
Supplement to “Bootstrapping Upper Confidence Bound”
In this supplement, we provide linear regret result in Section A, major proofs in Sections B and C.
Some implementation details are in Sections D and E. In the end, we provide several supporting
lemmas in Section F.

A Linear Regret

Following the augments in [42, 27], in this section, we show that UCB with a naive bootstrapped
confidence bound will result in linear regret in two-armed Bernoulli bandit. At round t+ 1, the UCB
index without the correction term for arm k can be written as

UCBk(t) = ȳnk,t + qα(1−δ)(ynk,t − ȳnk,t).
Consider the case where the first observation on the optimal arm is 0 but on the sub-optimal arm is 1.
A key fact is that if the rewards are all zero, no matter how you bootstrap the data, the bootstrapped
quantile is always zero. This will make the algorithm stuck into the sub-optimal arm.

Theorem A.1. Consider a stochastic 2-arm Bernoulli bandit with mean parameter µ1, µ2. The
expected regret of the naive bootstrapped UCB can be lower bounded by

R(T ) ≥ ∆2

(
(1− µ1)µ2(T − 2) + 1

)
. (A.1)

Proof. Without loss of generality, we assume arm 1 is the optimal arm. Suppose at round t = 1, 2,
we pull each arm once such that y1 is with arm 1 and y2 is with arm 2. Then we define a bad event as
follows:

E = {y1 = 0, y2 = 1}. (A.2)
We know that under event E , the decision-maker will never pull arm 1 any more starting from
round t = 3. This is because if the rewards are all zero, no matter how you bootstrap the data, the
bootstrapped quantile is always zero and then makes the decision-maker struck into the sub-optimal
arm. Finally, we can lower bound the cumulative regret by,

R(T ) = ∆2E
[ T∑
t=1

I{It = 2}
]

= ∆2E
[ T∑
t=3

I{It = 2}|E
]
P(E) + ∆2E

[ T∑
t=3

I{It = 2}|Ec
]
P(Ec) + ∆2

≥ ∆2E
[ T∑
t=3

I{It = 2}|E
]
P(E) + ∆2

= ∆2TP(y1 = 0)P(y2 = 1) + ∆2

= ∆2

(
(1− µ1)µ2(T − 2) + 1

)
.

This ends the proof. �

We further demonstrate this phenomenon empirically for both Bernoulli bandit and Gaussian bandit
in Figure 6.

B Proofs of Main Theorems

In this section, we provide detailed proofs of Theorems 2.2, 3.1 and 3.2.

B.1 Proof of Theorem 2.2

The proof borrows the analysis from [18] but with refined analysis and sharp large deviation bound
for binomial random variables.
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Figure 6: Linear regret of naive bootstrapped UCB on Bernoulli bandit and Gaussian bandit. The
result is averaged over 200 realizations.

Step One. Recall that (2.4) can be seen as the multiplier bootstrapped quantile around its empirical
mean. We first takes advantage of the symmetry of each y around its mean by connecting the true
quantile of ȳn−µ and the multiplier bootstrapped quantile around the true mean. Define the multiplier
bootstrapped quantile around the true mean as

qα(yn − µ) := inf
{
x ∈ R|Pw

( 1

n

n∑
i=1

wi(yi − µ) > x
)
≤ α

}
. (B.1)

Since the probability operator Pw is conditionally on yn, all the randomness of qα(yn − µ) come
from yn. By the symmetric assumption of the reward, the distribution of yi − µ is exactly the same
as the distribution of wi(yi − µ) for Rademacher r.v. {wi}. Then we have

P
(
ȳn − µ > qα(yn − µ)

)
= Ew

[
Py

( 1

n

n∑
i=1

wi(yi − µ) > qα((yn − µ) ◦wn))
)]
, (B.2)

where ◦ is the Hadamard product. By Fubini’s theorem, we can interchange the probability operator
and expectation operator as follows

Ew

[
Py

( 1

n

n∑
i=1

wi(yi − µ) > qα((yn − µ) ◦wn)
)]

= Ey

[
Pw

( 1

n

n∑
i=1

wi(yi − µ) > qα(yn − µ)
)]
≤ α, (B.3)

where the first inequality is due to the fact that for any arbitrary sign reversal, qα((yn − µ) ◦wn) =
qα(yn − µ) based on the definition of qα and the last inequality is from the definition of quantitle.
Combining (B.2) and (B.3) together, we conclude that

P
(
ȳn − µ > qα(yn − µ)

)
≤ α. (B.4)

Step Two. We define a good event

E =
{
yn|qα(yn − µ) ≤ qα(1−δ)(yn − ȳn) +

√
2 log(2/αδ)

n
ϕ(yn)

}
. (B.5)
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Together with (B.4) and union event trick,

P
(
ȳn − µ > qα(1−δ)(yn − ȳn) +

√
2 log(2/αδ)

n
ϕ(yn)

)
= P

({
ȳn − µ > qα(1−δ)(yn − ȳn) +

√
2 log(2/αδ)

n
ϕ(yn)

}
∩
(
{yn ∈ E} ∪ {yn ∈ Ec}

))
= P

({
ȳn − µ > qα(1−δ)(yn − ȳn) +

√
2 log(2/αδ)

n
ϕ(yn)

}
∩ {yn ∈ E}

)
+P
({
ȳn − µ > qα(1−δ)(yn − ȳn) + (2 log(2/αδ)/n)1/2ϕ(yn)

}
∩ {yn ∈ Ec}

)
≤ P

(
ȳn − µ > qα(yn − µ)

)
+ P

(
yn ∈ Ec

)
≤ α+ P(yn ∈ Ec).

To bound P(yn ∈ Ec), we first prove the following claim:

Claim: Ec ⊂
{
yn|Pw

(
w̄n(ȳn − µ) >

√
2 log(2/αδ)

n
ϕ(yn)

)
≥ αδ

}
, (B.6)

where w̄n =
∑n
i=1 wi/n. To show this, we have by the definition of qα(yn − µ) in (B.1),

Pw

( 1

n

n∑
i=1

wi(yi − µ) > qα(yn − µ)
)

= α.

By some simple algebras, we have

1

n

n∑
i=1

wi(yi − µ) =
1

n

n∑
i=1

wi(yi − ȳn + ȳn − µ) =
1

n

n∑
i=1

wi(yi − ȳn) + w̄n(ȳn − µ). (B.7)

For any yn ∈ Ec,

α = Pw

( 1

n

n∑
i=1

wi(yi − µ) > qα(yn − µ)
)

≤ Pw

( 1

n

n∑
i=1

wi(yi − µ) > qα(1−δ)(yn − ȳn) +

√
2 log(2/αδ)

n
ϕ(yn)

)
(by the definition of Ec)

= Pw

( 1

n

n∑
i=1

wi(yi − ȳn) + w̄n(ȳn − µ) > qα(1−δ)(yn − ȳn) +

√
2 log(2/αδ)

n
ϕ(yn)

)
(by (B.7))

≤ Pw

( 1

n

n∑
i=1

wi(yi − ȳn) > qα(1−δ)(yn − ȳn)
)

+ Pw

(
w̄n(ȳn − µ) >

√
2 log(2/αδ)

n
ϕ(yn)

)
≤ α(1− δ) + Pw

(
w̄n(ȳn − µ) >

√
2 log(2/αδ)

n
ϕ(yn)

)
.

This proves the claim of (B.6).

Step Three. We start to bound the second term above as follows,

Pw

(
w̄n(ȳn − µ) >

√
2 log(2/αδ)

n
ϕ(yn)

)
(B.8)

≤ Pw

(
|w̄n(ȳn − µ)| >

√
2 log(2/αδ)

n
ϕ(yn)

)
≤ Pw

(
n|w̄n| >

√
2n log(2/αδ)

ϕ(yn)

|ȳn − µ|

)
, (B.9)

where the last inequality is actually conditional on the event {ȳn 6= µ} that holds with probability one.
Note that (wi + 1/2) ∼ Bernoulli(1/2) and thus

∑n
i=1(wi + 1)/2 ∼ Binomial(n, 1/2). Denote Xn
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is a Binomial(n, 1/2) random variable. Applying the sharp large deviation bound in Lemma 1 with
pi = 1/2, we have

PXn
(
Xn −

n

2
>
√

2n log(2/αδ)
ϕ(yn)

|ȳn − µ|

)
≤ 2 exp

(
− 2

ϕ(yn)2

(ȳn − µ)2
2n log(2/αδ)

1

n

)
= 2 exp

(
− 4 log(2/αδ)ϕ(yn)2

(ȳn − µ)2

)
. (B.10)

Putting (B.8) and (B.10) together,

Pw

(
w̄n(ȳn − µ) >

√
2 log(2/αδ)

n
ϕ(yn)

)
≤ 2 exp

(
− log(2/αδ)ϕ(yn)2

(ȳn − µ)2

)
.

From (B.6), it remains to bound

P
(
yn ∈ Ec

)
≤ Py

(
Pw

(
w̄n(ȳn − µ) >

√
2 log(2/αδ)

n
ϕ(yn)

)
≥ αδ

)
≤ Py

(
2 exp

(
− 4 log(2/αδ)ϕ(yn)2

(ȳn − µ)2

)
≥ αδ

)
= Py

(
|ȳn − µ| ≥ 2ϕ(yn)

)
.

This reaches

P
(
ȳn − µ > qα(1−δ)(yn − ȳn) +

√
2 log(2/αδ)

n
ϕ(yn)

)
≤ α+ Pyn

(
|ȳn − µ| ≥ ϕ(yn)

)
.(B.11)

Letting ϕ(yn) be a non-negative function such that

Py

(
|ȳn − µ| ≥ ϕ(yn)

)
≤ α,

we have

P
(
ȳn − µ > qα(1−δ)(yn − ȳn) +

√
2 log(2/αδ)

n
ϕ(yn)

)
≤ 2α.

Redefine ϕ(yn) = 2ϕ(yn) with a little bit abuse of notations. This ends our proof. �

B.2 Proof of Theorem 3.1

We start by an upper bound for the p-th moment of sum of sub-Weibull random variables with
bounded ψβ-norm. The proof of Lemma B.1 is deferred to Section C.

Lemma B.1. Suppose {yi}ni=1 are n independent sub-Weibull random variables satisfying ‖yi‖ψβ ≤
σ with β > 0. Then for all a = (a1, . . . , an) ∈ Rn and p ≥ 2, we have

(
E
∣∣∣ n∑
i=1

aiyi − E(

n∑
i=1

aiyi)
∣∣∣p) 1

p ≤
{
Cβσ

(√
p‖a‖2 + p1/β‖a‖∞

)
, if 0 < β < 1;

Cβσ
(√
p‖a‖2 + p1/β‖a‖β∗

)
, if β ≥ 1.

(B.12)

where 1/β∗ + 1/β = 1, Cβ are some absolute constants only depending on β.

Remark B.2. If 0 < β < 1, (B.12) is a combination of Theorem 6.2 in [43] and the fact that the
p-th moment of a Weibull variable with parameter β is of order p1/β . If β ≥ 1, (B.12) follows from a
combination of Corollaries 2.9 and 2.10 in [44]. Continuing with standard symmetrization arguments,
we reach the conclusion for general random variables. When β = 1 or 2, (B.12) coincides with
standard moment bounds for a sum of sub-Gaussian and sub-exponential random variables in [35].
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After we get the p-th moment bound in Lemma B.1, we can use Markov’s inequality to transfer it to a
high-probability as follows. For any t > 0, by Markov’s inequality,

P
(∣∣∣ n∑

i=1

aiyi − E
( n∑
i=1

aiyi

)∣∣∣ ≥ t) = P
(∣∣∣ n∑

i=1

aiyi − E
( n∑
i=1

aiyi

)∣∣∣p ≥ tp)

≤
E
∣∣∣∑n

i=1 aiyi − E
(∑n

i=1 aiyi

)∣∣∣p
tp

≤
Cpβσ

p
(√

p‖a‖2 + p1/β‖a‖∞
)p

tp
,

where the last inequality is from Lemma B.1. By setting t such that

exp(−p) = Cpβσ
p(
√
p‖a‖2 + p1/β‖a‖∞)p/tp,

we have for p ≥ 2, ∣∣∣ n∑
i=1

aiyi − E
( n∑
i=1

aiyi

)∣∣∣ ≤ eCβσ(√p‖a‖2 + p1/β‖a‖∞
)

holds with probability at least 1− exp(−p). Letting α = exp(−p), we have that for any 0 < α <
1/e2, ∣∣∣ n∑

i=1

aiyi − E
( n∑
i=1

aiyi

)∣∣∣ ≤ Cβσ(‖a‖2(logα−1)1/2 + ‖a‖∞(logα−1)1/β
)
,

holds with probability at least 1− α. This ends the proof. �

B.3 Proof of Theorem 3.2

We first prove a problem-dependent bound then a problem-independent bound.

Problem-Dependent Bound. Recall that at round t+ 1, the UCB index used in our algorithm is

UCBk(t) = ȳnk,t + hα(ynk,t),

where nk,t is the number of pulls until round t+ 1 for arm k and

hα(ynk,t) = qα/2
(
ynk,t − ȳnk,t

)
+

√
2 log(4/α)

nk,t
ϕ(ynk,t),

where

ϕ(ynk,t) = Cβσ
(√ log 1/α

nk,t
+

(log 2/α)1/β

nk,t

)
. (B.13)

From Theorem 3.1, for any fixed nk,t = s, we know that

P
(
ȳs − µk ≥ ϕ(ys)

)
≤ α.

From Theorem 2.2, for any fixed nk,t = s, we have

P
(
µk − ȳs > hα(ys)

)
≤ 2α, k ∈ [K]. (B.14)

The basic idea is to bound the expected number of pulls E(nk,t) for sub-optimal arms. To decouple
the randomness from the behavior of the UCB algorithm, we define a good event as follows,

Ek = {µ1 < min
t∈[T ]

UCB1(t)} ∩ {ȳbk + hα(ybk) < µ1}, k ∈ [K], (B.15)

where bk ∈ [T ] is a constant to be chosen later.

First, we want to prove the following claim: if event Ek happens, then nk,t ≤ bk. To show this, we
use a contradiction argument. If nk,t > bk, then arm k was pulled more than bk times over the first T
rounds, and so there must exist a round t ∈ [T ] such that nk,t = bk and It = k. This implies

UCBk(t) = ȳnk,t + hα(ynk,t) = ȳbk + hα(ybk).
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From the definition of Ek, we have

ȳbk + hα(ybk) < µ1 < min
t′∈[T ]

UCB1(t′) ≤ UCB1(t).

This results in a contradiction. Then we can decompose E[nk,t] with respect to the event Ek,

E[nk,t] = E[I(Ek)nk,t] + E[I(Eck)nk,t] ≤ bk + P(Eck)T. (B.16)

Second, we will derive an upper bound for P(Eck)T . By definition,

P(Eck) = P
(
{µ1 ≥ min

t∈[T ]
UCB1(t)} ∪ {ȳbk + hα(ybk) ≥ µ1}

)
≤ P

(
µ1 ≥ min

t∈[T ]
UCB1(t)

)
︸ ︷︷ ︸

I1

+P
(
ȳbk + hα(ybk) ≥ µ1

)
︸ ︷︷ ︸

I2

. (B.17)

To bound I1, we apply the union bound trick as follows,

{µ1 ≥ min
t∈[T ]

UCB1(t)} ⊂ {µ1 ≥ min
s∈[T ]

ȳs + hα(ys)}

= ∪s∈[T ]{µ1 ≥ ȳs + hα(ys)}.

By B.14, it implies

P
(
µ1 ≥ min

t∈[T ]
UCB1(t)

)
≤

T∑
s=1

P
(
µ1 ≥ ȳs + hα(ys)

)
≤ 2αT. (B.18)

To bound I2, the key step is to derive an sharp upper bound for threshold hα(ybk). Next lemma
presents an upper bound for the multiplier bootstrapped quantile which is the main part of hα(ybk).
The proof is deferred to Section C.2.

Lemma B.3. Suppose {yi − µ}ni=1 follows sub-Weibull distribution with ‖yi − µ‖ψβ ≤ σ and
{wi}ni=1 are i.i.d Rademacher random variables independent of yi. Then we have

P
( 1

n

n∑
i=1

(wi − w̄)(yi − µ) ≤ Cβσ
(√ log(1/α)

n
+

(log(1/α))1/β

n

))
≥ 1− α. (B.19)

By the definition of qα/2(ybk − ȳbk) in (2.4), we have

qα/2(ybk − ȳbk) ≤ Cβσ
(√ log(2/α)

bk
+

(log(2/α))1/β

bk

)
, (B.20)

with probability at least 1− α/2. Recall that√
2 log(4/α)

bk
ϕ(ybk) =

√
2 log(4/α)

bk

(√ log(1/α)

bk
+

(log(1/α))1/β

bk

)
. (B.21)

Overall, we have

hα(ybk) = qα/2(ybk − ȳbk) +

√
2 log(4/α)

bk
ϕ(ybk) (B.22)

≤ 2Cβσ
(√ log(2/α)

bk
+

(log(2/α))1/β

bk

)
, (B.23)

with probability 1− α/2 as long as bk ≥ 2 log(4/α)/(C2
βσ

2).

For two events A and B, we have

P(A) = P(A ∩ Bc) + P(A ∩ B) ≤ P(A ∩ B) + P(Bc). (B.24)
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Next we define an event Bk = {hα(ybk) ≤ ∆k/2}, where ∆k = µ1 − µk. We decompose I2 with
respect to Bk following the union event rule (B.24),

P
(
ȳbk + hα(ybk) ≥ µ1

)
= P

(
ȳbk + hα(ybk)− µk ≥ µ1 − µk

)
≤ P

(
ȳbk − µk ≥ ∆k − hα(ybk) ∩ Bk

)
+ P(Bck)

≤ P
(
ȳbk − µk ≥

∆k

2
∩ Bk

)
+ P(Bck)

≤ P
(
ȳbk − µk ≥

∆k

2

)
+ P(Bck).

To bound the first part, we reuse the concentration inequality in Theorem 3.1 such that,

P
(
ȳbk − µk ≥

∆

2

)
≤ exp

(
−min

[( ∆k

Cβσ

)2

bk,
(∆kbk

4Cβσ

)β])
. (B.25)

To bound the second part, we bound P(Bck) in three steps,

1. By (B.22), we have

P(Bck) = P
(
hα(ybk) > ∆k/2

)
≤ P

(
2Cβσ

(√ log(2/α)

bk
+

(log(2/α))1/β

bk

)
> ∆k/2

)
+ α/2. (B.26)

2. To ensure that 2Cβσ
√

log(2/α)/bk ≤ ∆k/4, we need

bk ≥
(8Cβσ

∆k

)2

log(2/α).

To ensure that 2Cβσ(log(2/α))(1/β)/bk ≤ ∆k/4, we need

bk ≥
8Cβσ(log(2/α))(1/β)

∆k
.

3. Then if we choose bk as

bk =
(8Cβσ

∆k

)2

log(2/α) +
8Cβσ(log(2/α))1/β

∆k
, (B.27)

we have

P
(

2Cβσ
(√ log(2/α)

bk
+

(log(2/α))1/β

bk

)
> ∆k/2

)
= 0. (B.28)

Combining (B.26) and (B.28), we conclude that when bk is choose as in (B.27), we have

P(Bck) ≤ α/2. (B.29)

Combing (B.25) and (B.29), we have

P
(
ȳbk + hα(ybk) ≥ µ1

)
≤ exp

(
−min

[( ∆k

Cβσ

)2

bk,
(∆kbk

4Cβσ

)β])
+ α/2, (B.30)

when bk is chosen as below

bk =
(8Cβσ

∆k

)2

log(1/α) +
8Cβσ(log(2/α))1/β

∆k
.
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Combining (B.17), (B.18) and (B.30) together,

P(Eck) ≤ 2Tα+ exp
(
−min

[( ∆k

Cβσ

)2

bk,
(∆kbk

4Cβσ

)β])
+ α/2

≤ 2Tα+ exp
(
−min

[( ∆k

Cβσ

)2(8Cβσ

∆k

)2

log(2/α),
( ∆k

4Cβσ

8Cβσ(log(2/α))1/β

∆k

)β])
+ α/2

= 2Tα+ exp
(
−min(64, 2β) log(2/α)

)
+ α/2. (B.31)

Plugging (B.27), (B.31) into (B.16),

E[nk,t] ≤ bk + P(Eck)T

=
(8Cβσ

∆k

)2

log(2/α) +
8Cβσ(log(2/α))1/β

∆k
+ 2T 2α+ Tαmin(64,2β) + Tα/2.

By choosing α = 2/T 2, we have

E[nk,t] ≤
(8Cβσ

∆k

)2

2 log T +
8Cβσ

∆k
(2 log T )1/β + 4, (B.32)

since 1− 2 min(64, 2β) < 0 for β > 0. Finally, the cumulative regret is upper bounded by

R(T ) =

K∑
k=2

∆kE[nk,t] (B.33)

≤
K∑
k=2

128(Cβσ)2 log T

∆k
+ 8CβσK(2 log T )1/β + 4

K∑
k=2

∆k. (B.34)

This ends the proof.

Problem-Independent Bound. First we let ∆ > 0 as a threshold which will be specified later.
Then we decompose R(T ) with respect to the value of ∆ as follows,

R(T ) =

K∑
k=2

∆kE[nk,t]

=
∑

k:∆k<∆

∆kE[nk,t] +
∑

k:∆k≥∆

∆kE[nk,t]

≤ T∆ +
∑

k:∆k≥∆

(
128(Cβσ)2 log T

∆k
+ 8Cβσ(2 log T )1/β + 4∆k

)

≤ 8CβσK(2 log T )1/β + 4

K∑
k=2

∆k + 128(Cβσ)2K log T

∆
+ T∆, (B.35)

where the first inequality is from (B.32). Letting 128(Cβσ)2K log T
∆ = T∆, we have

∆ = (128C2
βσ

2K log T

T
)1/2. (B.36)

Plugging (B.36) back into (B.35), we have

R(T ) ≤ 2 ∗ 1281/2Cβσ
√
TK log T + 4

K∑
k=1

∆k + 8CβσK(2 log T )1/β .

When T ≥ 22/β−3K(log T )2/β−1, we have

R(T ) ≤ 32
√

2Cβσ
√
TK log T + 4

K∑
k=2

∆k ≤

32
√

2Cβσ
√
TK log T + 4Kµ∗1.

This ends the proof. �
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C Proofs of Main Lemmas

In this section, we provide the proofs of Lemmas B.1 and B.3.

C.1 Proof of Lemma B.1

Without loss of generality, we assume ‖xi‖ψβ = 1 and Exi = 0 throughout this proof. Let
β = (log 4)1/β . For notation simplicity, we define ‖x‖p = (E|x|p)1/p for a random variable X . The
following step is to estimate the moment of linear combinations of variables {xi}ni=1.

According to the symmetrization inequality (e.g., Proposition 6.3 of [45]), we have∥∥∥ n∑
i=1

aixi

∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεixi

∥∥∥
p

= 2
∥∥∥ n∑
i=1

aiεi|xi|
∥∥∥
p
, (C.1)

where {εi}ni=1 are independent Rademacher random variables and we notice that εixi and εi|xi| are
identically distributed. By triangle inequality,

2
∥∥∥ n∑
i=1

aiεi|xi|
∥∥∥
p
≤ 2

∥∥∥ n∑
i=1

aiεi|xi − β + β|
∥∥∥
p

≤ 2
∥∥∥ n∑
i=1

aiεi|xi − β|
∥∥∥
p

+ 2
∥∥∥ n∑
i=1

aiεiβ
∥∥∥
p
. (C.2)

Next, we will bound the second term of the RHS of (C.2). In particular, we will utilize Khinchin-
Kahane inequality, whose formal statement is included in Lemma 5 for the sake of completeness.
From Lemma 5 we have ∥∥∥ n∑

i=1

aiεiβ
∥∥∥
p
≤

(p− 1

2− 1

)1/2∥∥∥ n∑
i=1

aiεiβ
∥∥∥

2

≤ β
√
p
∥∥∥ n∑
i=1

aiεi

∥∥∥
2
. (C.3)

Since {εi}ni=1 are independent Rademacher random variables, some simple calculations implies(
E
( n∑
i=1

εiai

)2)1/2

=
(
E
( n∑
i=1

ε2
i a

2
i + 2

∑
1≤i<j≤n

εiεjaiaj

))1/2

=
( n∑
i=1

a2
iEε2

i + 2
∑

1≤i<j≤n

aiajEεiEεj
)1/2

=
( n∑
i=1

a2
i

)1/2

= ‖a‖2. (C.4)

Combining inequalities (C.2)-(C.4),

2
∥∥∥ n∑
i=1

aiεi|xi|
∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεi|xi − β|
∥∥∥
p

+ 2β
√
p‖a‖2. (C.5)

Let {yi}ni=1 be independent symmetric random variables satisfying P(|yi| ≥ t) = exp(−tβ) for all
t ≥ 0. Then we have

P(|xi − β| ≥ t) ≤ P(xi ≥ t+ β) + P(xi ≤ β − t)
≤ 2P

(
exp(|xi|β) ≥ exp((t+ β)β)

)
≤ 2(E|xi|β) · exp(−(t+ β)β)

≤ 4 exp(−(t+ β)β)

≤ 4 exp(−tβ − ββ) = P(|yi| ≥ t),
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which implies ∥∥∥ n∑
i=1

aiεi|xi − β|
∥∥∥
p
≤
∥∥∥ n∑
i=1

aiεiyi

∥∥∥
p

=
∥∥∥ n∑
i=1

aiyi

∥∥∥
p
, (C.6)

since εiyi and yi have the same distribution due to symmetry. Combining (C.5) and (C.6) together,
we reach ∥∥∥ n∑

i=1

aixi

∥∥∥
p
≤ 2β

√
p‖a‖2 + 2

∥∥∥ n∑
i=1

aiyi

∥∥∥
p
. (C.7)

For 0 < β < 1, it follows Lemma 4 that∥∥∥ n∑
i=1

aiyi

∥∥∥
p
≤ Cβ(

√
p‖a‖2 + p1/β‖a‖∞), (C.8)

where Cβ is some absolute constant only depending on β.

For β ≥ 1, we will combine Lemma 3 and the method of the integration by parts to pass from
tail bound result to moment bound result. Recall that for every non-negative random variable x,
integration by parts yields the identity

Ex =

∫ ∞
0

P(x ≥ t)dt.

Applying this to x = |
∑n
i=1 aiyi|p and changing the variable t = tp, then we have

E|
n∑
i=1

aiyi|p =

∫ ∞
0

P
(
|
n∑
i=1

aiyi| ≥ t
)
ptp−1dt

≤
∫ ∞

0

2 exp
(
− cmin

( t2

‖a‖22
,

tβ

‖a‖ββ∗

))
ptp−1dt, (C.9)

where the inequality is from Lemma 3 for all p ≥ 2 and 1/β + 1/β∗ = 1. In this following, we
bound the integral in three steps:

1. If t2

‖a‖22
≤ tβ

‖a‖β
β∗

, (C.9) reduces to

E|
n∑
i=1

aiyi|p ≤ 2p

∫ ∞
0

exp
(
− c t2

‖a‖22

))
tp−1dt.

Letting t′ = ct2/‖a‖22, we have

2p

∫ ∞
0

exp
(
− c t2

‖a‖22

))
tp−1dt =

p‖a‖p2
cp/2

∫ ∞
0

e−t
′
t′p/2−1dt′

=
p‖a‖p2
cp/2

Γ(
p

2
) ≤ p‖a‖p2

cp/2
(
p

2
)p/2,

where the second equation is from the density of Gamma random variable. Thus,(
E|

n∑
i=1

aiyi|p
) 1
p ≤ p1/p

(2c)1/2

√
p‖a‖2 ≤

√
2√
c

√
p‖a‖2. (C.10)

2. If t2

‖a‖22
> tβ

‖a‖β
β∗

, (C.9) reduces to

E|
n∑
i=1

aiyi|p ≤ 2p

∫ ∞
0

exp
(
− c tβ

‖a‖ββ∗

))
tp−1dt.
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Letting t′ = ctβ/‖a‖ββ∗ , we have

2p

∫ ∞
0

exp
(
− c tβ

‖a‖ββ∗

))
tp−1dt =

2p‖a‖pβ∗
βcp/β

∫ ∞
0

e−t
′
t′p/β−1dt′

=
2

β

p‖a‖pβ∗
cp/β

Γ(
p

β
) ≤ 2

β

p‖a‖pβ∗
cp/β

(
p

β
)p/β .

Thus, (
E|

n∑
i=1

aiyi|p
) 1
p ≤ 2p1/p

(cβ)1/β
p1/β‖a‖β∗ ≤

4

(cβ)1/β
p1/β‖a‖β∗ . (C.11)

3. Overall, we have the following by combining (C.10) and (C.11),(
E|

n∑
i=1

aiyi|p
) 1
p ≤ max

(√2

c
,

4

(cβ)1/β

)(√
p‖a‖2 + p1/β‖a‖β∗

)
.

After denoting Cβ = max
(√

2
c ,

4
(cβ)1/β

)
, we reach∥∥∥ n∑

i=1

aiyi

∥∥∥
p
≤ Cβ

(√
p‖a‖2 + p1/β‖a‖β∗

)
. (C.12)

Since 0 < β < 1, the conclusion can be reached by combining (C.7),(C.8) and (C.12). �

C.2 Proof of Lemma B.3

Note that with probability one,
n∑
i=1

(wi − w̄)2 =

n∑
i=1

w2
i − nw̄ − n(1− w̄) ≤ n,

max
i

(wi − w̄) ≤ 1.

We define a good event E as follows

E =
{ n∑
i=1

(wi − w̄)2 ≤ n
}
∪
{

max
i

(wi − w̄) ≤ 1
}
. (C.13)

Then we decompose (B.19) conditional on E ,

P
( 1

n

n∑
i=1

(wi − w̄)(yi − µ) ≥ Cβσ
(√ log 1/α

n
+

(log 1/α)1/β

n

)
= P

( 1

n

n∑
i=1

(wi − w̄)(yi − µ) ≥ Cβσ
(√ log 1/α

n
+

(log 1/α)1/β

n
|E
))

P(E)

+P
( 1

n

n∑
i=1

(wi − w̄)(yi − µ) ≥ Cβσ
(√ log 1/α

n
+

(log 1/α)1/β

n
|Ec
))

P(Ec)

≤ P
( 1

n

n∑
i=1

(wi − w̄)(yi − µ) ≥ Cβσ
(√ log 1/α

n
+

(log 1/α)1/β

n
|E
))

≤ P
( 1

n

n∑
i=1

(wi − w̄)(yi − µ) ≥ Cβσ
( (log 1/α)1/2

n

√√√√ n∑
i=1

(wi − w̄)2 +
(log 1/α)1/β

n
max
i

(wi − w̄)|E
))

≤ α,

where the first inequality is from P(Ec) = 0, the second inequality is from the independence of wi
and yi, the third inequality is from the concentration inequality in Theorem 3.1. This ends the proof. �
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D Monte Carlo Approximations

Suppose nk,t is the number of rewards associated with arm k until round t. Practically, we could use
Monte Carlo quantile approximation to calculate the multiplier bootstrapped quantile qα(ynk,t−ȳnk,t).
Let {w(1)

n , . . . ,w
(B)
n } denote B sets of independent random weight vectors and define

q̃α(yn − ȳn,wB) := inf
{
x ∈ R

∣∣ 1

B

B∑
b=1

I{ 1

n

n∑
i=1

w
(b)
i (yi − ȳn) ≥ x} ≤ α

}
, (D.1)

where B is the number of bootstrap repetitions and wB = (w
(1)
n , . . . ,w

(B)
n ). Then the UCB index

for arm k ∈ [K] can be written as

UCBk(t) = ȳnk,t + q̃α(1−δ)(ynk,t − ȳnk,t ,wB) +

√
2 log(2/αδ)

nk,t
ϕ(ynk,t). (D.2)

The decision-makers choose to pull arm It+1 = argmaxk∈[K] UCBk(t). If UCBk(t) = UCBk′(t)
for k 6= k′, the tie is broken by a fixed rule that is chosen randomly in advance. Next theorem controls
the approximation error of the bootstrapped quantile.

Theorem D.1 (Monte Carlo Quantile Approximation). Suppose the same conditions in Theorem 2.2
hold. We have

Py,w(ȳn − µ > q̃α(yn − ȳn,wB) +
√

log(2/αδ)/nϕ(yn)) ≤ α+
bBαc+ 1

B + 1
≤ 2α+

1

B + 1
,

where q̃α(yn − ȳn,wB) is the Monte Carlo approximated quantile defined in (D.1).

By replacing the true quantile qα by a MC quantile q̃Bα based on B i.i.d bootstrapped weights, we
lose at most 1/(B + 1) for the confidence level.

Proof Sketch. The proof is similar to the proof of Theorem 2.2 except for the control of i.i.d
approximation error. First, we define

q̃α(yn − µ,wB) := inf
{
x ∈ R

∣∣ 1

B

B∑
b=1

I{ 1

n

n∑
i=1

w
(b)
i (yi − µ) ≥ x} ≤ α

}
.

By using the similar symmetry properties as we did in (B.2) and (B.3), we have

EwBPy

( 1

n

n∑
i=1

wi(yi − µ) > q̃α(yn − µ,wB)
)

= EwEwBPy

( 1

n

n∑
i=1

wi(yi − µ) > q̃α((yn − µ) ◦wn,wB)
)

= EyPw,wB

( 1

n

n∑
i=1

wi(yi − µ) > q̃α(yn − µ,wB · diag(wn))
)

= EyPw,wB

( 1

n

n∑
i=1

wi(yi − µ) > q̃α(yn − µ,wB)
)

= EyPw,wB

( B∑
b=1

I{ 1

n

n∑
i=1

w
(b)
i (yi − µ) ≥ x} ≤ α

)
≤ bBαc+ 1

B + 1
,

where the last inequality can be derived from Lemma 1 in [46]. The rest of the proof will follow step
two in the proof of Section B.1. �
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E Additional Experimental Results and Implementation Details

In Section E.1, we present the implementation details for multi-armed bandits. In Section E.2, we
present the implementation details for linear bandits. In Section E.3, we present formal definitions
for logistic distribution and truncated-normal distribution.

E.1 Multi-armd Bandit

For UCB1, at each round, the action is selected as

argmax
k∈[K]

1

nk

nk∑
s=1

yks + σ̂

√
2 log(1/α)

nk
.

For Jeffery-TS, at each round, the parameter is sampled from

N
( 1

nk

nk∑
s=1

yks , σ̂
2/nk

)
.

Here, σ̂ is the upper bound on the estimator of standard deviation, {yks } are the reward associated
with arm k and nk is the number of reward associated with arm k. For notation simplicity, we ignore
their dependency on round t.

In addition to Gaussian bandit and truncated-normal bandit, we also consider logistic bandit with
parameter (µ = 0, s = 0.5). The formal definition of logistic distribution and truncated-normal
distribution. The results are summarized in Figure 7. Giro is almost failed.

Figure 7: Cumulative regret for logistic bandit. The left panel is for σ̂ = 1, and the right panel is for
σ̂ = 2.

E.2 Linear Bandit.

Setup. We particularly consider the following linear bandit setup. Let Dt ⊂ Rd be an arbitrary
(finite or infinite) set of arms. When an arm x ∈ Dt is pulled, the agent receives a reward

y(x) = x>θ∗ + ε, (E.1)

where θ∗ ∈ Rd is the true reward parameter and ε is a zero-mean random noise with variance σ2. We
assume ‖θ∗‖2 ≤ S. An arm x ∈ Dt is evaluated according to its expected reward x>θ∗ and for any
θ ∈ Rd, we denote the optimal arm and its value by

x∗(θ) = argmin
x∈Dt

x>θ, J(θ) = sup
x∈Dt

x>θ.

Thus x∗ = x∗(θ∗) is the optimal arm for θ∗ and J(θ∗) is its optimal value. At each round t, the agent
selects an arm xt ∈ Dt based on past observations. Then, it observes the reward yt = x>t θ

∗ + εt,
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and it suffers a regret equal to the difference in expected reward between the optimal arm x∗ and the
arm xt. The objective of the agent is to minimize the cumulative regret up to round t,

R(T ) =

T∑
t=1

〈x∗ − xt,θ∗〉,

where T is the time horizon. Note that the regret holds with high probability and thus is slightly from
the standard notion of pseudo regret [13].

DenoteXt = (x1, . . . ,xt)
> ∈ Rt×d, yt = (y1, . . . , yt)

> ∈ Rt×1. At round t+ 1, consider a ridge
estimator

θ̂t = (X>t Xt + λId)
−1Xtyt. (E.2)

Let us denote Vt =
∑t
s=1 xsx

>
s ∈ Rd×d as the empirical covariance matrix.

Algorithms. For TSL: Thompson sampling for linear bandit [41], at each round t, the parameter
is sampled as θ̃t = θ̂t + σ̂

√
d log(1/δ)V

−1/2
t η with η ∼ N(0, Id), where σ̂ is a standard deviation

estimator. [41] suggests an even larger constant for the bonus term to enforce over exploration in
theory. In practice, it will make the regret exploding. So we remove that large constant in our
simulation.

For OFUL: optimism in the face of uncertainty for linear bandits [13], at each round t, the action is
selected as argmaxx(x>θ̂t + βOFUL

t,1−δ,σ‖x‖V −1
t

), where

βOFUL
t,1−δ,σ = σ̂

√
2 log

(det(Vt)1/2 det(λId)1/2

δ

)
+ λ1/2S. (E.3)

For BUCBL: bootstrapped UCB for linear bandit, we consider multinomial weights which is equiva-
lent to sample with replacement. In detail, we generate B sets of bootstrap repetitions {X(b)

t ,y
(b)
t }

from {Xt,yt} by sample with replacement, and calculate corresponding bootstrapped estimator

θ̂
(b)
t = (X

(b)>
t X

(b)
t + λId)

−1X
(b)
t y

(b)
t , (E.4)

and V (b)
t =

∑t
s=1 x

(b)
s x

(b)>
s . Define the bootstrapped weighted `2-norm as follow

‖θ̂(b)
t − θ̂t‖V (b)

t +λId
=

√
(θ̂

(b)
t − θ̂t)>(V

(b)
t + λId)(θ̂

(b)
t − θ̂t).

For each set of bootstrap repetitions, we could calculate the ‖θ̂(b)
t − θ̂t‖V (b)

t +λId
accordingly. There-

fore, the bootstrapped threshold is defined as

qα(θ̂
(b)
t − θ̂t) := (1− α)-quantile of

{
‖θ̂(1)

t − θ̂t‖V (1)
t +λId

, . . . , ‖θ̂(B)
t − θ̂t‖V (B)

t +λId

}
. (E.5)

At each round t, the action is selected as argmaxx(x>θ̂t + (qα(θ̂
(b)
t − θ̂t) +βOFUL

t,1−δ,σ/
√
n)‖x‖V −1

t
).

E.3 Logistic Distribution and Truncated-Normal Distribution

Logistic Distribution In probability theory and statistics, the logistic distribution is a continuous
probability distribution. Its cumulative distribution function is the logistic function, which appears in
logistic regression and feed forward neural networks. It resembles the normal distribution in shape
but has heavier tails.

Definition E.1. The probability density function (pdf) of the logistic distribution (µ, s) is given by:

f(x) =
exp(−(x− µ)/s)

s(1 + exp(−(x− µ)/s))2
,

where µ is a location parameter and s > 0 is a scale parameter. The mean is µ and the variance is
s2π2/3.
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Truncated-normal Distribution In probability and statistics, the truncated normal distribution is
the probability distribution derived from that of a normally distributed random variable by bounding
the random variable from either below or above (or both).

Definition E.2. Suppose X has a normal distribution with mean µ and variance σ2 and lies within
the interval (a, b). Then X conditional on a < X < b has a truncated normal distribution (µ, a, b).
Its probability density function f is given by

f(x) =
φ(x−µσ )

σ(Φ( b−µσ )− Φ(a−µσ ))
,

where φ(·) is the probability density function of the standard normal distribution and Φ(·) is its
cumulative distribution function.

F Supporting Lemmas

Lemma 1 (Large Deviation Bound, Theorem A.1.4 in [47]). Suppose x1, . . . , xn are mutually
independent random variables with distribution

P(xi = 1− pi) = pi, P(xi = −pi) = 1− pi,

where pi ∈ [0, 1]. For any a > 0, we have

P
( n∑
i=1

xi > a
)
< exp(−2a2/n).

When all pi = p, the sum
∑n
i=1Xi has distribution Binomial(n, p) − np where B(n, p) is the

Binomial distribution.

Lemma 2 (Hoeffding’s inequality, Proposition 5.10 in [35]). Let X1, . . . , Xn be independent cen-
tered sub-Gaussian random variables, and let K = maxi ‖Xi‖φ2 . Then for any a = (a1, . . . , an)>

and any t > 0, we have

P
(
|
n∑
i=1

aiXi| > t
)
≤ e exp

(
− ct2

K2‖a‖22

)
.

Lemma 3 (Tail Probability for the Sum of Weibull Distributions (Lemma 3.6 in [48])). Let α ∈ [1, 2]
and Y1, . . . , Yn be independent symmetric random variables satisfying P(|Yi| ≥ t) = exp(−tα).
Then for every vector a = (a1, . . . , an) ∈ Rn and every t ≥ 0,

P
(
|
n∑
i=1

aiYi| ≥ t
)
≤ 2 exp

(
− cmin

( t2

‖a‖22
,

tα

‖a‖αα∗

))
Lemma 4 (Moments for the Sum of Weibull Distributions (Corollary 1.2 in [49])). Let
X1, X2, . . . , Xn be a sequence of independent symmetric random variables satisfying P(|Yi| ≥
t) = exp(−tα), where 0 < α < 1. Then, for p ≥ 2 and some constant C(α) which depends only on
α, ∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ C(α)(
√
p‖a‖2 + p1/α‖a‖∞).

Lemma 5 (Khinchin-Kahane Inequality (Theorem 1.3.1 in [50])). Let {ai}ni=1 a finite non-random
sequence, {εi}ni=1 be a sequence of independent Rademacher variables and 1 < p < q <∞. Then∥∥∥ n∑

i=1

εiai

∥∥∥
q
≤
(q − 1

p− 1

)1/2∥∥∥ n∑
i=1

εiai

∥∥∥
p
.
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