
Appendix A Coordinate Wise Convergence vs Convergence in Objective

Value

For an algorithm with a log 1
" dependence of the running time for computing a (1 + ")-approximate

solution, like p-IRLS, the guarantee can be translated into a guarantee for convergence in the
solution without any significant loss in the runtime complexity of the method. We demonstrate this
theoretically and experimentally below.
Lemma A.1. If x is a (1 + �)-approximate solution and x ? is the optimum, then

kx � x ?k1 2m
1
2

�min(A)

✓
2�

m

◆ 1
p

kAx ? � bkp ,

where �min(A) is the smallest singular value of A.

Proof. Given that x is a (1 + �)-approximate solution, using Lemma B.1, we can write the following
lower bound on the objective value:

(1 + �) kAx ? � bkpp � kAx ? � bkpp + p (Ax ? � b)> RA(x � x ?)

+ p/8A(x � x ?)>A>RA(x � x)? + 2�(p+1) kAx �Ax ?kpp ,

where R = diag(|Ax ? � b|p�2). Since the gradient at x ? is 0, simplifying, we get,
2p+1� kAx ? � bkpp � kAx �Ax ?kpp . Now, translating between various norms, we obtain,

kx � x ?k1 1
�min(A) kAx �Ax ?k2 m

1
2
� 1

p

�min(A) kAx �Ax ?kp 2m
1
2

�min(A)

⇣
2�
m

⌘ 1
p kAx ? � bkp .

We can achieve the guarantee kx � x ?k1 " kAx ? � bkp by picking � =
⇣

"�min(A)
4m

⌘p
. This

gives log m
� = O(p log m

�min(A)"), and hence a total iteration count of O(p4.5m
p�2

2(p�1) log m
�min(A)").

Asymptotically, the running time bound is only off by a factor of p if we wish to measure the
convergence in `1-norm, as long as log 1

�min(A) = O(log m
").

10-1010-5100

10-6

10-4

10-2

100

102

Error: Matrix

p = 4
p = 8
p = 16
p = 32

10-1010-5100

10-8

10-6

10-4

10-2

100

Error: Graphs

p = 4
p = 8
p = 16
p = 32

Figure 5: Maximum coordinate wise difference with the optimum vs accuracy to which the objective is close to
the optimum, for both graphs and random matrix instances.

We also demonstrate this relation experimentally. The plots in Figure 5 demonstrate the average
resulting `1 norm deviation for the solution computed, as we change the " parameter used in the
algorithm. We use the instances described in the paper; matrices of size 1000 ⇥ 800 and graphs
with 1000 nodes. For each instance, we: 1) find a very high accuracy solution, by choosing a very
small " ⇠ 10�25, 2) scale the problem so that the optimum value is 1, and run the algorithm again to
find the optimum solution x ?. 3) Now we have a problem such that kAx ? � bkp = 1, we run the

13

algorithm again with various values of ", to obtain solutions x (") and plot
��x (")� x ?

��
1 (averaged

over 20 samples). These results are very much in agreement with the theoretical "
1
p dependence

proved above. (Note that the error bars indicate log(mean ± std) so they are missing on one side
when mean < std.)

Appendix B Proofs from Section 3

B.1 Proof of Lemma 3.2

Lemma 3.2. (Iterative Refinement). Let p � 2, and � 1. Starting from x (0) =
argminCx=d kAx � bk22, and iterating as, x (t+1) = x (t) � �, where � is a -approximate
solution to the residual problem (Definition 2.1), we get an "-approximate solution to (3) in at most
O
⇣
p2 log

�
m
"

�⌘
calls to a -approximate solver for the residual problem.

We first show that we can upper and lower bound the change in objective by a linear term plus a
quadratically smoothed function.
Lemma B.1. For any x ,� and p � 2, we have for r = |x |p�2 and g = p|x |p�2x ,

p

8

X

e

re�
2
e +

1

2p+1
k�kpp kx +�kpp � kxkpp � g>� 2p2

X

e

re�
2
e + pp k�kpp .

The proof of the above lemma is long and hence deferred to the end of this section. Applying the
above lemma on our objective we get,

p

8
(A�)>RA�+

1

2p+1
kA�kpp

��A(x +�)� b
��p
p
�kAx � bkpp�g>A� 2p2(A�)>RA�+pp kA�kpp ,

(5)
where R is the diagonal matrix with entries |Ax � b|p�2 and g = pR(Ax � b). We next show the
relation between the residual problem defined in the preliminaries and the change in objective value
when x is updated by �.
Lemma B.2. For any x ,� and p � 2 and � = 16p,

�(�) kAx � bkpp �
��A(x ��)� b

��p
p
,

and
kAx � bkpp �

��A(x � ��)� b
��p
p
 ��(�).

Proof. The first inequality directly follows from (5). For the second inequality,

kAx � bkpp �
��A(x � ��)� b

��p
p
 �g>�� �2 p

8
�>A>RA�� �p 1

2p+1
kA�kpp

= �

✓
g>�� �

p

8
�>A>RA�� �p�1 1

2p+1
kA�kpp

◆

 �
⇣
g>A�� 2p2�>A>RA�� pp kA�kpp

⌘
.

B.1.1 Proof of Lemma Iterative Refinement

Proof. Let e� be a -approximate solution to the residual problem. Using this fact and Lemma B.2
for � = x�x?

� , we get,

�(e�) � 1

�(�?) � 1

�

✓
x � x ?

�

◆
� 1

�

⇣
kAx � bkpp �OPT

⌘
.

14

Also,
���A(x � e�)� b

���
p

p
�OPT kAx � bkpp � �(e�)�OPT

⇣
kAx � bkpp �OPT

⌘
� 1

�

⇣
kAx � bkpp �OPT

⌘

=

✓
1� 1

�

◆⇣
kAx � bkpp �OPT

⌘
.

Now, after t iterations,
���A(x (t) � e�)� b

���
p

p
�OPT

✓
1� 1

�

◆t✓���Ax (0) � b
���
p

p
�OPT

◆

✓
1� 1

�

◆t

m(p�2)/2OPT.

Thus, for our value of � = 16p, 8p2 log(m/") iterations suffice to obtain a (1 + ")-approximate
solution.

B.1.2 Proof of Lemma B.1

Proof. To show this, we show that the above holds for all coordinates. For a single coordinate, the
above expression is equivalent to proving,

p

8
|x|p�2�2 +

1

2p+1
|�|p |x +�|p � |x |p � p |x|p�1 sgn(x)� 2p2|x|p�2�2 + pp |�|p .

Let � = ↵x. Since the above clearly holds for x = 0, it remains to show for all ↵,
p

8
↵2 +

1

2p+1
|↵|p |1 + ↵|p � 1� p↵ 2p2↵2 + pp |↵|p .

1. ↵ � 1:
In this case, 1 + ↵ 2↵ p · ↵. So, |1 + ↵|p pp |↵|p and the right inequality directly
holds. To show the other side, let

h(↵) = (1 + ↵)p � 1� p↵� p

8
↵2 � 1

2p+1
↵p.

We have,
h0(↵) = p(1 + ↵)p�1 � p� p

4
↵� p

2p+1
↵p�1

and
h00(↵) = p(p� 1)(1 + ↵)p�2 � p

4
� p(p� 1)

2p+1
↵p�2 � 0.

Since h00(↵) � 0, h0(↵) � h0(1) � 0. So h is an increasing function in ↵ and h(↵) �
h(1) � 0.

2. ↵ �1:
Now, |1 + ↵| 1 + |↵| p · |↵|, and 2↵2p2 � |↵| p � 0. As a result,

|1 + ↵|p � |↵| p+ 2↵2p2 + pp · |↵|p

which gives the right inequality. Consider,

h(↵) = |1 + ↵|p � 1� p↵� p

8
↵2 � 1

2p+1
|↵|p.

h0(↵) = �p|1 + ↵|p�1 � p� p

4
↵+ p

1

2p+1
|↵|p�1.

Let � = �↵. The above expression now becomes,

�p(� � 1)p�1 � p+
p

4
� + p

1

2p+1
�p�1.

We know that � � 1. When � � 2, �
2 � � 1 and �

2
⇣

�
2

⌘p�1
. This gives us,

p

4
� + p

1

2p+1
�p�1 p

2

✓
�

2

◆p�1

+
p

2

✓
�

2

◆p�1

 p(� � 1)p�1

15

giving us h0(↵) 0 for ↵ �2. When � 2, �
2 �

⇣
�
2

⌘p�1
and �

2 1.

p

4
� + p

1

2p+1
�p�1 p

2
· �
2
+

p

2
· �
2
 p

giving us h0(↵) 0 for �2 ↵ �1. Therefore, h0(↵) 0 giving us, h(↵) � h(�1) �
0, thus giving the left inequality.

3. |↵| 1:
Let s(↵) = 1 + p↵+ 2p2↵2 + pp |↵|p � (1 + ↵)p. Now,

s0(↵) = p+ 4p2↵+ pp+1 |↵|p�1 sgn(↵)� p(1 + ↵)p�1.

When ↵ 0, we have,

s0(↵) = p+ 4p2↵� pp+1 |↵|p�1 � p(1 + ↵)p�1.

and

s00(↵) = 4p2+pp+1(p�1) |↵|p�2�p(p�1)(1+↵)p�1 � 2p2+pp+1(p�1) |↵|p�2�p(p�1) � 0.

So s0 is an increasing function of ↵ which gives us, s0(↵) s0(0) = 0. Therefore s is
a decreasing function, and the minimum is at 0 which is 0. This gives us our required
inequality for ↵ 0. When ↵ � 1

p�1 , 1 + ↵ p · ↵ and s0(↵) � 0. We are left with the
range 0 ↵ 1

p�1 . Again, we have,

s00(↵) = 4p2 + pp+1(p� 1) |↵|p�2 � p(p� 1)(1 + ↵)p�1

� 4p2 + pp+1(p� 1) |↵|p�2 � p(p� 1)(1 +
1

p� 1
)p�1

� 4p2 + pp+1(p� 1) |↵|p�2 � p(p� 1)e,When p gets large the last term approaches e
� 0.

Therefore, s0 is an increasing function, s0(↵) � s0(0) = 0. This implies s is an increasing
function, giving, s(↵) � s(0) = 0 as required.

To show the other direction,

h(↵) = (1+↵)p�1�p↵�p

8
↵2� 1

2p+1
|↵|p � (1+↵)p�1�p↵�p

8
↵2�p

8
↵2 = (1+↵)p�1�p↵�p

4
↵2.

Now, since p � 2,
⇣
(1 + ↵)p�2 � 1

⌘
sgn(↵) � 0

)
⇣
(1 + ↵)p�1 � 1� ↵

⌘
sgn(↵) � 0

)
✓
p(1 + ↵)p�1 � p� p

2
↵

◆
sgn(↵) � 0

We thus have, h0(↵) � 0 when ↵ is positive and h0(↵) 0 when ↵ is negative. The
minimum of h is at 0 which is 0. This concludes the proof of this case.

B.2 Proof of Lemma that Checks Progress in Objective

We will next prove the following Lemma which shows that we do not change i when we have the
correct value of i.
Lemma B.3. (Check Progress). Let ↵0 be as defined in line (4) of Algorithm 2 and e� the solution

of program (4). If i/2 <
(kAx (t)�bkp

p�kAx?�bkp
p)

16p i, then �(↵0 · e�) � ↵0i
4 and (Ae�)>(R +

sI)Ae� �i/p2.

16

We require bounding the objective of program 4. To do that we first give a bound on a decision
version of the residual problem, and then relate this problem with problem 4.
Lemma B.4. Let i be such that the optimum of the residual problem, �(�?) 2 (i/2,�i]. Then the
following problem has optimum at most �i.

min
�2Rm

2p2(A�)>RA�+ pp kA�kpp

g>A� = i/2

C� = 0.

(6)

Proof. The assumption on the residual is

�(�?) = g>A�? � 2p2(A�?)>RA�? � pp kA�?kpp 2 (i/2,�i].

Since the last 2 terms are strictly non-positive, we must have, g>A�? � i/2. Since �? is the
optimum and satisfies C�? = 0,

d

d�

⇣
g>�A�? � 2p2�2(A�?)>RA�? � �ppp kA�?kpp

⌘

�=1
= 0.

Thus,

g>A�? � 2p2(A�?)>RA�? � pp kA�?kpp = 2p2(A�?)>RA�? + (p� 1)pp kA�?kpp .

Since p � 2, we get the following

2p2(A�?)>RA�? + pp kA�?kpp g>A�? � 2p2(A�?)>RA�? � pp kA�?kpp �i.

For notational convenience, let function hp(r ,�) = 2p2(A�)>RA�+ pp kA�kpp. Now, we know
that, g>A�? � i/2 and g>A�? � hp(r ,�?) �i. This gives,

i/2 g>A�? hp(r ,�
?) + �i 2�i.

Let � = ��?, where � = i
2g>A�? . Note that � 2 [1/4�, 1]. Now, g>A� = i/2 and,

hp(r ,�) max{�2, �p}hp(r ,�
?) �i.

Note that this � satisfies the constraints of program (6) and has an optimum at most �i. So the
optimum of the program must have an objective at most �i.

Claim B.5. If the optimal objective of program (6) is at most Z, then the optimum objective of
program (4) is at most Z

2p2 + i(p�2)/pZ2/p

2p2 .

Proof. Let �? denote the optimizer of (6) and e� be the optimizer of (4). Since the optimum
objective of (6) is at most Z, we have we have kA�?kpp Z

pp . This implies that �?>A>A�?
Z2/p

p2 m(p�2)/p. Since �? is a feasible solution of (4), we have for our value of s,

e�>A>(R + s(t)I)Ae� �?>A>(R + s(t)I)A�? Z

2p2
+

i(p�2)/pZ2/p

2p2
.

Proof of Lemma B.3

Proof. Since,

i/2 <
(kAx (t) � bkpp � kAx ? � bkpp)

16p
 i,

17

we know that the optimum of the residual problem lies between (i/2,�i] (Lemma B.2). From
Lemma B.4 the optimum of the problem (6) is at most �i. Now, from Claim B.5, we know that
(Ae�)>(R + sI)(Ae�) �i/p2. Also, note that ↵0 + k↵p�1

0 1
8� . Consider the following,

�(↵0 · e�) =↵0g
>Ae�� ↵2

02p
2(Ae�)>R(Ae�)� ↵p

0p
p
���Ae�

���
p

p

� ↵0g
>Ae�� (↵2

0 + k↵p
0)2p

2(Ae�)>(R + sI)(Ae�)

= ↵0

⇣
g>Ae�� (↵0 + k↵p�1

0)2p2(Ae�)>(R + sI)(Ae�)
⌘

� ↵0

✓
g>Ae�� 1

8�
2p2(Ae�)>(R + sI)(Ae�)

◆

� ↵0

✓
i

2
� 1

8�
2�i

◆

� ↵0

4
i

B.3 Proof of Lemma 3.4

Lemma 3.4. (Invariant) At every iteration of the while loop, we have Cx (t) = d ,
(kAx (t)�bkp

p�kAx?�bkp
p)

16p i and i � "
16p(1+")kAx (0) � bkppm�(p�2)/2.

Proof. We use induction to show this. Initially we set, i = kAx (0) � bkpp/16p. When the optimum
is not 0, this is greater than (kAx (0) � bkpp �kAx ? � bkpp)/16p. When the optimum is 0, the initial
solution (2-norm minimizer) will also give zero and we can stop our procedure. Therefore, the claim
holds for t = 1. Suppose at iteration t the claim holds. Since the objective is non-increasing, we
know that,

kAx (t) � bkpp � kAx ? � bkpp � kAx (t+1) � bkpp � kAx ? � bkpp.

Let e� denote the solution returned in iteration t + 1. At iteration t + 1, if (kAx (t+1) � bkpp �
kAx ? � bkpp)/16p 2 (i/2, i], from Lemma B.3, we will always have �(↵0

e�) � ↵0i/4 and
(Ae�)>(R+ sI)Ae� �i/p2. So the algorithm does not reduce i and as a result our claim holds for
t+1. Otherwise, we know that (kAx (t+1)�bkpp�kAx ?�bkpp)/16p i/2 and the algorithm might
reduce i by half if either of the two conditions are true. However, the claim still holds. Therefore, i is
always at least (kAx (t+1) � bkpp � kAx ? � bkpp)/16p.

We start with a solution x (0) that minimizes the `2 norm. Therefore, the following holds,

kAx (0) � bkpp kAx ? � bkppm(p�2)/2.

The value of i is the minimum at termination. Therefore, it is sufficient to prove the above bound for
the termination condition. Our condition gives us the following at termination (the left inequality
holds because otherwise, we would have terminated in the previous iteration).

i � "

16p(1 + ")
kAx � bkpp � i

2
.

This implies,

i � "

16p(1 + ")
kAx ? � bkpp � "

16p(1 + ")
kAx (0) � bkppm�(p�2)/2.

We next prove the second claim. Initially our solution satisfies Cx (0) = d . Assuming the condition
holds at iteration t, we show it for t + 1. At every iteration we solve for e� under the constraint
C e� = 0. Our update rule, x (t+1) = x (t) � ↵e� gives us,

Cx (t+1) = Cx (t) � ↵C e� = d � ↵ · 0 = d .

18

B.4 Proof of Lemma 3.3

Our approximation depends on the quantity ↵0 which is defined in the algorithm. This depends on
the value of k, the ratio of the p-norm term to the square term. Therefore, in order to bound the
approximation, we first give a bound on k.

Lemma B.6. Let e� the optimum of (4) and let k =
pp

���Ae�
���
p

p

2p2 e�>A>(R+sI)Ae�
. If the optimum of (4) is

at most �i/p2, then k is at most (32pm)(p�2)/2 for � = 16p. Let ↵0 = min
n

1
16� ,

1
(16�k)1/(p�1)

o
.

Then ↵0 � ⌦(p�1/2m� (p�2)
2(p�1)) when p m.

Proof. Since, sI � R + sI ,
���Ae�

���
2

2
= e�>A>Ae� 1

s
e�>A>(R + sI)Ae�

and,
���Ae�

���
p

p

���Ae�

���
p

2
 1

s

⇣
e�>A>Ae�

⌘(p�2)/2 e�>A>(R + sI)Ae�.

We also have, e�>A>Ae� 2�
p2 m(p�2)/pi2/p. Combining these,

pp
���Ae�

���
p

p

2p2 e�>A>(R + sI)Ae�
 pp

2p2
2m(p�2)/p

i(p�2)/p

✓
2�

p2
m(p�2)/pi2/p

◆(p�2)/2

 (4
p
2)p�2p(p�2)/2m(p�2)/pm(p�2)2/2p

= (32pm)(p�2)/2

We can now find a bound on ↵0.

↵0 � min

8
<

:⌦

✓
1

p

◆
,⌦

1

p1/(p�1)(pm)(p�2)/2(p�1)

!9=

;

� min

(
⌦

✓
1

p

◆
,⌦

✓
1

p1/2m(p�2)/2(p�1)

◆)

� ⌦

✓
1

p1/2m(p�2)/2(p�1)

◆
, assuming p m.

Lemma 3.3. (Approximation). Let R, g , s,↵ be as defined in lines (5), (6), (7) and (9) of Algorithm
1. Let ↵0 be as defined in line (4) of Algorithm 2 and e� be the solution of the following program,

argmin
�

�>A>(R + sI)A� s.t. g>A� = i/2,C� = 0. (4)

If e�>A>(R+sI)Ae� �i/p2 and �(↵0·e�) � ↵0i
4 , then ↵·e� is an O

⇣
p1.5m

p�2
2(p�1)

⌘
- approximate

solution to the residual problem.

Proof. In the algorithm we choose ↵ such that given e�, ↵ = argmin�kA(x �� e�)�bkpp. From our
assumption, we also know that �(↵0

e�) � ↵0
4 i. Now, since the residual function is a convex function

19

with value zero at the zero vector, we know that �(e�/�) 1
��(

e�) (for our value of � = 16p).

�(↵e�) � ��(↵e�/�)

� kAx � bkpp � kA(x � ↵e�)� bkpp
� kAx � bkpp � kA(x � ↵0

e�)� bkpp
� �(↵0 · e�)

� ↵0

4
i

� ↵0

4�
OPT.

The last inequality follows form the fact that the optimum of the residual problem is at most �i. This
is because, Lemma 3.4 shows that, (kAx (t) � bkpp � kAx ? � bkpp)/16p < i. Now from Lemma
B.2 we can conclude that the residual problem has optimum at most �i. Since we have from our
assumption that the objective of (4) is at most �i/p2, from Lemma B.6, we can bound the factor
O(�/↵0) O(p1+

p�2
2(p�1)m

p�2
2(p�1)) O(p1.5m

p�2
2(p�1)).

B.5 Proof of Lemma 3.5

Lemma 3.5. (Termination). Let i be such that (kAx (t)�bkpp�kAx ?� bkpp)/16p 2 (i/2, i]. Then,

i "
16p(1+")kAx (t) � bkpp) kAx (t) � bkpp (1 + ")OPT.

and,
kAx (t) � bkpp (1 + ")OPT) i 2 "

16p(1+")kAx (t) � bkpp.

Proof. We first show the forward implication. From the assumptions, we have,
���Ax (t) � b

���
p

p
�OPT

16p
 i "

16p(1 + ")

���Ax (t) � b
���
p

p

)
���Ax (t) � b

���
p

p

1

1 + "
 OPT

)
���Ax (t) � b

���
p

p
 (1 + ")OPT.

For the other direction we have, ���Ax (t) � b
���
p

p

1 + "
 OPT.

Thus,

i 2

���Ax (t) � b
���
p

p
�OPT

16p
 2

���Ax (t) � b
���
p

p

16p

✓
1� 1

1 + "

◆
 2"

1 + "

���Ax (t) � b
���
p

p

16p
.

Appendix C Converting `p-Laplacian Minimization to Regression Form

Define the following terms:

• n denote the number of vertices.
• l denote the number of labels.
• B denote the edge-vertex adjacency matrix.

20

• g denote the vector of labels for the l labelled vertices.
• W denote the diagonal matrix with weights of the edges.

Set A = W 1/pB and b = �B [:, n : n+ l]g . Now kAx � bkpp is equal to the `p laplacian and we
can use our IRLS algorithm to find the x that minimizes this.

Appendix D Solving `2 Problems under Subspace Constraints

D.1 Finding the Initial Solution

We want to solve:

min
x

kAx � bk22
Cx = d .

Using Lagrangian duality and noting that strong duality holds, we can write the above as,

L(x , v) =min
x

max
v

(Ax � b)>(Ax � b) + v>(d �Cx)

=max
v

min
x

(Ax � b)>(Ax � b) + v>(d �Cx).

We first find x ? that minimizes the above objective by setting the gradient with respect to x to 0. We
thus have,

x ? = (A>A)�1

2A>b +C>v

2

!
.

Using this value of x we arrive at the following dual program.

L(v) = max
v

�1

4
v>C (A>A)�1C>v�b>A(A>A)�1A>b�v>C (A>A)�1A>b+b>b+v>d ,

which is optimized at,

v? = 2
⇣
C (A>A)�1C>

⌘�1 ⇣
d �C (A>A)�1A>b

⌘
.

Strong duality also implies that L(x , v?) is optimized at x ?, which gives us,

x ? = (A>A)�1

✓
A>b +C>

⇣
C (A>A)�1C>

⌘�1 ⇣
d �C (A>A)�1A>b

⌘◆
.

D.2 Solving (4)

At every iteration of the algorithm, we want to solve the following problem,

min
�

�>A>(R + sI)A�

g>A� = i/2

C� = 0.

The constraints can be combined and rewritten as, C 0� = d 0 where,

C 0 =

C

g>A

�
, d 0 =

0
i/2

�
.

Let R0 = R + sI . We now want to solve,

min
�

kR01/2A�k22

C 0� = d 0.

Using a procedure similar as in the previous section, we get,

�? = (A>R0A)�1C 0>
⇣
C 0(A>R0A)�1C 0>

⌘�1
d 0

21

