 67.25 80.41 57.85 57.75 69.08 55.61 53.27 69.51 59.40 65.62 16.48 15.32 14.04 8.78

3-layer BiLSTM + Att 75.63 82.66 65.79 59.92 74.50 58.52 61.71 66.01 69.57 68.65 8.54 13.15 5.97 7.41
CNN 70.72 79.55 60.47 59.29 70.48 58.15 53.42 66.58 63.36 60.13 16.16 13.78 11.72 9.82

Ggrn (AST) 72.65 81.28 70.08 66.84 79.62 64.56 63.54 70.43 67.74 64.67 6.93 8.59 4.69 5.01
Ggrn (CFG) 78.79 82.35 71.42 67.74 79.36 65.40 65.00 71.79 70.62 70.86 4.58 5.33 2.38 2.93
Ggrn (NCS) 78.68 81.84 72.99 69.98 78.13 59.80 65.63 69.09 70.43 69.86 3.95 8.16 2.24 4.45

Ggrn (DFG_C) 70.53 81.03 69.30 56.06 73.17 50.83 63.75 69.44 65.52 64.57 9.05 17.13 6.96 10.18
Ggrn (DFG_R) 72.43 80.39 68.63 56.35 74.15 52.25 63.75 71.49 66.74 62.91 7.17 16.72 6.27 9.88
Ggrn (DFG_W) 71.09 81.27 71.65 65.88 72.72 51.04 64.37 70.52 63.05 63.26 9.21 16.92 6.84 8.17

Ggrn (Composite) 74.55 79.93 72.77 66.25 78.79 67.32 64.46 70.33 70.35 69.37 5.12 6.82 3.23 3.92

Devign (AST) 80.24 84.57 71.31 65.19 79.04 64.37 65.63 71.83 69.21 69.99 3.95 7.88 2.33 3.37
Devign (CFG) 80.03 82.91 74.22 70.73 79.62 66.05 66.89 70.22 71.32 71.27 2.69 3.33 1.00 2.33
Devign (NCS) 79.58 81.41 72.32 68.98 79.75 65.88 67.29 68.89 70.82 68.45 2.29 4.81 1.46 3.84

Devign (DFG_C) 78.81 83.87 72.30 70.62 79.95 66.47 65.83 70.12 69.88 70.21 3.75 3.43 2.06 2.30
Devign (DFG_R) 78.25 80.33 73.77 70.60 80.66 66.17 66.46 72.12 71.49 70.92 3.12 4.64 1.29 2.53
Devign (DFG_W) 78.70 84.21 72.54 71.08 80.59 66.68 67.50 70.86 71.41 71.14 2.08 2.69 1.27 1.77

Devign (Composite) 79.58 84.97 74.33 73.07 81.32 67.96 69.58 73.55 72.26 73.26 - - - -

Table 3: Classification accuracies and F1 scores in percentages under the real imbalanced setting

Method Cppcheck Flawfinder CXXX 3-layer BiLSTM 3-layer BiLSTM + Att CNN Devign (Composite)
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Linux 75.11 0 78.46 12.57 19.44 5.07 18.25 13.12 8.79 16.16 29.03 15.38 69.41 24.64

QEMU 89.21 0 86.24 7.61 33.64 9.29 29.07 15.54 78.43 10.50 75.88 18.80 89.27 41.12

Wireshark 89.19 10.17 89.92 9.46 33.26 3.95 91.39 10.75 84.90 28.35 86.09 8.69 89.37 42.05

FFmpeg 87.72 0 80.34 12.86 36.04 2.45 11.17 18.71 8.98 16.48 70.07 31.25 69.06 34.92

Combined 85.41 2.27 85.65 10.41 29.57 4.01 9.65 16.59 15.58 16.24 72.47 17.94 75.56 27.25

variable. In an assignment statement, the left-hand-side (lhs) variable is assigned with a new value
by the right-hand-side (rhs) expression. DFG_C captures such relations between the lhs variable
and each of the rhs variable. Further, we remove functions with node size greater than 500 for
computational efficiency, which accounts for 15%. We summarize the statistics of the data sets in
Table 1.

3.2 Baseline Methods

In the performance comparison, we compare Devign with the state-of-the-art machine-learning-based
vulnerability prediction methods, as well as the gated graph recurrent network (Ggrn) that used the
linearly weighted summation for classification.

Metrics + Xgboost [25]: We collect totally 4 complexity metrics and 11 vulnerability metrics for
each function using Joern, and utilize Xgboost for classification. Here we did not use the proposed
binning and ranking method because it was not learning based, but a heuristic designed to rank the
likelihood of being vulnerable for the full functions in a project. We search the best parameters via
Bayes Optimization [28].
3-layer BiLSTM [13]: It treats the source code as natural languages and input the tokenized code
into bidirectional LSTMs with initial embeddings trained via Word2vec. Here we implemented a
3-layer bidirectional for the best performance.
3-layer BiLSTM + Att: It is an improved version of [13] with the attention mechanism [29].
CNN [14]: Similar to [13], it takes source code as natural languages and utilizes the bag of words to
get the initial embeddings of code tokens, and then feeds them to CNNs to learn.

3.3 Performance Evaluation

Devign Configuration In the embedding layer, the dimension of word2vec for the initial node
representation is 100. In the gated graph recurrent layer, we set the the dimension of hidden states as
200, and number of time steps as 6. For the Conv parameters of Devign, we apply (1, 3) filter with
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ReLU activation function for the first convolution layer which is followed by a max pooling layer
with (1, 3) filter and (1, 2) stride, and (1, 1) filter for the second convolution layer with a max pooling
layer with (2, 2) filter and (1, 2) stride. We use the Adam optimizer with learning rate 0.0001 and
batch size 128, and L2 regularization to avoid overfitting. We randomly shuffle each dataset and split
75% for the training and the rest 25% for validation. We train our model on Nvidia Graphics Tesla
M40 and P40, with 100-epoch patience for early stopping.

Results Analysis We use accuracy and F1 score to measure performance. Table 2 summarizes all the
experiment results. First, we analyze the results regarding Q1, the performance of Devign with other
learning based methods. From the results on baseline methods, Ggrn and Devign with composite
code representations, we can see that both Ggrn and Devign significantly outperform the baseline
methods in all the data sets. Especially, compared to all the baseline methods, the relative accuracy
gain by Devign is averagely 10.51%, at least 8.54% on the QEMU dataset. Devign (Composite)
outperforms the 4 baseline methods in terms of F1 score as well, i.e., the relative gain of F1 score
is 8.68% on the average and the minimum relative gains on each dataset (Linux Kernel, QEMU,
Wirshark, FFmpeg and Combined) are 2.31%, 11.80%, 6.65%, 4.04% and 4.61% respectively. As
Linux follows best practices of coding style, the F1 score 84.97 by Devign is the highest among all
datasets. Hence, Devign with comprehensive semantics encoded in graphs performs significantly
better than the state-of-the-art vulnerability identification methods.

Next, we investigate the answer to Q2 about the performance gain of Devign against Ggrn. We
first look at the score with the composite code representation. It demonstrates that, in all the data
sets, Devign reaches higher accuracy (an average of 3.23%) than Ggrn, where the highest accuracy
gain is 5.12% on the FFmpeg data set. Also Devign gets better F1, an average of 3.92% higher than
Ggrn, where the highest F1 gain is 6.82 % on the QEMU data set. Meanwhile, we look at the score
with each single code representation, from which, we get similar conclusion that generally Devign
significantly outperforms Ggrn, where the maximum accuracy gain is 9.21% for the DFG_W edge
and the maximum F1 gain is 17.13% for the DFG_C. Overall the average accuracy and F1 gain by
Devign compared with Ggrn are 4.66%, 6.37% among all cases, which indicates the Conv module
extracts more related nodes and features for graph-level prediction.

Then we check the results for Q3 to answer whether Devign can learn different types of code
representation and the performance on composite graphs. Surprisingly we find that the results learned
from single-edged graphs are quite encouraging in both of Ggrn and Devign. For Ggrn, we find
that the accuracy in some specific types of edges is even slightly higher than that in the composite
graph, e.g., both CFG and NCS graphs have better results on the FFmpeg and combined data set. For
Devign, in terms of accuracy, except the Linux data set, the composite graph representation is overall
superior to any single-edged graph with the gain ranging from 0.11% to 3.75%. In terms of F1 score,
the improvement brought by composite graph compared with the single-edged graphs is averagely
2.69%, ranging from 0.4% to 7.88% in the Devign in all tests. In summary, composite graphs help
Devign to learn better prediction models than single-edged graphs.

To answer Q4 about the comparison with static analyzers on the real imbalanced dataset, we randomly
sampled the test data to create imbalanced datasets with 10% vulnerable functions according to a large
industrial analysis [26]. We compare with the well-known open-source static analyzers Cppcheck,
Flawfinder, and a commercial tool CXXX which we hide the name for legal concern. The results
are shown in Table 3, where our approach outperforms significantly with a 27.99% higher average
F1 score compared with the performance of all the analyzers and on all the datasets (individual and
combined). Meanwhile, static analyzers tend to miss most vulnerable functions and have high false
positives, e.g., Cppcheck found 0 vulnerability in 3 out of the 4 single project datasets.

Finally to answer Q5 on the latest exposed vulnerabilities, we scrape the latest 10 CVEs of each project
respectively to check whether Devign can be potentially applied to identify zero-day vulnerabilities.
Based on commit fix of the 40 CVEs, we totally get 112 vulnerable functions. We input these
functions into the trained Devign model and achieve an average accuracy of 74.11%, which manifests
Devign’s potentiality of discovering new vulnerabilities in practical applications.

4 Related Work

The success of deep learning has inspired the researchers to apply it for more automated solutions to
vulnerability discovery on source code [15, 13, 14]. The recent works [13, 15, 14] treat source code

8



as flat natural language sequences, and explore the potential of natural language process techniques
in vulnerability detection. For instance, [15, 13] built models upon LSTM/BiLSTM neural networks,
while [14] proposed to use the CNNs instead.

To overcome the limitations of the aforementioned models on expressing logic and structures in code,
a number of works have attempted to probe more structural neural networks such as tree structures
[30] or graph structures [18, 31, 27] for various tasks. For instance, [18] proposed to generate
logical formulas for program verification through gated graph recurrent networks, and [27] aimed at
prediction of variable names and variable miss-usage. [31] proposed Gemini for binary code similarity
detection, where functions in binary code are represented by attributed control flow graphs and input
Structure2vec [22] for learning graph embedding. Different from all these works, our work targeted at
vulnerability identification, and incorporated comprehensive code representations to express as many
types of vulnerabilities as possible. Beside, our work adopt gated graph recurrent layers in [18] to
consider semantics of nodes (e.g., node annotations) as well as the structural features, both of which
are important in vulnerability identification. Structure2vec focuses primarily on learning structural
features. Compared with [27] that applies gated graph recurrent network for variable prediction, we
explicitly incorporate control flow graph into the composite graph and propose the Conv module for
efficient graph-level classification.

5 Conclusion and Future Work

We introduce a novel vulnerability identification model Devign that is able to encode a source-code
function into a joint graph structure from multiple syntax and semantic representations and then
leverage the composite graph representation to effectively learn to discover vulnerable code. It
achieved a new state of the art on machine-learning-based vulnerable function discovery on real
open-source projects. Interesting future works include efficient learning from big functions via
integrating program slicing, applying the learnt model to detect vulnerabilities cross projects, and
generating human-readable or explainable vulnerability assessment.
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