
8 Supplementary Material

8.1 Proof of Lemma 1

Proof. Recall the definition of F (y) =
∫
z∈Z F̃ (y; z)p(z;y)dz. The first order differential can be

computed by

∇F (y) =

∫
z∈Z

p(z;y)∇F̃ (y; z) + F̃ (y; z)∇p(z;y)dz

=

∫
z∈Z

p(z;y)
[
∇F̃ (y; z) + F̃ (y; z)∇ log p(z;y)

]
dz,

(24)

where we use ∇ log p(z;y) = ∇p(z;y)
p(z;y) in the second equality. We now compute the second order

differential by

∇2F (y) =

∫
z∈Z

[
∇F̃ (y; z) + F̃ (y; z)∇ log p(z;y)

]
[∇p(z;y)]>dz

+

∫
z∈Z

p(z;y)
[
∇2F̃ (y; z) + [∇ log p(z;y)][∇F̃ (y; z)]> + F̃ (y; z)∇2 log p(z;y)

]
dz

=

∫
z∈Z

p(z;y)
[
∇F̃ (y; z) + F̃ (y; z)∇ log p(z;y)

]
[∇ log p(z;y)]>dz

+

∫
z∈Z

p(z;y)
[
∇2F̃ (y; z) + [∇ log p(z;y)][∇F̃ (y; z)]> + F̃ (y; z)∇2 log p(z;y)

]
dz,

where again we use ∇ log p(z;y) = ∇p(z;y)
p(z;y) in the second equality. From such derivation, we have

the result.

8.2 Proof of Lemma 2

Before we give the proof of Lemma 2, we first present a lemma which bounds the second moment of
the spectral norm of the Hessian estimator ∇̃2F (y; z) for any y ∈ C.

Lemma 3. Recall the definition of the Hessian estimator ∇̃2F (y; z) in (11). Under Assumption 4.2,
4.5, 4.6, we bound for any y ∈ C

Ez∼p(z;y)‖∇̃2F (y; z)‖2 ≤ 4B2G4 + 16G4 + 4L2 + 4B2L2 def
= L̄2. (25)

Lemma 3. From the definition of the Hessian estimator ∇̃2F (y; z) (see (11)), we have

‖∇̃2F (y; z)‖ ≤ B‖∇ log p(z;y)‖2 + 2G‖∇ log p(z;y)‖+ L+B‖∇2 log p(z;y)‖, (26)

where we use Assumption 4.2 and 4.5 and the triangle inequality. Futher, taking expectation on both
sides and use Assumption 4.6 to bound

E‖∇̃2F (y; z)‖2 ≤ 4B2G4 + 16G4 + 4L2 + 4B2L2. (27)

Lemma 2. We prove via induction. When t = 0, use the unbiasedness of∇F̃ (x0; z) and Assumption
4.5, we bound

EM0
‖F (x0)−g0‖2 =

1

|M0|
E‖F (x0)−∇F̃ (x0; z)‖2 ≤ 1

|M0|
E‖∇F̃ (x0; z)‖2 ≤ G2

|M0|
≤ L̄2D2ε2.

Now assume that we have the result for t = t̄. When t = t̄+ 1, we have from the definition of gt

gt −∇F (xt) =
[
gt−1 −∇F (xt−1)

]
+
[
ξδ(x;M)− ∇̃2

t (x
t − xt−1)

]
+
[
∇̃2
t (x

t − xt−1)− (∇F (xt)−∇F (xt−1))
]
.
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Expand ‖∇F (xt)− gt‖2 to obtain

‖∇F (xt)− gt‖2 = ‖∇F (xt)−∇F (xt−1)− ∇̃2
t (x

t − xt−1)‖2 + ‖gt−1 −∇F (xt−1)‖2

+ 2〈∇F (xt)−∇F (xt−1)− ∇̃2
t (x

t − xt−1),gt−1 −∇F (xt−1)〉
+ 2〈∇̃2

t (x
t − xt−1)− ξδ(x;M),∇F (xt)−∇F (xt−1)− ∇̃2

t (x
t − xt−1)〉

+ 2〈∇̃2
t (x

t − xt−1)− ξδ(x;M),gt−1 −∇F (xt−1)〉
+ ‖∇̃2

t (x
t − xt−1)− ξδ(x;M)‖2. (28)

Using the unbiasedness of ∇̃2
t (x

t − xt−1), we have

E〈∇F (xt)−∇F (xt−1)− ∇̃2
t (x

t − xt−1),gt−1 −∇F (xt−1)〉 = 0. (29)

Additionally, from the unbiasedness of ∆̃t, we have

E‖∆̃t − (∇F (xt)−∇F (xt−1))‖2 ≤ ε2D2

|M|
E‖∇̃2F (x(a1); z1(a1))‖2 ≤ ε2L̄2D2

|M|
, (30)

where we use Lemma 3 in the last inequality. Taking expectation on both sides of (28), we have

E‖∇F (xt)− gt‖2

=E‖∇F (xt)−∇F (xt−1)− ∇̃2
t (x

t − xt−1)‖2 + E‖gt−1 −∇F (xt−1)‖2

+ 2E‖∇̃2
t (x

t − xt−1)− ξδ(x;M)‖‖∇F (xt)−∇F (xt−1)− ∇̃2
t (x

t − xt−1)‖
+ 2E‖∇̃2

t (x
t − xt−1)− ξδ(x;M)‖‖gt−1 −∇F (xt−1)‖+ E‖∇̃2

t (x
t − xt−1)− ξδ(x;M)‖2

≤E‖∇F (xt)−∇F (xt−1)− ∇̃2
t (x

t − xt−1)‖2 + E‖gt−1 −∇F (xt−1)‖2 + 4D4L2
2δ

2

+ 4D2L2δ‖∇F (xt)−∇F (xt−1)− ∇̃2
t (x

t − xt−1)‖+ 4D2L2δ‖gt−1 −∇F (xt−1)‖

≤ L̄
2D2ε2

|M|
+ (1 + ε(t− 1))L̄2D2ε2 + 4δ

(
D2L2L̄Dε√
|M|

+D2L2

√
(1 + ε(t− 1))L̄Dε+D4L2

2δ

)
By taking δ sufficiently small such that

4δ

(
D2L2L̄Dε√
|M|

+D2L2

√
(1 + ε(t− 1))L̄Dε+D4L2

2δ

)
≤ L̄2D2ε3/2, (31)

we have shown that the induction holds for t = t̄+ 1.

8.3 Proof of Theorem 1

Proof. From Lemma 3, we have

‖∇2F (x)‖2 ≤ ‖Ez∼p(z;x)∇̃2F (x; z)‖2 ≤ Ez∼p(z;x)‖∇̃2F (x; z)‖2 ≤ L̄2. (32)

From standard argument, F can be proved to be L̄-smooth. Let x∗ be the global maximizer within
the constraint set C. From the smoothness of F , we have

F (xt+1) ≥ F (xt) + 〈∇F (xt),xt+1 − xt〉 − L̄

2
‖xt+1 − xt‖2

= F (xt) +
1

T
〈∇F (xt),vt〉 − L̄

2T 2
‖vt‖2 (33)

= F (xt) +
1

T
〈gt,vt〉+

1

T
〈∇F (xt)− gt,vt〉 − L̄D2

2T 2

≥ F (xt) +
1

T
〈gt,x∗〉+

1

T
〈∇F (xt)− gt,vt〉 − L̄D2

2T 2
,

where we use the optimality and boundedness of vt in the last inequality. Take expectation on both
sides and use the unbiasedness of gt to yield

EF (xt+1) ≥ EF (xt) +
1

T
E〈∇F (xt),x∗〉+

1

T
E〈∇F (xt)− gt,vt〉 − L̄D2

2T 2
. (34)
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From the monotonicity of F and the concavity of F along positive directions, we have
〈∇F (xt),x∗〉 ≥ F (x∗)− F (xt). Additionally, using the Young’s inequality, we write

EF (xt+1) ≥ EF (xt) +
1

T
E[F (x∗)− F (xt)]− 1

2L̄
E‖∇F (xt)− gt‖2 − L̄D2

T 2
.

Using Lemma 2, we have for all t ∈ {0, . . . , T − 1}

E‖∇F (xt)− gt‖2 ≤ 2L̄2D2ε2. (35)

Consequently, we have with T = 1
ε

EF (xt+1) ≥ EF (xt) + εE[F (x∗)− F (xt)]− 2L̄ε2D2,

which is equivalent to

E[F (x∗)− F (xt+1)] ≤ (1− ε)TE[F (x∗)− F (xt)]− 2L̄εD2.

In conclusion, we have
EF (xT ) ≥ (1− 1/e)E[F (x∗)]− 2L̄εD2.

8.4 Multilinear Extension as Non-oblivious Stochastic Optimization

We proceed to show that the problem in (22) is captured by (1). To do so, use Ber(b;m) with
b ∈ {0, 1} and m ∈ [0, 1] to denote the Bernoulli distribution with parameter m, i.e.

Ber(b;m) = mb(1−m)1−b.

Define the underlying distribution p(z, γ;x) as

p(z, γ;x) = p(γ)×
d∏
i=1

Ber(zi;xi), (36)

where p(γ) is defined in (20), zi is the ith entry of z, and xi is the ith entry of x. Let N(z) be a
subset of N such that i ∈ N(z) iff zi = 1. We then define the stochastic function F̃ (x; z, γ) as

F̃ (x; z, γ) = fγ(N(z)), (37)

where fγ is defined in (20). We emphasize that for a fixed z the stochastic function F̃ does not depend
on x and hence ∇F̃ (x; z) = 0. Considering the definition of the stochastic function F̃ (x; z, γ) in
(37), the multilinear extension function F in (22), and the probability distribution p(z, γ;x) in (36) it
can be verified that F is the expectation of the random F̃ (x; z, γ), and, therefore, the problem in (22)
can be written as (1).

At the first glance, it seems that we can apply the SCG++ method to maximize the multilinear
extension function F . However, the smoothness conditions required for the result in Theorem 1 do
not hold in the multilinear setting. To be more specific, following the result in Lemma 1, we can
derive an unbiased estimator for the second-order differential of (22) using

∇̃2F (y; z) = F̃ (y; z)
[
[∇ log p(z, γ;y)][∇ log p(z, γ;y)]> +∇2 log p(z, γ;y)

]
,

= fγ(N(z))

[
[

d∑
i=1

∇ log Ber(zi;xi)][
d∑
i=1

∇ log Ber(zi;xi)]> +

d∑
i=1

∇2 log Ber(zi;xi)

]
,

(38)

where we use ∇F̃ (x; z) = 0 in the first equality and use (36) and (37) in the second one. Further,
note that [∇ log Ber(zi;xi)]2 +∇2 log Ber(zi;xi) = 0 for all i ∈ [d] and hence, the above estimator
can be further simplified to

∇̃2F (y; z, γ) = fγ(N(z))

d∑
i,j=1

1i 6=j [∇ log Ber(zi;xi)][∇ log Ber(zj ;xj)]>. (39)

Despite the simple form of (39), the smoothness property in Assumption 4.6 is absent since every
entry in the matrix ∇̃2F (y; z, γ) can have unbounded second-order moment when xi → 0 or xi → 1.
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Algorithm 2 (SCG++ ) for Multilinear Extension

Input: Minibatch size |M0| and |M|, and total number of rounds T
1: Initialize x0 = 0;
2: for t = 1 to T do
3: if t = 1 then
4: Sample a minibatchM0 of (γ, z) according to p(z, γ;x0) and compute g0 using (41);
5: else
6: Compute the Hessian approximation ∇̃2

M = 1
|M|

∑|M|
k=1 ∇̃2

k corresponding toM according
to (23);

7: Construct ∆̃t based on (13);
8: Update the stochastic gradient approximation gt := gt−1 + ∆̃t;
9: end if

10: Compute the ascent direction vt := argmaxv∈C{v>gt};
11: Update the variable xt+1 := xt + 1/T · vt;
12: end for

8.5 Detailed Implementation of SCG++ for Multilinear Extension

While we briefly mentioned the Hessian estimator ∇̃2
k in (23). In this section, we describe SCG++ for

the Multilinear Extension problem (21) in Algorithm 2. In particular, we specify the gradient
construction for x0 use the fact that

[∇F (x)]i = F (x;xi ← 1)− F (x;xi ← 0), (40)

for the multilinear extension F [22]. Since both terms in (40) are expectation, we can directly sample
a mini-batchM0 of (γ, z) pair from (40) to obtain an unbiased estimator of∇F (x) by

[g0]i
def
=

1

|M0|

|M0|∑
k=1

fγk(N(zk) ∪ {i})− fγk(N(zk) \ {i}). (41)

8.6 Multilinear extension Hessian

In the following lemma, we first study the structure of the Hessian of the objective function for the
problem in (22).
Lemma 4. [6] Recall the definition of F in (22) as the multilinear extension of the set function f
defined in (20). Then, for i = j we have [∇2F (y)]i,j = 0, and for i 6= j we have

[∇2F (y)]i,j =F (y;yi ← 1,yj ← 1)− F (y;yi ← 1,yj ← 0)

− F (y;yi ← 0,yj ← 1) + F (y;yi ← 0,yj ← 0), (42)

where the vector y;yi ← ci,yj ← cj is defined as a vector that the ith and jth entries of y to ci
and cj , respectively.

Proof. First note that

∇xi logBer(zi;xi) =
zi
xi
− 1− zi

1− xi
. (43)

We use z\i,j to denote the random vector z excluding the ith and jth entries, and denote z; zi ←
ci, zj ← cj as the random vector obtained by setting the ith and jth entries of z to corresponding
constants ci and cj . Compute Ez∼p(z;x)[∇̃2F (y; z, γ)]i,j using (39)

Ez∼p(z,γ;x)[∇̃2F (y; z, γ)]i,j = Ez∼p(z;x)

[
f(N(z))[∇xi logBer(zi;xi)][∇xj logBer(zj ;xj)]

]
=

∑
ci,cj∈{0,1}2

Ez\i,jf(N(z; zi ← ci, zj ← cj))(−1)ci(−1)cj

where in the first equality we use Eγfγ = f and the second one uses

xcii · (1− xi)
1−ci · [ ci

xi
− 1− ci

1− xi
] = −(−1)ci . (44)
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We discuss in detail the configuration of ci = cj = 1. The other three configurations can be obtained
similarly.

Ez\i,jf(N(z; zi ← 1, zj ← 1)) = F (y;yi ← 1,yj ← 1), (45)

which recovers the first term in (42).

8.7 Proof of Theorem 2

Under bounded marginal value assumption in Theorem 2, the ‖ · ‖2,∞ norm of the Hessian estimator
∇̃2
k has bounded second-order moment:

E‖∇̃2
k‖22,∞ = E(max

i∈[d]
‖∇̃2

k(:, i)‖2) ≤ 4d · EγD2
γ = 4d ·D2

f .

To prove the claim in Theorem 2 we first prove the following lemma. The following lemma exploits
the sparsity of vt and the above bound to give a tighter variance bound on gt with an explicit
dependence on the problem dimension d.

Lemma 5. Recall the constructions of the gradient estimator (41) and the Hessian estimator (23).
In the multilinear extension problem (21), under the bounded marginal value assumption in Theorem
2, we have the following variance bound

E‖gt −∇F (xt)‖2 ≤ 4r2d · ε
|M|

D2
f +

dD2
f

|M0|
. (46)

Proof. For k = 0, we bound

EM0
‖g0 −∇F (x0)‖2 ≤ 1

|M0|

d∑
i=1

D2
f =

dD2
f

|M0|
. (47)

Let ∇̃2
1 be one of the i.i.d. summands in ∇̃2

t .

E‖gt −∇F (xt)‖2

= E‖∆̃t + gt−1 −∇F (xt)‖2

= E‖∆̃t − (∇F (xt)−∇F (xt−1))‖2 + E‖gt−1 −∇F (xt−1)‖2

=
1

|M|
E‖∇̃2

1[xt − xt−1]− (∇F (xt)−∇F (xt−1))‖2 + E‖gt−1 −∇F (xt−1)‖2

≤ 1

|M|
E‖∇̃2

1[xt − xt−1]‖2 + E‖gt−1 −∇F (xt−1)‖2

Observe that xt+1 − xt = εvt which has r ε entries and d− r 0 entries and therefore

E‖gt −∇F (xt)‖2 ≤ r2ε2

|M|
E‖∇̃2

1‖22,∞ + E‖gt−1 −∇F (xt−1)‖2

≤ 4r2dε2

|M|
D2
f + E‖gt−1 −∇F (xt−1)‖2.

Repeat the above recursion t ≤ 1
ε times, we obtain

E‖gt −∇F (xt)‖2 ≤ 4r2d · t · ε2

|M|
D2
f +

dD2
f

|M0|
≤ 4r2d · ε
|M|

D2
f +

dD2
f

|M0|
(48)
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Proof. (Proof of Theorem 2) From calculus, we know that

|F (xt+1)− F (xt)− 〈∇F (xt),xt+1 − xt〉|

=
1

2

∫ 1

0

|〈∇2F (x(a))(xt+1 − xt), (xt+1 − xt)〉|da

≤1

2

∫ 1

0

‖∇2F (x(a))(xt+1 − xt)‖ · ‖xt+1 − xt‖da

(i)

≤ 1

2

∫ 1

0

√
r · ‖∇2F (x(a))‖22,∞ · ‖xt+1 − xt‖2da

≤1

2

√
rdD2

f · ‖x
t+1 − xt‖2,

(49)

where x(a) = axt + (1 − a)xt−1 with 0 ≤ a ≤ 1 and we use xt+1 − xt = 1/T · vt which has r
non-zero entries and d− r 0 entries in inequality (i). We thus have the following bound on F (xk+1):

F (xt+1) ≥ F (xt) + 〈∇F (xt),xt+1 − xt〉 −
√
rdD2

f‖x
t+1 − xt‖2

= F (xt) +
1

T
〈∇F (xt)− gt,vt〉+

1

T
〈gt,vt〉 −

√
rdD2

f

T 2
‖vt‖2

≥ F (xt) +
1

T
〈∇F (xt)− gt,vt〉+

1

T
〈gt,x∗〉 −

√
rdD2

f

T 2
‖vt‖2

Take expectation on both sides and use the unbiasedness of gt to yield

EF (xt+1) ≥ EF (xt) +
1

T
E〈∇F (xt),x∗〉+

1

T
E〈∇F (xt)− gt,vt〉 −

√
r3dD2

f

T 2
. (50)

From the monotonicity of F and the concavity of F along positive directions, we have
〈∇F (xt),x∗〉 ≥ F (x∗)− F (xt). Additionally, using the Young’s inequality, we write

EF (xt+1) ≥ EF (xt) +
1

T
E[F (x∗)− F (xt)]− 1

2
√
rdD2

f

E‖∇F (xt)− gt‖2 −
2
√
r3dD2

f

T 2
.

Recall the variance bound (48)

E‖gt −∇F (xt)‖2 ≤ 4r2d · ε
|M|

D2
f +

dD2
f

|M0|
.

By choosing |M| = 2
ε and |M0| = 1

2r2ε2 , we have

E‖∇F (xt)− gt‖2 ≤ 4r2d · ε2D2
f (51)

and consequently by setting T = 1
ε we have

EF (xt+1) ≥ EF (xt) + εE[F (x∗)− F (xt)]− 6
√
r3dD2

f · ε
2,

which can be translated to

E[F (x∗)− F (x
1
ε )] ≤ (1− ε) 1

εE[F (x∗)− F (x0)]− 6
√
r3d ·Df · ε.

In conclusion, we have

EF (x
1
ε ) ≥ (1− 1/e)E[F (x∗)]− 6

√
r3d ·Df · ε.
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8.8 Proof of Theorem 3

Consider the classical problem of maximizing a monotone submodular function subject to a cardinality
constraint, max{f(S) : |S| ≤ k}. It is known that there exists a monotone submodular set function,
denoted by f0, for which obtaining a (1− 1/e+ ε)OPT solution requires exponentially many, namely
exp(α(ε)k) for some constant α(ε) > 0, function value queries no matter what algorithm is used
[24]. To fix the notation, we assume that f0 is defined over the ground set [n] , {1, · · · , n} and let

OPT(f0, k) = max
S:|S|≤k

f0(S). (52)

For δ ∈ [0, 1/2] consider the submodular set function gδ : 2[n+2] → R defined as follows:

gδ(S) =

 δ if n+ 1 ∈ S,
δ
2 if n+ 1 /∈ S & n+ 2 ∈ S,
0 o . w.

Note that the function gδ can be defined as an expectation in the following way:

gδ(S) = E [A1{n+ 1 ∈ S}+B1{n+ 1 /∈ S & n+ 2 ∈ S}] , (53)

where A,B are independent binary random variables given by A = Bernoulli(δ), B =
Bernoulli(δ/2).

Furthermore, we define the submodular function fδ : 2[n+2] → R as

fδ(S) = min {OPT(f0, k), f0(S ∩ [n])}+ OPT(f0, k)gδ(S). (54)

We consider the following maximization problem with the (k + 1)-cardinality constraint:

OPT(fδ, k + 1) = max
S:|S|≤k+1

fδ(S). (55)

Note that
OPT(fδ, k + 1) = (1 + δ)OPT(f, k). (56)

Finally, we consider the following stochastic oracle that, when queried for the function value fδ(S),
returns the following unbiased estimate: The oracle first computes an unbiased estimate of gδ(S by
drawing independent samples of variables A and B given in (53), and plugs-in the resulting value
into (54) to obtain an unbiased sample for fδ(S).

Now, consider an algorithm which aims to maximize fδ subject to the (k + 1)-cardinality constraint
(i.e. Problem (55)) by assuming only access to the stochastic oracle mentioned above. Note here that
the algorithm does not have any prior information about the structure of the function fδ , and the only
information that it obtains is through the stochastic oracle. In particular, the algorithm does not know
a priori gδ({n+ 1}) is larger than gδ({n+ 2}).

In order to obtain a (1− 1/e− δ
4 )-optimal solution for this problem, the algorithm has to either find

a (1− 1/e+ δ
4 )-optimal solution to Problem (52), or it has to know that gδ({n+ 1}) is larger than

gδ({n+ 2}). The former case needs at least expα(δ/8)k queries from the oracle, and the latter case
needs at least O(1/δ2) oracle queries since it is equivalent to the problem of distinguishing between
two Bernoulli random variables A = Bernoulli(δ), and B = Bernoulli(δ/2)–see Lemma 3 in [1].

18


