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1 Algorithm

Algorithm 1 Gradient Descent-based Joint Estimation Procedure
Input: x ∈ RN×p; riyi for ∀i; A ∈ RN×N

1: Initialize π(0)
i , θ

(0)
r , θ

(0,0)
y ; e = 0

2: while
∑
ri=0 |y

(e)
i − y

(e−1)
i |/

∑
i 1(ri = 0) > ε do

3: e← e+ 1; w0, w1 = 0; L1(θ
best
y |θ(e−1)r ), L̃2(θ

best
r |θ(e)y ) =∞

4: for i← 0 to (M0 − 1) do
5: θ

(e,i+1)
y ← θ

(e,i)
y − γ0∇θyL1(θy|θ(e−1)r )

6: if L1(θ
(e,i+1)
y |θ(e−1)r ) < L1(θ

best
y |θ(e−1)r ) then

7: θbesty ← θ
(e,i+1)
y

8: else
9: w0 ← w0 + 1

10: if w0 > P0 then
11: break
12: end if
13: end if
14: end for
15: θey ← θ

(e,i)
y

16: for j ← 0 to (M1 − 1) do
17: θ

(e,j+1)
r ← θ

(e,j)
r − γ1∇θrL̃2(θr|θ(e)y )

18: if L̃2(θ
(e,j+1)
r |θ(e)y ) < L̃2(θ

best
r |θ(e)y ) then

19: θbestr ← θ
(e,j+1)
r

20: else
21: w1 ← w1 + 1
22: if w1 > P1 then
23: break
24: end if
25: end if
26: end for
27: θer ← θ

(e,j)
r

28: end while
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2 Theorem Proofs

2.1 Lemma and proof

The proof of Theorem 3.1 is based on the following lemma. Let supp(·) be the support of a domain
space.

Lemma 2.1. Under models (2), (3), or (2), (5) (main text), suppose that there exists an instrumental
variable ui in each xi = (zTi , u

T
i )
T such that f(yi|GA(x)i) depends on ui, whereas P (ri =

1|yi, h(xi)) does not depend on ui. We let x = [z,u]. Our GNM model is identifiable on the PEQ
space under the following sufficient Conditions (C1)-(C3):

(C1) there exists a set S ⊂ supp(Y, z), such that P (ri = 1|yi, h(zi); θr) 6= 0 for each i and all
(Y, z) ∈ S and θr ∈ D(θr).
(C2) Denote θr1 = (αr1, γ1, φ1, θh1)

T and θr2 = (αr2, γ2, φ2, θh2)
T . P (ri = 1|yi, h(zi); θr1) =

P (ri = 1|yi, h(zi); θr2) for each i and all (Y, z) ∈ S ⇐⇒ γT1 h(zi; θh1) = γT2 h(zi; θh2) holds for
all z and each zi.

(C3) Denote θy1 = (α1, β1, θg1)
T and θy2 = (α2, β2, θg2)

T . We let x1 = [z,u1] and x2 = [z,u2].
If f(yi|GA(x1)i; θy1)f(yi|GA(x2)i; θy2) = f(yi|GA(x1)i; θy2)f(yi|GA(x2)i; θy1) holds for each i
and all (u1,u2) and (Y, z) ∈ S, then GA(x; θg1)β1 = GA(x; θg2)β2 holds.

Proof: Suppose that the following two equations hold for all (Y, z) ∈ S and (u1,u2): u1 6= u2, then
for each i we have

P (ri = 1|yi, h(zi); θr1)f(yi|GA(x1)i; θy1) = P (ri = 1|yi, h(zi); θr2)f(yi|GA(x1)i; θy2)

P (ri = 1|yi, h(zi); θr2)f(yi|GA(x2)i; θy2) = P (ri = 1|yi, h(zi); θr1)f(yi|GA(x2)i; θy1) (1)

Multiplying the two equations gives

P (ri = 1|yi, h(zi); θr1)f(yi|GA(x1)i; θy1)P (ri = 1|yi, h(zi); θr2)f(yi|GA(x2)i; θy2)

= P (ri = 1|yi, h(zi); θr2)f(yi|GA(x1)i; θy2)P (ri = 1|yi, h(zi); θr1)f(yi|GA(x2)i; θy1)
Together with condition (C1), it follows that

f(yi|GA(x1)i; θy1)f(yi|GA(x2)i; θy2) = f(yi|GA(x1)i; θy2)f(yi|GA(x2)i; θy1)

holds for each i and all (Y, z) ∈ S. Then from condition (C3), we have GA(x; θg1)β1 =
GA(x; θg2)β2 for all x, which implies f(yi|GA(x1)i; θy1) = f(yi|GA(x1)i; θy2) from (3) (main
text). Then, we obtain from (1) that

P (ri = 1|yi, h(zi); θr1) = P (ri = 1|yi, h(zi); θr2)

for each i and all (Y, z) ∈ S. Together with condition (C2), we have γT1 h(xi; θh1) = γT2 h(xi; θh2)
holds for all z and each zi. and the identifiability on the PEQ space is obtained.

2.2 Proof of Theorem 3.1

Part (i):

Under models (2) and (5) (main text), we prove the identifiability for the binary case when y ∈
{1,−1}, while all the derivations can be extended to the more general case. We need to show that for
each i and all (yi, x) ∈ S,

1

1 + exp{−αr1 − γT1 h(xi; θh1)− φ1yi}
1

1 + exp{−yi(α1 + βT1 GA(x; θg1)i)}

=
1

1 + exp{−αr2 − γT2 h(xi; θh2)− φ2yi}
1

1 + exp{−yi(α2 + βT2 GA(x; θg2)i)}
(2)

is equivalent to

αr1 = αr2, γ1 = γ2, φ1 = φ2, α1 = α2, β1 = β2, θh1 = θh2, θg1 = θg2
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(2) can be rewritten as

e−{αr1+γ
T
1 h(xi;θh1)+φ1yi}+e−yi{α1+β

T
1 G A(x;θg1)i}+e−(α1yi+αr1)−φ1yi−γT

1 h(xi;θh1)−βT
1 G A(x;θg1)iyi

= e−{αr2+γ
T
2 h(xi;θh2)+φ2yi}+e−yi{α2+β

T
2 G A(x;θg2)i}+e−(α2yi+αr2)−φ2yi−γT

2 h(xi;θh2)−βT
2 G A(x;θg2)iyi

(3)
Since (3) holds for all (yi, x), and from Condition (A1), the only possible solution to (3) is

e−{αr1+γ
T
1 h(xi;θh1)+φ1yi} = e−{αr2+γ

T
2 h(xi;θh2)+φ2yi},

e−{α1+β
T
1 G A(x;θg1)i} = e−{α2+β

T
2 G A(x;θg2)i},

e−(α1+αr1)−φ1yi−γT
1 h(xi;θh1)−βT

1 G A(x;θg1)i = e−(α2+αr2)−φ2yi−γT
2 h(xi;θh2)−βT

2 G A(x;θg2)i

which requires

αr1 = αr2;φ1 = φ2;α1 = α2;β
T
1 GA(x; θg1)i = βT2 GA(x; θg2)i; γT1 h(xi; θh1) = γT2 h(xi; θh2),

which concludes the identifiability on the PEQ space.

Part (ii):

Under models (2) and (3) (main text), we prove the identifiability of the parameter when the responses
y are continuous. By using Lemma (2.1), Condition (C1) holds due to (2) (main text). Condition (C2)
holds due to Condition (A3) in Theorem 3.1. We next give the proof of Condition (C3). We here give
the proof of q = 1 which can be extended to the general case.

If f(yi|GA(x1)i; θy1)f(yi|GA(x2)i; θy2) = f(yi|GA(x1)i; θy2)f(yi|GA(x2)i; θy1) holds for each i
and all (u1,u2) and (y, z) ∈ S, from (3) (main text), the following equation holds

β2
1 [(G

A([z,u1]; θg1))
2 − (GA([z,u2]; θg1))

2]

− 2(y − α1)β1[G
A([z,u1]; θg1)− GA([z,u2]; θg1)]

= β2
2 [(G

A([z,u1]; θg2))
2 − (GA([z,u2]; θg2))

2]

− 2(y − α2)β2[G
A([z,u1]; θg2)− GA([z,u2]; θg2)]

for all y. Together with Condition (A2), we have

β1[G
A([z,u1]; θg1)− GA([z,u2]; θg1)] = β2[G

A([z,u1]; θg2)− GA([z,u2]; θg2)]

and

β1[G
A([z,u1]; θg1) + GA([z,u2]; θg1)] = β2[G

A([z,u1]; θg2) + GA([z,u2]; θg2)].

It follows that
β1G

A([z,u1]; θg1) = β2G
A([z,u1]; θg2)

and Condition (C3) holds, which concludes the proof.

2.3 Proof of Theorem 3.2

To prove the theorem, we use the law of iterated conditional expectation as follows:

Eθy{
∑
i

ri
π(yi, h(xi))

l(yi,G
A(x)i)} = Eθy [E{

∑
i

ri
π(yi, h(xi))

l(yi,G
A(x)i)|Y, x}]

= Eθy{
∑
i

E(ri|Y, x)
π(yi, h(xi))

l(yi,G
A(x)i)}

= Eθy{
π(yi, h(xi))

π(yi, h(xi))
l(yi,G

A(x)i)} (4)

= Eθy{l(yi,GA(x)i)},

where (4) holds because

E(ri|Y, x) = E(ri|yi, xi) = E(ri|yi, h(xi)) = P (ri = 1|yi, h(xi)) = π(yi, h(xi))
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3 Experiments on ’Citeseer’ by comparing GCN and GAT based GNM

We add more experiments on some other dataset, such as ’Citeseer’, and explore the finite sample
performance of our model by using other state-of-art architectures, such as GAT. Tables 1 and 2
summarize their performance statistics for all model settings on the ’Cora’ and ’Citeseer’ datasets,
respectively. Specifically, ’SM + GCN’ and ’SM + GAT’ represent the classic 2-layer GCN and GAT
models, respectively, whereas ’GNM + GCN’ and ’GNM + GAT’ are our models by using either
GCN or GAT. According to Table 1, we find that ’GNM + GAT’ performs slightly better than ’GNM
+ GCN’ for both λ settings on ’Cora’ dataset. However, the improvement is not significant.

When it comes to the ’Citeseer’ dataset, our GNM model can improve the baseline performance by
up to 58.5% because of the increased sampling bias (bigger group proportion ratio λN0/N1 in the
whole population). Different from ’Cora’ dataset, ’GNM + GCN’ outperforms ’GNM + GAT’ in
this case and is especially good at handling the more biased setting (λ = 2). It may indicate that
’GNM + GCN’ is less sensitive to the data structure and selection of sampled nodes. Thus, ’GNM +
GCN’ setting may be preferred when either the missing mechanism or the global distribution of y is
unknown.

Accuracy
(N0, N1) λ Method Mean SD

1 SM + GCN 0.8683 1.98e-2
GNM + GCN 0.8947 6.47e-3

SM + GAT 0.8771 1.51e-2
(1890, 818) GNM + GAT 0.8968 8.65e-3

2 SM + GCN 0.8052 3.26e-2
GNM + GCN 0.8648 2.54e-2

SM + GAT 0.8015 3.85e-2
GNM + GAT 0.8706 1.95e-2

Table 1: Prediction Accuracy for ’Cora’

Accuracy
(N0, N1) λ Method Mean SD

1 SM + GCN 0.8537 2.47e-2
GNM + GCN 0.8981 7.95e-3

SM + GAT 0.8076 7.98e-2
(2626,701) GNM + GAT 0.8785 2.97e-2

2 SM + GCN 0.5295 1.24e-1
GNM + GCN 0.8325 7.09e-2

SM + GAT 0.5898 1.42e-2
GNM + GAT 0.8090 6.45e-2

Table 2: Prediction Accuracy for ’Citeseer’
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