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A Generalizing baseline methods

Assume the same transformation model y = Hx+ n. The baseline methods we compared in the
main paper, namely DAEP [S1], DMSP [S2], and ADMM [S4], all assumed isotropic (spatially
uniform) noise in their original papers. Here we show how to generalize them to any noise covariance
matrix n ∼ N (0,Σ). We later compare these generalized baselines with AGEM in Section E. We
also analyze the limitation of DMSP mathematically.

A.1 DMSP

For DMSP, the original paper only discussed noise estimation in the context of noise-blind image
deblurring. Here we generalize it to general linear inverse problems. DMSP uses a Gaussian smoothed
data term (log-likelihood), as follows (page 4 of [S2]):

data(x) =

∫
gσ(ε) log Pr(y | x+ ε) dε, (S1)

where gσ(·) is the probability density function (pdf) of a Gaussian distribution N (0, σ2I). We can
simplify (S1) as

data(x) = Eε∼N (0,σ2I) log Pr(y | x+ ε) (S2)

= Ex̃∼N (x,σ2I) log Pr(y | x̃) (S3)

= Ex̃∼N (x,σ2I) −
1

2
(y −Hx̃)>Σ−1(y −Hx̃)− 1

2
log|Σ|+ const. (S4)

= −1

2
trace(Ex̃∼N (x,σ2I) Σ−1(y −Hx̃)(y −Hx̃)>)− 1

2
log|Σ|+ const. (S5)

= −1

2
(y −Hx)>Σ−1(y −Hx)− 1

2
σ2trace(Σ−1HH>)− 1

2
log|Σ|+ const., (S6)

where trace(·) is the trace operator of a matrix. We see that the gradient of the data term is simply
∇xdata(x) = H>Σ−1(y −Hx). DMSP estimates the noise level Σ by maximizing (S6) for Σ. If
Σ is isotropic, we see that the maximizer is

Σ∗ =
1

d

[
‖y −Hx‖2 + σ2trace(HH>)

]
I, (S7)

where d is the dimension of y. This maximizer coincides with (21) in [S2]. It is shown to overestimate
the true noise level by the experimental results in the main paper, as the data term is based on a
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Gaussian smoothed log-likelihood, which introduces a correction term σ2trace(HH>) to compensate
for the overfitting caused by using a single sample to estimate Σ. This overestimation phenomenon is
especially significant if the smoothing kernel σ is close to the true noise level.

If multiple samples y1, ...,yk share the same noise level in DMSP, the data term is simply the sum of
individual data terms, as samples are mutually independent conditioned on Σ:

data({xi}ki=1) =− 1

2

k∑
i=1

(yi −Hxi)>Σ−1(yi −Hxi)

− k

2
σ2trace(Σ−1HH>)− k

2
log|Σ|+ const.,

(S8)

the maximizer can be similarly solved. If Σ is constrained to be diagonal instead of isotropic, the
diagonal elements of Σ can be solved using (S8), by noticing that the trace of Σ−1HH> is simply
the weighted sum of the diagonal elements of HH>, weighted by the diagonal elements of Σ−1.

A.2 DAEP

DAEP requires a known noise level Σ = σ2
dI . It is used to compute the data term gradient during

gradient-based optimization (page 4 of [S1])

∇xL(x | y) = H>(Hx− y)/σ2
d, (S9)

To use a full general covariance n ∼ N (0,Σ), we see that the negative log-likelihood L(x | y) now
satisfies

L(x | y) =
1

2
(Hx− y)>Σ−1(Hx− y) + const. (S10)

therefore we can simply replace (S9) with

∇xL(x | y) = H>Σ−1(Hx− y). (S11)

A.3 ADMM

ADMM also requires a known noise level Σ. It is used for specifying the x-subproblem

x(k+1) = argmaxx log Pr(y | x)− λ

2
‖x− v(k) + u(k)‖2 (S12)

= argminx (Hx− y)>Σ−1(Hx− y) + λ(x− x̃(k))>(x− x̃(k)), (S13)

where we define x̃(k) = v(k) − u(k). The solution to (S13) can easily be derived as

x(k+1) = (H>Σ−1H + λI)−1(H>Σ−1y + λx̃(k)). (S14)

B More on the M-step

In the Monte Carlo EM [S5] algorithm, the M-step computes the following objective:

Σ∗ = argmaxΣ

n∑
i=1

log Pr(y | x(i),Σ), (S15)

where the log-likelihood is

log Pr(y | x,Σ) = − 1
2 (y −Hx)>Σ−1(y −Hx)− 1

2 log|Σ|+ const. (S16)

The general solution is

Σ∗ =
1

n

n∑
i=1

(y −Hx(i))(y −Hx(i))>. (S17)

Here we discuss some special cases:
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1. The noise level Σ is constrained to be isotropic.
2. The noise level Σ is constrained to be diagonal.
3. Multiple observations y share the same Σ.

If the noise level Σ is isotropic, we parametrize Σ as σI , where I is the d× d identity matrix, d is the
dimension of y. It is straightforward to derive from (S15) and (S16) that

σ∗ =
1

nd

n∑
i=1

(y −Hx(i))>(y −Hx(i)). (S18)

If the noise level is diagonal, we parametrize Σ as diag(σ1, ..., σd). Each dimension can be treated
independently, and we see from (S15) and (S16) that

σ∗k =
1

n

n∑
i=1

(y[k] −Hkx
(i))2, k = 1, ..., d, (S19)

where y[k] is the k-the coordinate of y, Hk is the k-th row of matrix H .

If we have multiple observations y1, ...,yk that share the same Σ, conditioned on Σ they are mutually
independent. The expected complete log-likelihood becomes

Q(Σ,Σ(τ)) =

k∑
j=1

Exj∼Pr(xj |yj ,Σ(τ)) log Pr(yj ,xj | Σ)

=

k∑
j=1

Exj∼Pr(xj |yj ,Σ(τ)) log Pr(yj | xj ,Σ) + log Pr(xj).

(S20)

During the Monte Carlo E-step, we sample n samples for each xj , resulting in a total of nk samples
{x(i)

j }ni=1, j = 1, ..., k. During the M-step, the objective (S15) is replaced by

Σ∗ = argmaxΣ

k∑
j=1

n∑
i=1

log Pr(yj | x(i)
j ,Σ). (S21)

C More on Metropolis-adjusted Langevin algorithm

The Metropolis-adjusted Langevin algorithm (MALA) [S3] is a Metropolis-Hastings sampler with a
specially chosen proposal distribution. In general, in order to sample from a target distribution π(·),
an Metropolis-Hastings sampler draws a value x∗ from a proposal distribution q(· | x), based on the
current value x. The proposed value x∗ is accepted with probability

min
(

1,
π(x∗)q(x | x∗)
π(x)q(x∗ | x)

)
. (S22)

The MALA uses the following proposal distribution

x∗ ∼ N (x+
σ2

2
∇ log π(x), σ2). (S23)

The intuition of MALA comes from the Langevin diffusion, which is based on the following stochastic
differential equation (SDE):

dXt = ∇f(Xt) dt+
√

2 dBt, (S24)
where Bt is the standard Brownian motion, the function f is the energy of the target distribution
π(x) = Z−1 exp(−f(x)), where Z is a normalization constant. Under mild conditions, the solution
to the SDE is an ergodic Markov process whose unique stationary distribution is π. Therefore, we can
use discretized simulation of the SDE to sample from the stationary distribution π, by the following
recursion:

Xn+1 = Xn + δ∇f(Xn) +
√

2δε, (S25)
where δ is a constant and ε is a standard normal random variable. Due to the error introduced during
discretization, a Metropolis-Hastings accept/reject step is added for correction. This gives the MALA
as in (S23).
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Figure S1: Projection of the 2D manifold (S26) on the k-th and k + 1-th coordinates, where
k = 1, ..., 49. It can be seen that this manifold is highly nonlinear.

D Visualization of simulated data

In the signal denoising experiment we considered a hypothetical 2D manifold in a 50-dimensional
space, which can be parametrized by two uniform random variables as follows,

xk = 0.01(α+ β)2 sin[α sin(ke) + β sin(ke+ 1) + 0.5(α+ β)], k = 1, ..., 50, (S26)

where α, β ∼ Uniform(2, 5), e = exp(1) is the Euler constant, and xk is the k-th coordinate of the
50-dimensional signal. Here we provide visualization of this manifold and show that it is highly
nonlinear. Fig. S1 shows the projection of this manifold on the k-th and k + 1-th coordinates, where
k = 1, ..., 49.

E More experimental results

Due to the space limit of the main paper, here we present the result of an additional experiment,
where the generalized baseline methods from Section A are compared with our proposed methods.

Time series deconvolution. In this experiment we consider a non-invertible transform H , as well
as multiple-y analysis (i.e. k > 1). Suppose a time series x = {x1, ..., x10} is convoluted with kernel
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Table S1: Average RMSE for time series deconvolution on the test set. Standard deviations are in
parentheses, the best performance is in bold. (All values are in 10−2).

Method: DAEP+NE ADMM+NE DMSP AGEM AGEM-ADMM

mean 1.10 0.84 0.91 0.72 0.67
std. (0.34) (0.66) (0.56) (0.39) (0.52)

Table S2: Estimated noise levels for time series deconvolution. (All values are in 10−2)

Σ11 Σ22 Σ33 Σ44 Σ55 Σ66 Σ77 Σ88

Method true: 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00

DMSP mean 1.62 2.31 2.77 3.78 1.83 2.14 2.98 3.90
std. (0.07) (0.47) (0.67) (0.53) (0.13) (0.24) (0.28) (0.45)

AGEM mean 1.09 2.14 2.70 3.73 1.27 1.83 2.88 3.91
std. (0.01) (0.03) (0.02) (0.01) (0.01) (0.01) (0.03) (0.02)

(-0.33, 1.0, -0.33) using VALID padding, then corrupted with temporal variant and independent noise
(i.e. Σ is diagonal). Here we set the dimension of x and y to small values for better display the
estimated noise level. Further suppose that multiple observations arrive at the same time, so that
we can use them to jointly estimate the noise level. We generate 5000 time series from a latent 1D
manifold,

xk = 0.01α2 sin[α sin(ke) + 0.5α], k = 1, ..., 10. (S27)

where α ∼ Uniform(2, 5), e = exp(1). This is simply a slice (β = 0) of the 2D manifold (S26).
Among 5000 samples, 250 samples are selected as the validation set and another 250 samples as
the test set. The rest are used for DAE training. DAE architecture and training follow the signal
denoising experiment in the main paper, except that now each hidden layer contains 500 neurons
instead of 2000, since the data dimension is reduced.

For testing, the linear transformation H is the 8×10 Toeplitz matrix of the convolution kernel, which
is non-invertible. We consider the diagonal noise Σ = 0.01diag(1, 2, 3, 4, 1, 2, 3, 4). The validation
set is grouped into 10 cases, each case contains 25 observations for joint estimation. The same is done
to the test set. We set nEM = 30, nMH = 1000. The hyper-parameter σprop is set to 0.008 using the
same selection method as signal denoising. RMSE and estimated noise levels, averaged over 10 test
cases of the test set, are reported in Table S1 and S2. We see that both our methods outperform all
baselines statistically significantly (p < 0.01) in terms of RMSE, and the noise estimator of AGEM
has much lower variance than that of DMSP. This is due to MH’s ability to better explore the posterior
distribution. In contrast, DMSP estimates the noise level only based on the current iteration of x,
which is especially problematic in this experiment setting (only 25 samples per dimension).
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