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Abstract

We study a secretary problem which captures the task of ranking in online settings.1

We term this problem the secretary ranking problem: elements from an ordered set2

arrive in random order and instead of picking the maximum element, the algorithm3

is asked to assign a rank, or position, to each of the elements. The rank assigned4

is irrevocable and is given knowing only the pairwise comparisons with elements5

previously arrived. The goal is to minimize the distance of the rank produced to the6

true rank of the elements measured by the Kendall-Tau distance, which corresponds7

to the number of pairs that are inverted with respect to the true order.8

Our main result is a matching upper and lower bound for the secretary ranking9

problem. We present an algorithm that ranks n elements with only O(n3/2) in-10

versions in expectation, and show that any algorithm necessarily suffers Ω(n3/2)11

inversions when there are n available positions. In terms of techniques, the analysis12

of our algorithm draws connections to linear probing in the hashing literature, while13

our lower bound result relies on a general anti-concentration bound for a generic14

balls and bins sampling process. We also consider the case where the number of15

positionsm can be larger than the number of secretaries n and provide an improved16

bound by showing a connection of this problem with random binary trees.17

1 Introduction18

The secretary problem is one of the first problems studied in online algorithms—in fact, it was19

extensively studied much before the field of online algorithms even existed. It first appeared in print20

in 1960 as a recreational problem in Martin Gardner’s Mathematical Games column in Scientific21

American. In the subsequent decade it caught the attention of many of the eminent probabilist22

researchers like Lindley [Lin61], Dynkin [Dyn63], Chow et al. [CMRS64] and Gilbert and Mosteller23

[GM06] among others. In a very entertaining historical survey, Ferguson [Fer89] traces the origin of24

the secretary problem to much earlier: Cayley in 1875 and Kepler in 1613 pose questions in the same25

spirit as the secretary problem.26

Secretary problem has been extended in numerous directions, see for example the surveys by27

Sakaguchi [Sak95] and Freeman [Fre83]. The problem has had an enormous influence in computer28

science and has provided some of the basic techniques in the field of online and approximation29

algorithms. Babaioff et al extended this problem to matroid set systems [BIK07] and Knapsack30

[BIKK07] and perhaps more importantly, show that the secretary problem is a natural tool for31

designing online auctions. In the last decade, the secretary problem has also been extended to32

posets [KLVV11], submodular systems [BHZ10], general set systems [Rub16], stable matchings33

[BEF+17], non-uniform arrivals [KKN15] and applied to optimal data sampling [GD09], design of34

prophet inequalities [AKW14, EHLM17], crowdsourcing systems [SM13], pricing in online settings35

[CEFJ14], online linear programming [AWY14] and online ad allocation [FHK+10].36
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The (admittedly incomplete) list of extensions and applications in the last paragraph serves to37

showcase that the secretary problem has traditionally been a vehicle for deriving connections between38

different subfields of computer science and a testbed of new techniques.39

Ranking Secretaries. We consider a natural variant of the secretary problem that captures ranking40

from pairwise comparisons in online settings. In the secretary ranking problem, instead of selecting41

the maximum element we are asked to rank each arriving element. In the process of deriving42

the optimal algorithm for this problem, we uncover novel connections between ranking and the43

technique of linear probing, which is one of the earliest techniques in the hashing literature studied44

by Knuth [Knu63], and also the expected height of random binary trees.45

In the traditional secretary problem a decision maker is trying to hire a secretary. There is a total46

order over n secretaries and the goal of the algorithm is to hire the best secretary. The secretaries47

are assumed to arrive in a random order and the algorithm can only observe the relative rank of48

each secretary with respect to the previously interviewed ones. Once a secretary is interviewed,49

the algorithm needs to decide whether to hire the current one or to irrevocably abandon the current50

candidate and continue interviewing.51

In our setting, there are m job positions and n secretaries. There is a known total order on positions.52

Secretaries arrive in random order and, as before, we can only compare a secretary with previously53

interviewed ones. In our version, all secretaries will be hired and the decision of the algorithm is in54

which position to hire each secretary. Each position can be occupied by at most one secretary and55

hiring decisions are irrevocable. Ideally, the algorithm will hire the best secretary in the best position,56

the second best secretary in the second best position and so on. The loss incurred by the algorithm57

corresponds to the pairs that are incorrectly ordered, i.e., pairs where a better secretary is hired in a58

worse position.59

We give two examples that illustrate scenarios where irrevocable ranking decisions occur online. The60

first is in the context of task assignments. For concreteness, consider a consulting firm with teams of61

different skill levels. Projects of different difficulty arrive in an online fashion and when a project62

arrives, the firm needs to decide which team will execute. Of course, the most difficult projects should63

go to the most skillful team. The second example is in the context of reward allocation. Consider a64

university department that would like to assign the best scholarships available to the best students.65

However, scholarships arrive one at a time and the school needs to decide which student is assigned66

that scholarship knowing only the relative quality of the scholarships arrived so far.67

1.1 Our Results and Techniques68

The perhaps most natural case of the secretary ranking problem is when the numbers of positions69

and secretaries are the same, i.e. m = n, which we call the dense case. The trivial algorithm that70

assigns a random empty position for each arriving secretary incurs Θ(n2) cost, since each pair of71

elements has probability 1/2 of being an inversion. On the other hand, Ω(n) is a trivial lower bound72

on the cost of any algorithm because nothing is known when the first element arrives. As such, there73

is a linear gap between the costs of the trivial upper and lower bounds for this secretary ranking74

problem. Our main result is an asymptotically tight upper and lower bound on the loss incurred by75

the algorithms for the secretary ranking problem.76

Theorem. There is an algorithm for the secretary ranking problem that computes a ranking with77

O(n3/2) inversions in expectation. Moreover, any algorithm for this problem makes Ω(n3/2) inver-78

sions in expectation.79

There are two challenges in designing an algorithm for secretary ranking. In earlier time steps, there80

are only a small number of comparisons observed and these do not contain sufficient information81

to estimate the true rank of the arriving elements. In later time steps, we observe a large number82

of comparisons and using the randomness of elements arrival, the true rank of the elements can83

be estimated well. However, the main difficulty is that at these time steps many of the positions84

have already been assigned to some element arrived earlier and are hence not available. The first85

information-theoretic challenge exacerbates this second issue. Previous bad placements might imply86

that all the desired positions are unavailable for the current element, causing a large cost even for an87

element whose true rank is estimated accurately.88
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The algorithm needs to handle these two opposing challenges simultaneously. The main idea behind89

our algorithm is to estimate the rank of the current element using the observed comparisons and90

then add some noise to these estimations to obtain additional randomness in the positions and avoid91

positively correlated mistakes. We then assign the current element to the closest empty position to92

this noisy estimated rank. The main technical interest is in the analysis of this algorithm. We draw a93

connection to the analysis of linear probing in the hashing literature [Knu63] to argue that under this94

extra noise, there often exists an empty position that is close to the estimated rank.95

For the lower bound, we analyze the number of random pairwise comparisons needed to estimate96

the rank of an element accurately. Such results are typically proven in the literature by using anti-97

concentration inequalities. A main technical difficulty is that most of the existing anti-concentration98

inequalities are for independent random variables while there is a correlation between the variables99

we are considering. We prove, to the best of our knowledge, a new anti-concentration inequality for a100

generic balls in bins problem that involves correlated sampling.101

In the appendix, we study two additional cases of the secretary ranking problem. In the sparse case,102

we wish to compute how large the number m of positions needs to be such that we incur no inversions.103

Clearly for m = 2n+1 − 1 it is possible to obtain zero inversions with probability 1 and for any104

number less than that it is also clear that any algorithm needs to cause inversions with non-zero105

probability. If we only want to achieve zero inversions with high probability, how large does m need106

to be? By showing a connection between the secretary problem and random binary trees, we show107

that for m ≥ nα for α ≈ 2.998 it is possible to design an algorithm that achieves zero inversion108

with probability 1− o(1). The constant α here is obtained using the high probability bound on the109

height of a random binary tree of n elements. Finally, we combine the algorithms for the dense and110

sparse cases to obtain a general algorithm with a bound on the expected number of inversions which111

smoothly interpolates between the bounds obtained for the dense and sparse cases.112

1.2 Related Work113

Our work is inserted in the vast line of literature on the secretary problem, which we briefly discussed114

earlier. There has been a considerable amount of work on multiple-choice secretary problems115

where, instead of the single best element, multiple elements can be chosen as they arrive online116

[Kle05, BIKK07, BIK07, BHZ10, Rub16, KP09]. We note that in multiple-choice secretary problems,117

the decision at arrival of an element is still binary, whereas in secretary ranking one of n positions118

must be chosen. More closely related to our work is a paper of Babichenko et al. [BEF+17] where119

elements that arrive must also be assigned to a position. However, the objective is different and the120

goal, which uses a game-theoretic notion of stable matching, is to maximize the number of elements121

that are not in a blocking pair. Gobel et al. [GKT15] also studied an online appointment scheduling122

problem in which the goal is to assign starting dates to a set of jobs arriving online. The objective123

here is again different from the secretary ranking problem and is to minimize the total weight time of124

the jobs.125

Another related line of work in machine learning is the well-known problem of learning to rank that126

has been extensively studied in recent years (e.g. [BSR+05, CQL+07, BRL07, XLW+08]). Two im-127

portant applications of this problem are search engines for document retrieval [L+09, RJ05, LXQ+07,128

CXL+06, XL07] and collaborative filtering approaches to recommender systems [SLH10, SKB+12,129

LY08, WRdVR08]. There has been significant interest recently in ranking from pairwise compar-130

isons [FRPU94, BFSC+13, CS15, SW17, JKSO16, HSRW16, DKMR14, BMW16, AAAK17]. To131

the best of our knowledge, there has not been previous work on ranking from pairwise comparisons132

in an online setting.133

Finally, we also briefly discuss hashing, since our main technique is related to linear probing. Linear134

probing is a classic implementation of hash tables and was first analyzed theoretically by Knuth135

in 1963 [Knu63], in a report which is now regarded as the birth of algorithm analysis. Since then,136

different variants of this problem mainly for hash functions with limited independence have been137

considered in the literature [SS90, PPR07, PT10]. Reviewing the vast literature on this subject is138

beyond the scope of our paper and we refer the interested reader to these papers for more details.139

Organization. The remainder of the paper is organized as follows. In Section 2 we formalize the140

secretary ranking problem. In Section 3, we present and analyze our algorithm. Section 4 is devoted141

to showing the lower bound. Our results for the case where the number of position m is different142
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from the number of elements n appear in Appendix B and Appendix C. Missing proofs and standard143

concentration bounds are postponed to the appendix as well.144

2 Problem Setup145

In the secretary ranking problem, there are n elements a1, . . . , an that arrive one at a time in an146

online manner and in a uniformly random order. There is a total ordering among the elements, but147

the algorithm has only access to pairwise comparisons among the elements that have already arrived.148

In other words, at time t, the algorithm only observes whether ai < aj for all i, j ≤ t.149

We define the rank function rk : {a1, . . . , an} → [n] as the true rank of the elements in the total150

order, i.e., ai < aj iff rk(ai) < rk(aj). Since the elements arrive uniformly at random, rk(·) is a151

random permutation. Upon arrival of an element at at time step t, the algorithm must, irrevocably,152

place at in a position π(at) ∈ [n] that is not yet occupied, in the sense that for at 6= as we must153

have π(as) 6= π(at). Since the main goal of the algorithm is to place the elements as to reflect the154

true rank as close as possible1, we refer to π(at) as the learned rank of at. The goal is to minimize155

the number of pairwise mistakes induced by the learned ranking compared to the true ranking. A156

pairwise mistake, or an inversion, is defined as a pair of elements ai, aj such that rk(ai) < rk(aj)157

according to the true underlying ranking but π(ai) > π(aj) according to the learned ranking.158

The secretary ranking problem generalizes the secretary problem in the following sense: in the159

secretary problem, we are only interested in finding the element with the highest rank. However, in160

the secretary ranking problem, the goal is to assign a rank to every arrived element and construct a161

complete ranking of all elements. Similar to the secretary problem, we make the enabling assumption162

that the order of elements arrival is uniformly random.2 We measure the cost of the algorithm in163

expectation over the randomness of both the arrival order of elements and the algorithm.164

Measures of sortedness. We point out that the primary goal in the secretary ranking problem is165

to learn an ordering π of the input elements which is as close as possible to their sorted order. As166

such, the cost suffered by an algorithm is given by a measure of sortedness of π compared to the167

true ranking. There are various measures of sortedness studied in the literature depending on the168

application. Our choice of using the number of inversions, also known as Kendall’s tau measure, as169

the cost of an algorithm is motivated by the importance of this measure and its close connection to170

other measures such as Spearman’s footrule (see, e.g., Chapter 6B in [Dia88]).171

For a mapping π : [n]→ [n], Kendall’s tau K(π) measures the number of inversions in π, i.e.:

K(π) := |{(i, j); (π(ai)− π(aj))(rk(ai)− rk(aj)) < 0}|.

Another important measure of sortedness is Spearman’s footrule F (π) given by: F (π) :=172 ∑n
i=1 |rk(ai)− π(ai)| , which corresponds to the summation of distances between the true rank173

of each element and its current position. A celebrated result of Diaconis and Graham [DG77] shows174

that these two measures are within a factor of two of each other, namely, K(π) ≤ F (π) ≤ 2 ·K(π).175

We refer to this inequality as the DG inequality throughout the paper. Thus, up to a factor of two, the176

goals of minimizing the Kendall tau or Spearman’s footrule distances are equivalent and, while the177

Kendall tau distance is used in the formulation of the problem, we also use the Spearman’s footrule178

distance in the analysis.179

3 The Algorithm180

In this section, we describe and analyze an algorithm for the secretary ranking problem. Our main181

algorithmic result is the following theorem.182

Theorem 1. There exists an algorithm for the secretary ranking problem that incurs a cost of183

O(n
√
n) in expectation.184

In Section 4, we show that this cost incurred by the algorithm is asymptotically optimal.185

1In other words, hire the better secretaries in better positions.
2It is straightforward to verify that when the ordering is adversarial, any algorithm incurs the trivial cost of

Ω(n2). For completeness, a proof is provided in Appendix F.
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3.1 Description of the Algorithm186

The general approach behind the algorithm in Theorem 1 is as follows.187

Upon the arrival of element at at time step t:

1. Estimation step: Estimate the true rank of the arrived element at using the partial
comparisons seen so far.

2. Assignment step: Find the nearest currently unassigned rank to this estimate and let
π(at) be this position.

We now describe the algorithm in more details. A natural way to estimate the rank of the t-th element188

in the estimation step is to compute the rank of this element with respect to the previous t−1 elements189

seen so far and then scale this number to obtain an estimate of the rank of this element between 1 and190

n. However, for our analysis of the assignment step, we need to tweak this approach slightly: instead191

of simply rescaling and rounding, we add perturbation to the estimated rank and then round its value.192

This gives a nice distribution of estimated ranks which is crucial for the analysis of the assignment193

step. The assignment step then simply assigns a learned rank to the element as close as possible to its194

estimated rank. We formalize the algorithm in Algorithm 1.195

ALGORITHM 1: Dense Ranking

1 Input: a set of n positions, denoted here by [n], and at most n online arrivals.
2 for any time step t ∈ [n] and element at do
3 Define rt := |{at′ | at′ < at and t′ < t}|.
4 Sample xt uniformly in the real interval [rt · nt , (rt + 1) · n

t
] and choose r̃k(at) = dxte.

5 Set the learned rank of at as π(at) = arg mini∈R

∣∣∣i− r̃k(at)
∣∣∣ and remove i from R.

6 end

196

We briefly comment on the runtime of the algorithm. By using any self-balancing binary search197

tree—such as a red-black tree or an AVL tree—to store the ranking of the arrived elements as well as198

the set R of available ranks separately, Algorithm 1 is implementable in O(log n) time for each step,199

so total O(n log n) worst-case time.200

We also note some similarity between this algorithm and linear probing in hashing. Linear probing is201

an approach to resolving collisions in hashing where, when a key is hashed to a non-empty cell, the202

closest neighboring cells are visited until an empty location is found for the key. The similarity is203

apparent to our assignment step which finds the nearest currently unassigned rank to the estimated204

rank of an element. The analysis of the assignment step follows similar ideas as the analysis for the205

linear probing hashing scheme.206

3.2 The Analysis207

The total number of inversions can be approximated within a factor of 2 by the Spearman’s footrule.
Therefore, we can write the cost of Algorithm 1 (up to a factor 2) as follows:

n∑
t=1

|rk(at)− π(at)| ≤
n∑
t=1

∣∣∣rk(at)− r̃k(at)
∣∣∣+

n∑
t=1

∣∣∣r̃k(at)− π(at)
∣∣∣ .

This basically breaks the cost of the algorithm in two parts: one is the cost incurred by the estimation208

step and the other one is the cost of the assignment step. Our analysis then consists of two main parts209

where each part bounds one of the terms in the RHS above. In particular, we first prove that given the210

partial comparisons seen so far, we can obtain a relatively good estimation to the rank of the arrived211

element, and then in the second part, we show that we can typically find an unassigned position in the212

close proximity of this estimated rank to assign to it. The following two lemmas capture each part213

separately. In both lemmas, the randomness in the expectation is taken over the random arrivals and214

the internal randomness of the algorithm:215
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Lemma 3.1 (Estimation Cost). In Algorithm 1, E
[∑n

t=1

∣∣∣rk(at)− r̃k(at)
∣∣∣] = O(n

√
n).216

Lemma 3.2 (Assignment Cost). In Algorithm 1, E
[∑n

t=1

∣∣∣r̃k(at)− π(at)
∣∣∣] = O(n

√
n).217

Theorem 1 then follows immediately from these two lemmas and Eq (3.2). The main part of the218

argument is the analysis of the assignment cost, i.e., Lemma 3.2, and in particular its connection to219

linear probing. The analysis for the estimation cost, i.e., Lemma 3.1, follows from standard Chernoff220

bound arguments and is deferred to Appendix D.221

Assignment cost: proof of Lemma 3.2. It is useful to think of sampling a random permutation
in the following recursive way: given a random permutation over t − 1 elements, it is possible to
obtain a random permutation over t elements by inserting the t-th element in a uniformly random
position between these t− 1 elements. Formally, given σ : [t− 1]→ [t− 1], if we sample a position
i uniformly from [t] and generate permutation σ′ : [t]→ [t] such that:

σ′(t′) =


i if t′ = t

σ(t′) if t′ < t and σ′(t′) < i

σ(t′) + 1 if t′ < t and σ′(t′) > i

then σ′ will be a random permutation over t elements. It is simple to see that just by fixing any222

permutation and computing the probability of it being generated by this process.223

Thinking about sampling the permutation in this way is very convenient for this analysis since at the
t-th step of the process, the relative order of the first t elements is fixed (even though the true ranks
can only be determined in the end). In that spirit, let us also define for a permutation σ : [t]→ [t] the
event Oσ that σ is the relative ordering of the first t elements:

Oσ = {aσ(1) < aσ(2) < . . . < aσ(t)}.

The following proposition asserts that the randomness of the arrival and the inner randomness of the224

algorithm, ensures that the estimated ranks at each time step are chosen uniformly at random from all225

possible ranks in [n].226

Proposition 3.3. The values of r̃k(a1), . . . , r̃k(an) are i.i.d and uniformly chosen from [n].227

Proof. First let us show that for any fixed permutation σ over t − 1 elements, the relative rank rt
defined in the algorithm is uniformly distributed in {0, . . . , t− 1}. In other words:

Pr[rt = i | Oσ] =
1

t
, ∀i ∈ {0, . . . , t− 1}.

Simply observe that there are exactly t permutations over t elements such that the permutation228

induced in the first t− 1 elements is σ. Since we are sampling a random permutation in this process,229

each of these permutation are equally likely to happen. Moreover, since each permutation corresponds230

to inserting the t-the element in one of the t positions, we obtain the bound.231

Furthermore, since the probability of each value of rt does not depend on the induced permutation232

σ over the first t − 1 elements, then rt is independent of σ. Since all the previous values rt′ are233

completely determined by σ, rt is independent of all previous rt′ for t′ < t.234

Finally observe that if rt is random from {0, ..., t− 1}, then xt is sampled at random from [0, n], so235

r̃k(at) is sampled at random from [n]. Since for different values of t ∈ [n], all rt are independent, all236

the values of r̃k(at) are also independent.237

Now that we established that r̃k(at) are independent and uniform, our next task is to bound how238

far from the estimated rank we have to go in the assignment step, before we are able to assign a239

learned rank to this element. This part of our analysis will be similar to the analysis of the linear240

probing hashing scheme. If we are forced to let the learned rank of at be far away from r̃k(at),241

say
∣∣∣r̃k(at)− π(at)

∣∣∣ > k, then this necessarily means that all positions in the integer interval242

[r̃k(at)− k : r̃k(at) + k] must have already been assigned as a learned rank of some element. In the243

6



following, we bound the probability of such an event happening for large values of k compared to the244

current time step t.245

We say that the integer interval I = [i : i+ s− 1] of size s is popular at time t, iff at least s elements246

at′ among the t − 1 elements that appear before the t-th element have estimated rank r̃k(at′) ∈ I .247

Since by Proposition 3.3 every element has probability s/n of having estimated rank in I and the248

estimated ranks are independent, we can bound the probability that I is popular using a standard249

application of Chernoff bound (proof deferred to Appendix D).250

Claim 3.4. Let α ≥ 1, an interval of size s ≥ 2αmax
(

1,
(

t
n−t

)2)
is popular at time t w.p. e−O(α).251

We now use the above claim to bound the deviation between r̃k(at) and π(at). The following lemma252

is the key part of the argument.253

Lemma 3.5. For any t ≤ n, we have E
∣∣∣r̃k(at)− π(at)

∣∣∣ = O(max
(

1,
(

t
n−t

)2)
).254

Proof. Fix any α ≥ 1. We claim that, if the learned rank of at is a position which has distance at255

least kα = 4α ·max
(

1,
(

t
n−t

)2)
from its estimated rank, then necessarily there exists an interval I256

of length at least 2kα which contains r̃k(at) and is popular.257

Let us prove the above claim then. Let I be the shortest integer interval [a : b] which contains r̃k(at)258

and moreover both positions a and b are not assigned to a learned rank by time t (by this definition,259

π(at) would be either a or b). For
∣∣∣r̃k(at)− π(at)

∣∣∣ to be at least kα, the length of interval I needs260

to be at least 2kα. But for I to have length at least 2kα, we should have at least 2k elements from261

a1, . . . , at−1 to have an estimated rank in I: this is simply because a and b are not yet assigned a262

rank by time t and hence any element at′ which has estimated rank outside the interval I is never263

assigned a learned rank inside I (otherwise the assignment step should pick a or b, a contradiction).264

We are now ready to finalize the proof. It is straightforward that in the above argument, it suffices to265

only consider the integer intervals [r̃k(at)− kα : r̃k(at) + kα] parametrized by the choice of α ≥ 1.266

By the above argument and Claim 3.4, for any α ≥ 1, we have,267

E
[∣∣∣r̃k(at)− π(at)

∣∣∣] ≤ ∫ ∞
α=0

Pr
( ∣∣∣r̃k(at)− π(at)

∣∣∣ > kα

)
· kα · dα

≤
∫ ∞
α=0

Pr
(

Integer interval [r̃k(at)− kα : r̃k(at) + kα] is popular
)
· kα · dα

≤
Claim 3.4

O(max
(

1,
( t

n− t

)2)
) ·
∫ ∞
α=0

e−O(α) · α · dα

= O(max
(

1,
( t

n− t

)2)
).

We are now ready to finalize the proof of Lemma 3.2.268

Proof of Lemma 3.2. We have, E
[∑n

t=1

∣∣∣r̃k(at)− π(at)
∣∣∣] =

∑n
t=1 E

[∣∣∣r̃k(at)− π(at)
∣∣∣] by linear-269

ity of expectation. For any t < n/2, the maximum term in RHS of Lemma 3.5 is 1 and hence270

in this case, we have E
[∣∣∣r̃k(at)− π(at)

∣∣∣] = O(1). Thus, the contribution of the first n/2 − 1271

terms to the above summation is only O(n). Also, when t > n −
√
n, we can simply write272

E
[∣∣∣r̃k(at)− π(at)

∣∣∣] ≤ n which is trivially true and hence the total contribution of these
√
n sum-273

mands is also O(n
√
n). It remains to bound the total contribution of t ∈ [n/2, n −

√
n]. By274

Lemma 3.5,
∑n−

√
n

t=n/2 E
[∣∣∣r̃k(at)− π(at)

∣∣∣] ≤ O(1) ·
∑n−

√
n

t=n/2

(
t

n−t

)2

= O(n
√
n), where the equal-275

ity is by a simple calculation (see Proposition D.3 in Appendix D).276
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4 A Tight Lower Bound277

We complement the algorithmic result from the previous section by showing that the cost incurred by278

the algorithm is asymptotically optimal.279

Theorem 2. Any algorithm for the secretary ranking problem incurs Ω(n
√
n) cost in expectation.280

To prove Theorem 2, we first show that no deterministic algorithm can achieve better than O(n
√
n)281

inversions and then use Yao’s minimax principle to extend the lower bound to randomized algorithms282

(by simply fixing the randomness of the algorithm to obtain a deterministic one with the same283

performance over the particular distribution of the input).284

The main ingredient of our proof of Theorem 2 is an anti-concentration bound for sampling without285

replacement which we cast as a balls in bins problem. We start by describing this balls in bin problem286

and prove the anti-concentration bound in Lemma 4.1. Lemma 4.2 then connects the problem of287

online ranking to the balls in bins problem.288

To continue, we introduce some asymptotic notation that is helpful for readability. We write v =289

Θ1(n) if variable v is linear in n, but also smaller and bounded away from n, i.e., v = cn for some290

constant c such that 0 < c < 1.291

Lemma 4.1. Assume there are n balls in a bin, r of which are red and the remaining n− r are blue.292

Suppose t < min(r, n− r) balls are drawn from the bin uniformly at random without replacement,293

and let Ek,t,r,n be the event that k out of those t balls are red. Then, if r = Θ1(n) and t = Θ1(n),294

for every k ∈ {0, . . . , t}: Pr (Ek,t,r,n) = O (1/
√
n) .295

Our high level approach toward proving Lemma 4.1 is as follows:296

1. We first use a counting argument to show that Pr (Ek,t,r,n) =
(
r
k

)(
n−r
t−k
)
/
(
n
t

)
.297

2. We then use Stirling’s approximation to show
(
r
k

)(
n−r
t−k
)
/
(
n
t

)
= O(n−1/2) for k = b trn c.298

3. Finally, with a max. likelihood argument, we show that arg maxk∈[n]

(
r
k

)(
n−r
t−k
)
/
(
n
t

)
≈ tr

n .299

By combining these, we have, Pr (Ek,t,r,n) ≤ maxk∈[n]

(
r
k

)(
n−r
t−k
)
/
(
n
t

)
≤
(
r
k∗

)(
n−r
t−k∗

)
/
(
n
t

)
for k∗ ≈300

tr
n (by the third step), which we bounded by O(n−1/2) (in the second step). The actual proof is301

however rather technical and is postponed to Appendix E.302

The next lemma shows that upon arrival of at, any position has probability at least O (1/
√
n) of303

being the correct rank for at, under some mild conditions. The proof of this lemma uses the previous304

anti-concentration bound for sampling without replacement by considering the elements smaller than305

at to be the red balls and the elements larger than at to be the blue balls. For at to have rank r and be306

the kth element in the ranking so far, the first t− 1 elements previously observed must contain k − 1307

red balls out of the r − 1 red balls and t− k blue balls out of the n− r blue balls.308

Lemma 4.2. Fix any permutation σ of [t] and let Oσ denote the event that aσ(1) < aσ(2) < . . . <309

aσ(t). If σ(k) = t, k = Θ1(t) and t = Θ1(n) then for any r: Pr (rk(at) = r | Oσ) = O (1/
√
n) .310

Proof. Define Ek as the event that “at is the k-th smallest element in a1, . . . , at”. We first have,311

Pr (rk(at) = r | Oσ) = Pr (rk(at) = r | Ek) . This is simply because rk(at) is only a function of the312

pairwise comparisons of at with other elements and does not depend on the ordering of the remaining313

elements between themselves. Moreover,314

Pr (rk(at) = r | Ek) = Pr (Ek | rk(at) = r) · Pr (rk(at) = r)

Pr (Ek)
= Pr (Ek | rk(at) = r) · t

n

since at is randomly partitioned across the [n] elements. Notice now that conditioned on rk(at) = r,315

the event Ek is exactly the event Ek−1,t−1,r−1,n−1 in the sampling without replacement process316

defined in Lemma 4.1. The n − 1 balls are all the elements but at, the r − 1 red balls correspond317

to elements smaller than at, the n− r blue balls to elements larger than at, and t− 1 balls drawn318

are the elements arrived before at. Finally, observe that Pr (r < k|Ek) = 0, so for r < k, the319

bound holds trivially. In the remaining cases, r = Θ1(n) and we use the bound in Lemma 4.1 with320

t/n = Θ(1).321
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Using the previous lemma, we can lower bound the cost due to the t-th element. Fix any deterministic322

algorithm A for the online ranking problem. Recall that π(at) denotes the learned rank of the item323

at arriving in the t-th time step. For any time step t ∈ [n], we use costA(t) to denote the cost324

incurred by the algorithm A in positioning the item at. More formally, if rk(at) = i, we have325

costA(t) :=
∣∣i− π(a(t))

∣∣. Theorem 2 then follows by Yao’s minimax principle principle and the326

following lemma, whose proof appears in the appendix327

Lemma 4.3. Fix any deterministic algorithm A. For any t = Θ1(n), E [costA(t)] = Ω (
√
n).328
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A Useful Concentration of Measure Inequalities493

We use the following two standard versions of Chernoff bound (see, e.g., [DP09]) throughout.494

Proposition A.1 (Multiplicative Chernoff bound). Let X1, . . . , Xn be n independent random vari-495

ables taking values in [0, 1] and let X :=
∑n
i=1Xi. Then, for any ε ∈ (0, 1],496

Pr (X ≥ (1 + ε) · E [X]) ≤ exp
(
−2ε2 · E [X]

)
.

Proposition A.2 (Additive Chernoff bound). Let X1, . . . , Xn be n independent random variables497

taking values in [0, 1] and let X :=
∑n
i=1Xi. Then,498

Pr (|X − E [X]| > t) ≤ 2 · exp

(
−2t2

n

)
.

Moreover, if X1, . . . , Xn are negatively correlated (i.e. Pr[Xi = 1,∀i ∈ S] ≤
∏
i∈S Pr[Xi = 1] for499

all S ⊆ [n]), then the upper tail holds: Pr (X − E [X] > t) ≤ exp
(
− 2t2

n

)
.500

Moreover, in the above setting, if X comes from a sampling with replacement process, then the501

inequality holds for both upper and lower tails. For sampling without replacement, we refer to502

Serfling [Ser74] for a complete discussion and for Chernoff bounds for negatively correlated random503

variables see [PS97].504

Proposition A.3 (Chernoff bound for sampling without replacement). Consider an urn with a ≥ b505

red and blue balls. Draw b balls uniformly from the urn without replacement and let X be the number506

of red balls drawn, then the two sided bound holds: Pr (|X − E [X]| > t) ≤ 2 · exp
(
− 2t2

b

)
.507

Proof. If Xi is the event that the i-th ball is red, then since Xi are negatively correlated, the upper508

tail Chernoff bound of X =
∑
iXi holds. Now, let Yi = 1 − Xi be the probability that the the509

i-th ball is blue and Y =
∑
i Yi. The upper tail for Y correspond to the lower tail for X , i.e.:510

Pr (X − E [X] < t) = Pr (Y − E [Y ] > t) ≤ exp
(
− 2t2

b

)
.511

B Sparse Secretary Ranking512

In this section, we consider the special case where the number of positions is very large, which we513

call sparse secretary ranking. In the extreme when m ≥ 2n+1 − 1 it is possible to assign a position to514

each secretary without ever incurring a mistake. To do that, build a complete binary tree of height n515

and associate each position in [m] with a node (both internal and leaf) of the binary tree such that516

the order of the positions corresponds to the pre-order induced by the binary tree (see figure B).517

Once the elements arrive in an online fashion, insert them in the binary tree and allocate them in the518

corresponding position.519

a1

a2

a3

a1a2 a3

Figure 1: Illustration of the binary tree algorithm for m = 7 and order a2 < a3 < a1.

We note that the above algorithm works for any order of arrival. If the elements arrive in random520

order, it is possible to obtain zero inversions with high probability for an exponentially smaller value521

of m. The idea is very similar to the one outlined above. Let Hn be a random variable corresponding522

to the height of a binary tree built from n elements in random order. Reed [Ree03] shows that523
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E[Hn] = α ln(n), Var[Hn] = O(1) where α is the solution of the equation α ln(2e/α) = 1 which is524

α ≈ 4.31107.525

Since the arrival order of secretaries is uniformly random, the binary tree algorithm won’t touch any526

node with height more than h̄ = d(α + O(ε)) ln(n)e with probability 1 − o(1). This observation527

allows us to define an algorithm that obtains zero inversions with probability 1 − o(1). If m ≥528

2h̄+1 − 1 = Ω(n2.998+ε), we can build a binary tree with height h̄ and associate each node of the529

tree to a position. Once the elements arrive, allocate the item in the corresponding position. If an530

item is added to the tree with height larger than h̄, start allocating the items arbitrarily.531

Theorem 3. If m ≥ n2.988+ε then the algorithm that allocates according to a binary tree incurs zero532

inversions with probability 1− o(1).533

Devroye [Dev86] bounds the tail of the distribution of Hn as follows:

Pr[Hn ≥ k · lnn] ≤ 1

n
·
(

2e

k

)k·lnn

for k > 2. In particular: Pr[Hn ≥ 6.3619 · lnn] ≤ 1/n2. Adapting the analysis above, we can show534

that for m ≥ 4.41 (where 4.41 = 6.3619 · ln(2)) the algorithm incurs less than one inversion in535

expectation.536

Corollary 4. If m ≥ Ω(n4.41) then the algorithm that allocates according to a binary tree incurs537

O(1) inversion in expectation.538

C General Secretary Ranking539

In the general case, we combine the ideas for the sparse and dense case to obtain an algorithm540

interpolating both cases. As described in Algorithm 2, we construct a complete binary search tree of541

height h and associating one position for each internal node, but for the leaves we associate a block542

of w = m/2h − 1 positions (see Figure 2). If we insert an element in a leaf, we allocate according543

to an instance of the dense ranking algorithm. By that we mean that the algorithm pretends that544

the elements allocated to that leaf are an isolated instance of dense ranking with w elements and545

w positions. We will set h such that in expectation there only w elements in each leaf with high546

probability. If at some point more than w elements are placed in any given leaf, the algorithm starts547

allocating arbitrarily.548

a1

a2

a3, a4

dense ranking dense ranking dense ranking dense ranking

a1a2 a3, a4

Figure 2: Illustration of the general algorithm (Algorithm 2) for order a2 < a3 < a4 < a1. The
leaves are associated with blocks of w consecutive positions and internal nodes are associated with a
single position. Elements a3 and a4 are associated with the same leaf and therefore we place them in
a block of w positions as we would in a dense ranking problem with w arrivals and w positions.
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ALGORITHM 2: General secretary ranking

1 Input: a set of m positions, at most n online arrivals and a height h.
2 Construct a complete binary search tree T of height h and associate one position for each internal node, and

a block of w = m/2h − 1 positions for each leaf such that the order of the positions corresponds to the
pre-order induced by the binary tree

3 for any time step t ∈ [n] and element at do
4 Insert at in the tree T
5 if at reaches an empty internal node then
6 Place at in the position corresponding to this internal node
7 end
8 else
9 Place at according to an instance of the dense ranking algorithm (Algorithm 1) over the block of

positions corresponding to the leaf reached by at. If there are no position available in that block,
place at arbitrarily

10 end
11 end

549

For stating our main theorem and its proof, it is convenient to define the functions:

f(α) =
α ln(2)− 1

1− 2α ln(2e/α)
g(α) =

1

1− 2α ln(2e/α)

defined in the interval (α0,∞) where α0 ≈ 4.910 is the solution to the equation 1−2α0 ln(2e/α0) =550

0. Both functions are monotone decreasing from +∞ (when α = α0) to zero (when α→∞). We551

are now ready to state our main theorem:552

Theorem 5. Assume m ≥ 10n log n and let α ∈ (α0,∞) be the solution to m
9n logn = nf(α), then553

the expected number of inversions of the general secretary ranking algorithm with h = α ln(ng(α))554

is Õ(n1.5−0.5g(α)).555

We note that the algorithm smoothly interpolated between the two cases previously analyzed. When556

m = n log(n) then α → ∞, so g(α) → 0 and the bound on the theorem becomes Õ(n1.5). In the557

other extreme, when m→∞, then α→ α0 and therefore g(α)→∞, so the bound on the number558

of inversions becomes O(1).559

Proof. Let Ht be the height of the binary tree formed by the first t elements. By Devroye’s bound
[Dev86], the probability that a random binary tree formed by the first t := ng(α) elements has height
more than h = α ln(t) is

Pr[Ht ≥ h] ≤ 1

t
(2e/α)α ln t = tα ln(2e/α)−1.

In case this event happens, we will use the trivial bound of O(n2) on the number of inversions, which
will contribute

n2tα ln(2e/α)−1 = n1.5−0.5/(1−2α ln(2e/α)) = n1.5−0.5g(α)

to the expectation. From this point on, we consider the remaining event that Ht < h.560

Next, we condition on the first t elements that we denote b1, . . . , bt such that b1 < · · · < bt. We note561

that for each remaining element ai, i > t, we have bj < ai < bj+1 with probability 1/(t + 1) for562

all j ∈ [t]. Since b1, . . . , bt are all placed in positions corresponding to internal nodes, each element563

has at most probability 1/t of hitting any of the dense-ranking instances. Thus, each dense ranking564

instance receives at most n/t elements in expectation, and by a standard application of the Chernoff565

bound, the probability that a dense ranking instance sees more than 9(n/t) log n elements is n−3. If566

this is the case for some dense ranking instance, we again use the n2 trivial bound, which contributes567

at most 1 to the expected number of inversions. For the remainder of the proof, we assume that each568

dense ranking instance gets at most 9(n/t) log n elements.569

Next, note that the size of each block is

w =
m

2h
− 1 =

m

tα ln(2)
− 1 ≥ 9(n/t) log n
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where the last equality is by definition of t. Thus, no more than w elements are inserted in any leaf.570

Let vi is the number of elements in each of the dense rank instances. We note that within the elements
in each dense ranking block the arrival order is random, so we can apply the bound from Section 3
and obtain by Theorem 1 that the total expected cost from the inversions caused by dense rank is at
most ∑

i

O
(
v1.5
i

)
≤ Õ(t · (n/t)1.5) = Õ(n2tα ln(2e/α)−1) = Õ(n1.5−0.5g(α))

since
∑
i vi = n and vi ≤ (n/t) log(n). By the construction there are no inversions between571

elements inserted in different leaves and between an element inserted in an internal node and any572

other element. Summing the expected number of mistakes from the events Ht ≥ h and Ht < h, we573

get the bound in the statement of the theorem.574

D Missing Analysis from Section 3575

Estimation Cost: Proof of Lemma 3.1. We begin with the following useful proposition.576

Proposition D.1. If 1 < t ≤ n and 0 ≤ r ≤ t− 1, then r ·
(
n
t

)
≤ r ·

(
n−1
t−1

)
≤ (r + 1) ·

(
n
t

)
.577

Proof. 0 ≤ r
(
n−1
t−1 −

n
t

)
= r n−t

t(t−1) ≤ (t− 1) n−t
t(t−1) ≤

n
t .578

The correctness of the estimation step in our algorithm relies on the following proposition that579

bounds the probability of the deviation between the estimated rank and the true rank of each element580

(depending on the time step it arrives). The proof uses the Chernoff bound for sampling without581

replacement.582

Proposition D.2. For any t > 1 and any α ≥ 0, Pr
( ∣∣∣rk(at)− r̃k(at)

∣∣∣ ≥ 1 + n
t + α · n−1√

t−1

)
≤583

e−Ω(α2).584

Proof. Fix any t ∈ [n] and element at and recall that rk(at) denotes the true rank of at. Conditioned585

on a fixed value for the rank of at, the distribution of the number of elements rt that arrived before586

at and have a smaller rank is equivalent to a sampling without replacement process of t − 1 balls587

where the urn has rk(at)− 1 red balls and n− rk(at) blue balls (and the goal is to count the number588

of red balls). As such E[rt] = rk(at)−1
n−1 and by the Chernoff bound for sampling without replacement589

(Proposition A.3 with a = n and b = t− 1), we have:590

Pr
(
|rt − E [rt]| ≥ α

√
t− 1

)
≤ 2 · exp

(
− 2(α

√
t− 1)2

t− 1

)
= e−Ω(α2).

We now argue that591

Pr
( ∣∣∣rk(at)− r̃k(at)

∣∣∣ ≥ 1 +
n

t
+ α · n− 1√

t− 1

)
≤ Pr

(
|rt − E [rt]| ≥ α

√
t− 1

)
.

which finalizes the proof by the bound in above equation.592

To see this, note that,593

α
n− 1√
t− 1

≥
∣∣∣∣n− 1

t− 1
rt − rk(at)

∣∣∣∣ ≥ |xt − rk(at)| −
n

t
≥
∣∣∣r̃k(at)− rk(at)

∣∣∣− 1− n

t

The first inequality follows from substituting the expectation in |rt − E [rt]| ≥ α
√
t− 1 and multi-594

plying the whole expression by (n− 1)/(t− 1). The second inequality just follows from the fact that595

both the variable xt (defined in step 4 of Algorithm 2) and n−1
t−1 rt are in the interval [nt rt,

n
t (rt + 1)].596

The fact that xt is in this interval comes directly from its definition in the algorithm and the fact that597
n−1
t−1 rt is in the interval is by a simple calculation (see Proposition D.1 in Appendix D). The last598

inequality follows from the fact that r̃k(at) = dxte.599
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We are now ready to prove Lemma 3.1.600

Proof of Lemma 3.1. Fix any t > 1; we have,601

E
[∣∣∣rk(at)− r̃k(at)

∣∣∣−1− n

t

]
≤
∫ ∞
α=0

Pr
( ∣∣∣rk(at)− r̃k(at)

∣∣∣−1− n

t
≥ α · n− 1√

t− 1

)
· n− 1√

t− 1
· dα

≤ n− 1√
t− 1

·
∫ ∞
α=0

e−Ω(α2) · dα = O
( n√

t

)
. (by Proposition D.2)

Hence, using the trivial bound for t = 1 and the bound above for t > 1 we conclude that:602

E

[
n∑
t=1

∣∣∣rk(at)− r̃k(at)
∣∣∣] =

n∑
t=1

E
[∣∣∣rk(at)− r̃k(at)

∣∣∣] =

n∑
t=1

O

(
n

t
+

n√
t

)
= O(n

√
n).

Missing analysis for Lemma 3.2.603

Claim 3.4. Let α ≥ 1, an interval of size s ≥ 2αmax
(

1,
(

t
n−t

)2)
is popular at time t w.p. e−O(α).604

Proof. The proof follows directly from the Chernoff bound in Proposition A.1. For t′ ∈ [t], let Xt′605

be the event that r̃k(at′) ∈ I and X =
∑t
t′=1Xt′ , then setting ε = min(1, n−tt ) we have that:606

Pr (I is popular) = Pr (X ≥ s) ≤ Pr (X > (1 + ε) · ε · E[X])

≤ exp
(
− ε2 · E[X]

2

)
= e−O(α)

as E[X] = s · t/n.607

Proposition D.3. For any integer n > 0,
∑n−

√
n

t=1

(
t

n−t

)2

= O(n
√
n).608

Proof. By defining k = n− t, we have,609

n−
√
n∑

t=1

(
t

n− t

)2

=

n−1∑
k=
√
n

(
n− k
k

)2

≤
n−1∑
k=
√
n

(n
k

)2

For i ∈ [
√
n], define Ki := {k | i ·

√
n ≤ k < (i + 1) ·

√
n}. For any k ∈ Ki, we have, nk ≤

√
n
i .610

As such, we can write,611

n−1∑
k=
√
n

(n
k

)2

=

√
n∑

i=1

∑
k∈Ki

(n
k

)2

≤

√
n∑

i=1

∑
k∈Ki

(√
n

i

)2

≤

√
n∑

i=1

n · |Ki| ·
1

i2
≤ n
√
n ·

√
n∑

i=1

1

i2
= O(n

√
n)

as the series
∑
i

1
i2 is a converging series.612

E Anti-Concentration for Sampling Without Replacement613

We prove Lemma 4.1 restated here for convenience.614

Lemma (Restatement of Lemma 4.1). Assume there are n balls in a bin, r of which are red and the615

remaining n − r are blue. Suppose t < min(r, n − r) balls are drawn from the bin uniformly at616

random without replacement, and let Ek,t,r,n be the event that k out of those t balls are red. Then, if617

r = Θ1(n) and t = Θ1(n), for every k ∈ {0, . . . , t}: Pr (Ek,t,r,n) = O (1/
√
n) .618

To prove Lemma 4.1, we will describe the sampling without replacement process explicitly and619

bound the relevant probabilities.620
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Proposition E.1. Let 0 < c < 1 be a constant. Then:(
n

cn

)
= Θ(n−1/2c−(cn+1/2)(1− c)−((1−c)n+1/2))

The notation y = Θ(x) in the lemma statement means that there are universal constants 0 < α < α621

independent of c and n such that α · x ≤ y ≤ α · x. The proof is based on the following version of622

Stirling’s approximation:
√

2π nn+ 1
2 e−n ≤ n! ≤ e nn+ 1

2 e−n. which can be written in our notation623

as: n! = Θ(nn+ 1
2 e−n). The proof of the previous lemmas follows from just expanding the factorials624

in the definition of the binomial:625

Proof. Observe that626 (
n

cn

)
=

n!

(cn)!((1− c)n)!
= Θ

(
nn+ 1

2 e−n

(cn)cn+ 1
2 e−cn((1− c)n)(1−c)n+ 1

2 e−((1−c)n)

)
The statement follows from simplifying the right hand side.627

Lemma E.2. Assume that r = Θ1(n) and t = Θ1(n) and t ≤ min(r, n− r), then for k = brt/nc,
we have (

r
k

)
·
(
n−r
t−k
)(

n
t

) = O
(
1/
√
n
)
.

Proof. Start by writing r = cr · n and t = ct · n for 0 < cr, ct < 1. It will be convenient to assume
that k = rt/n is an integer (if not and we need to apply floors, the exact same proof work by keeping
track of the errors introduced by floor). Then we can write: First, note that(

r
k

)
·
(
n−r
t−k
)(

n
t

) =

(
crn
ctcrn

)
·
(

(1−cr)n
(1−cr)ctn

)(
n
ctn

)
We can now apply the approximation in Proposition E.1 obtaining:

Θ

(
n1/2c

ctn+ 1
2

t (1− ct)(1−ct)n+ 1
2

(crn)1/2c
ct(crn)+ 1

2
t (1− ct)(1−ct)(crn)+ 1

2 ((1− cr)n)1/2c
ct((1−cr)n)+ 1

2
t (1− ct)(1−ct)((1−cr)n)+ 1

2

)

Simplifying this expressoin, we get: Θ
(

(nct(1− ct)cr(1− cr))−1/2
)

= Θ1 (1/
√
n).628

Lemma E.3. Fix any r, t, n such that r, t ≤ n. Then,

arg max
k∈[n]

(
r
k

)
·
(
n−r
t−k
)(

n
t

) =
⌊
t · r
n

⌋
or
⌈
t · r
n

⌉
.

Proof. The proof is again simpler if we assume k = tr/n is an integer. If not, the same argument629

works controlling the errors. In that case, let k1 = tr/n+ i and k2 = tr/n+ i+ 1 and as before, let630

r = crn and t = ctn. Note that631

( r
k1

)·(n−r
t−k1

)
(n
t)

( r
k2

)·(n−r
t−k2

)
(n
t)

=

(
r
k1

)
·
(
n−r
t−k1

)(
r
k2

)
·
(
n−r
t−k2

) =

(
crn

ctcrn+i

)
·
(

(1−cr)n
(1−cr)ctn−i

)(
crn

ctcrn+i+1

)
·
(

(1−cr)n
(1−cr)ctn−i−1

) =
(ctcrn+ i+ 1) · ((1− ct)(1− cr)n+ i+ 1)

((1− ct)crn− i) · ((1− cr)ctn− i)

If i ≥ 0, then the last term is at least (ctcrn)·((1−ct)(1−cr)n)
((1−ct)crn)·((1−cr)ctn) which is greater than one. If i ≤ −1,632

then the last term is (ctcrn)·((1−ct)(1−cr)n)
((1−ct)crn)·((1−cr)ctn) which is smaller than one.633

Thus, (r
k)·(

n−r
t−k)

(n
t)

is increasing as k increases up to tr/n and then decreases. Thus, the maximum is634

reached at tr/n.635
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Proof of Lemma 4.1. We first use a simple counting argument to obtain an expression for Pr (Ek,t,r,n)

as a ratio of binomial coefficients. We note that there are
(
r
k

)
collections of k red balls,

(
n−r
t−k
)

collections of t− k blue balls, and that the total number of collections of t balls is
(
n
t

)
. Since the t

balls are drawn uniformly at random without replacement, we get

Pr (Ek,t,r,n) =

(
r
k

)
·
(
n−r
t−k
)(

n
t

) .

The O(1/
√
n) bound now follows directly from Lemma E.2 and Lemma E.3.636

Next, we prove Lemma 4.3.637

Lemma 4.3. Fix any deterministic algorithm A. For any t = Θ1(n), E [costA(t)] = Ω (
√
n).638

Proof. Let σ be a permutation of [t] and Oσ the event that aσ(1) < aσ(2) < . . . < aσ(t). For any
deterministic algorithm A, the choice of the position π(at) where to place the t-th element depends
only on σ. Let k = σ−1(t) be the relative rank of the t-th element. Since the distribution of k is
uniform in [t] (see the proof of Proposition 3.3), then we have that:

Pr
[
t

4
≤ k ≤ 3t

4

]
=

1

2

Conditioned on that event k = Θ1(t) so we are in the conditions of Lemma 4.2. Therefore, the
probability of each rank given the observations is at most O(1/

√
n). Therefore, there is a constant c

such that:

Pr
[∣∣rk(a(t))− π(a(t))

∣∣ < c
√
n

∣∣∣∣ t4 ≤ k ≤ 3t

4

]
≤ 1

2

Finally, we observe that:639

E [costA(t)] ≥ 1

2
· E
[∣∣rk(a(t))− π(a(t))

∣∣ ∣∣∣∣ t4 ≤ k ≤ 3t

4

]
≥ 1

2
· c
√
n · Pr

[∣∣rk(a(t))− π(a(t))
∣∣ ≥ c√n ∣∣∣∣ t4 ≤ k ≤ 3t

4

]
≥ c
√
n

4
.

640

We are now ready to prove Theorem 2.641

Proof of Theorem 2. For any deterministic algorithm, sum the bound in Lemma 4.3 for Θ(n) time642

steps. For randomized algorithms, the same bound extends via Yao’s minimax principle. The reason643

is that a randomized algorithm can be seen as a distribution on deterministic algorithms parametrized644

by the random bits it uses. If a randomized algorithm obtains less than O(n
√
n) inversions in645

expectation, then it should be possible to fix the random bits and obtain a deterministic algorithm646

with the same performance.647

F Hardness of Online Ranking with Adversarial Ordering648

Proposition F.1. If the ordering σ of the arrival of elements is adversarial, then any algorithm has649

cost Ω(n2) in expectation.650

Proof. At a high level, we construct an ordering such that at each iteration, the arrived element is651

either the largest or smallest element not yet observed with probability 1/2 each. Since the algorithm652

cannot distinguish between the two cases, it suffers a linear cost in expectation at each arrival.653

Formally, we define σ inductively. At round t, let it,− and it,+ be the minimum and maximum654

indices of the elements arrived previously. We define σ(t) such that σ(t) = ait,−+1 with probability655

1/2 and σ(t) = ait,+−1 with probability 1/2. Thus, the tth element arrived is either the smallest or656

largest element not yet arrived.657
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The main observation is that the pairwise comparisons at time t are identical whether a(t) = ait,−+1658

or a(t) = ait,+−1. This is since all the elements previously arrived are either maximal or minimal659

and there is no elements that are between ait,−+1 and ait,+−1 that have previously arrived. Thus the660

decision of the algorithm is independent of the randomization of the adversary for the tth element.661

Thus for any learned rank at time t, in expectation over the randomization of the adversary for the662

element arrived at time t, the learned rank is at expected distance of the true rank at least n/4 for663

t ≤ n/2. Thus the total cost is Ω(n2) in expectation.664
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