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Abstract

Energy based models (EBMs) are appealing due to their generality and simplicity
in likelihood modeling, but have been traditionally difficult to train. We present
techniques to scale MCMC based EBM training on continuous neural networks,
and we show its success on the high-dimensional data domains of ImageNet32x32,
ImageNet128x128, CIFAR-10, and robotic hand trajectories, achieving better
samples than other likelihood models and nearing the performance of contemporary
GAN approaches, while covering all modes of the data. We highlight some unique
capabilities of implicit generation such as compositionality and corrupt image
reconstruction and inpainting. Finally, we show that EBMs are useful models across
a wide variety of tasks, achieving state-of-the-art out-of-distribution classification,
adversarially robust classification, state-of-the-art continual online class learning,
and coherent long term predicted trajectory rollouts.

1 Introduction
Learning models of the data distribution and generating samples are important problems in machine
learning for which a number of methods have been proposed, such as Variational Autoencoders
(VAEs) [Kingma and Welling, 2014] and Generative Adversarial Networks (GANs) [Goodfellow
et al., 2014].In this work, we advocate for continuous energy-based models (EBMs), represented as
neural networks, for generative modeling tasks and as a building block for a wide variety of tasks.
These models aim to learn an energy function E(x) that assigns low energy values to inputs x in the
data distribution and high energy values to other inputs. Importantly, they allow the use of an implicit
sample generation procedure, where sample x is found from x ∼ e−E(x) through MCMC sampling.
Combining implicit sampling with energy-based models for generative modeling has a number of
conceptual advantages compared to methods such as VAEs and GANs which use explicit functions to
generate samples:

Simplicity and Stability: An EBM is the only object that needs to be trained and designed. Separate
networks are not tuned to ensure balance (for example, [He et al., 2019] point out unbalanced training
can result in posterior collapse in VAEs or poor performance in GANs [Kurach et al., 2018]).

Sharing of Statistical Strength: Since the EBM is the only trained object, it requires fewer model
parameters than approaches that use multiple networks. More importantly, the model being concen-
trated in a single network allows the training process to develop a shared set of features as opposed to
developing them redundantly in separate networks.

Adaptive Computation Time: Implicit sample generation in our work is an iterative stochastic
optimization process, which allows for a trade-off between generation quality and computation time.
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This allows for a system that can make fast coarse guesses or more deliberate inferences by running
the optimization process longer. It also allows for refinement of external guesses.

Flexibility Of Generation: The power of an explicit generator network can become a bottleneck on
the generation quality. For example, VAEs and flow-based models are bound by the manifold structure
of the prior distribution and consequently have issues modeling discontinuous data manifolds, often
assigning probability mass to areas unwarranted by the data. EBMs avoid this issue by directly
modeling particular regions as high or lower energy.

Compositionality: If we think of energy functions as costs for a certain goals or constraints, summa-
tion of two or more energies corresponds to satisfying all their goals or constraints [Mnih and Hinton,
2004, Haarnoja et al., 2017]. While such composition is simple for energy functions (or product of
experts [Hinton, 1999]), it induces complex changes to the generator that may be difficult to capture
with explicit generator networks.

Despite these advantages, energy-based models with implicit generation have been difficult to use on
complex high-dimensional data domains. In this work, we use Langevin dynamics [Welling and Teh,
2011], which uses gradient information for effective sampling and initializes chains from random
noise for more mixing. We further maintain a replay buffer of past samples (similarly to [Tieleman,
2008] or [Mnih et al., 2013]) and use them to initialize Langevin dynamics to allow mixing between
chains. An overview of our approach is presented in Figure 1.
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Figure 1: Overview of our method and the
interrelationship of the components involved.

Empirically, we show that energy-based models trained
on CIFAR-10 or ImageNet image datasets generate higher
quality image samples than likelihood models and near-
ing that of contemporary GANs approaches, while not
suffering from mode collapse. The models exhibit prop-
erties such as correctly assigning lower likelihood to out-
of-distribution images than other methods (no spurious
modes) and generating diverse plausible image comple-
tions (covering all data modes). Implicit generation allows
our models to naturally denoise or inpaint corrupted im-
ages, convert general images to an image from a specific
class, and generate samples that are compositions of mul-
tiple independent models.

Our contributions in this work are threefold. Firstly, we
present an algorithm and techniques for training energy-
based models that scale to challenging high-dimensional

domains. Secondly, we highlight unique properties of energy-based models with implicit generation,
such as compositionality and automatic decorruption and inpainting. Finally, we show that energy-
based models are useful across a series of domains, on tasks such as out-of-distribution generalization,
adversarially robust classification, multi-step trajectory prediction and online learning.

2 Related Work

Energy-based models (EBMs) have a long history in machine learning. Ackley et al. [1985], Hinton
[2006], Salakhutdinov and Hinton [2009] proposed latent based EBMs where energy is represented
as a composition of latent and observable variables. In contrast Mnih and Hinton [2004], Hinton et al.
[2006] proposed EBMs where inputs are directly mapped to outputs, a structure we follow. We refer
readers to [LeCun et al., 2006] for a comprehensive tutorial on energy models.

The primary difficulty in training EBMs comes from effectively estimating and sampling the partition
function. One approach to train energy based models is sample the partition function through
amortized generation. Kim and Bengio [2016], Zhao et al. [2016], Haarnoja et al. [2017], Kumar et al.
[2019] propose learning a separate network to generate samples, which makes these methods closely
connected to GANs [Finn et al., 2016], but these methods do not have the advantages of implicit
sampling noted in the introduction. Furthermore, amortized generation is prone to mode collapse,
especially when training the sampling network without an entropy term which is often approximated
or ignored.

An alternative approach is to use MCMC sampling to estimate the partition function. This has an
advantage of provable mode exploration and allows the benefits of implicit generation listed in the
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introduction. Hinton [2006] proposed Contrastive Divergence, which uses gradient free MCMC
chains initialized from training data to estimate the partition function. Similarly, Salakhutdinov and
Hinton [2009] apply contrastive divergence, while Tieleman [2008] proposes PCD, which propagates
MCMC chains throughout training. By contrast, we initialize chains from random noise, allowing
each mode of the model to be visited with equal probability. But initialization from random noise
comes at a cost of longer mixing times. As a result we use Gradient based MCMC (Langevin
Dynamics) for more efficient sampling and to offset the increase of mixing time which was also
studied previously in [Teh et al., 2003, Xie et al., 2016]. We note that HMC [Neal, 2011] may be an
even more efficient gradient algorithm for MCMC sampling, though we found Langevin Dynamics to
be more stable. To allow gradient based MCMC, we use continuous inputs, while most approaches
have used discrete inputs. We build on idea of PCD and maintain a replay buffer of past samples to
additionally reduce mixing times.

3 Energy-Based Models and Sampling

Given a datapoint x, let Eθ(x) ∈ R be the energy function. In our work this function is represented
by a deep neural network parameterized by weights θ. The energy function defines a probability
distribution via the Boltzmann distribution pθ(x) = exp(−Eθ(x))

Z(θ) , where Z(θ) =
∫

exp(−Eθ(x))dx

denotes the partition function. Generating samples from this distribution is challenging, with previous
work relying on MCMC methods such as random walk or Gibbs sampling [Hinton, 2006]. These
methods have long mixing times, especially for high-dimensional complex data such as images. To
improve the mixing time of the sampling procedure, we use Langevin dynamics which makes use of
the gradient of the energy function to undergo sampling

x̃k = x̃k−1 − λ

2
∇xEθ(x̃

k˘1) + ωk, ωk ∼ N (0, λ) (1)

where we let the above iterative procedure define a distribution qθ such that x̃K ∼ qθ. As shown by
Welling and Teh [2011] as K →∞ and λ→ 0 then qθ → pθ and this procedure generates samples
from the distribution defined by the energy function. Thus, samples are generated implicitly† by the
energy function E as opposed to being explicitly generated by a feedforward network.

In the domain of images, if the energy network has a convolutional architecture, energy gradient
∇xE in (1) conveniently has a deconvolutional architecture. Thus it mirrors a typical image generator
network architecture, but without it needing to be explicitly designed or balanced. We take two views
of the energy function E: firstly, it is an object that defines a probability distribution over data and
secondly it defines an implicit generator via (1).

3.1 Maximum Likelihood Training

We want the distribution defined by E to model the data distribution pD, which we do by minimizing
the negative log likelihood of the dataLML(θ) = Ex∼pD [− log pθ(x)] where− log pθ(x) = Eθ(x)−
logZ(θ). This objective is known to have the gradient (see [Turner, 2005] for derivation) ∇θLML =
Ex+∼pD [∇θEθ(x+)] − Ex−∼pθ [∇θEθ(x−)]. Intuitively, this gradient decreases energy of the
positive data samples x+, while increasing the energy of the negative samples x− from the model pθ.
We rely on Langevin dynamics in (1) to generate qθ as an approximation of pθ:

∇θLML ≈ Ex+∼pD
[
∇θEθ(x+)

]
− Ex−∼qθ

[
∇θEθ(x−)

]
. (2)

This is similar to the gradient of the Wasserstein GAN objective [Arjovsky et al., 2017], but with an
implicit MCMC generating procedure and no gradient through sampling. This lack of gradient is
important as it controls between the diversity in likelihood models and the mode collapse in GANs.

The approximation in (2) is exact when Langevin dynamics generates samples from p, which happens
after a sufficient number of steps (mixing time). We show in the supplement that pd and q appear to
match each other in distribution, showing evidence that p matches q. We note that even in cases when
a particular chain does not fully mix, since our initial proposal distribution is a uniform distribution,
all modes are still equally likely to be explored.

†Deterministic case of procedure in (1) is x = arg minE(x), which makes connection to implicit functions
more clear.
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3.2 Sample Replay Buffer

Langevin dynamics does not place restrictions on sample initialization x̃0 given sufficient sampling
steps. However initialization plays an crucial role in mixing time. Persistent Contrastive Divergence
(PCD) [Tieleman, 2008] maintains a single persistent chain to improve mixing and sample quality. We
use a sample replay buffer B in which we store past generated samples x̃ and use either these samples
or uniform noise to initialize Langevin dynamics procedure. This has the benefit of continuing to
refine past samples, further increasing number of sampling steps K as well as sample diversity. In all
our experiments, we sample from B 95% of the time and from uniform noise otherwise.

3.3 Regularization and Algorithm
Arbitrary energy models can have sharp changes in gradients that can make sampling with Langevin
dynamics unstable. We found that constraining the Lipschitz constant of the energy network can
ameliorate these issues. To constrain the Lipschitz constant, we follow the method of [Miyato et al.,
2018] and add spectral normalization to all layers of the model. Additionally, we found it useful
to weakly L2 regularize energy magnitudes for both positive and negative samples during training,
as otherwise while the difference between positive and negative samples was preserved, the actual
values would fluctuate to numerically unstable values. Both forms of regularization also serve to
ensure that partition function is integrable over the domain of the input, with spectral normalization
ensuring smoothness and L2 coefficient bounding the magnitude of the unnormalized distribution.
We present the algorithm below, where Ω(·) indicates the stop gradient operator.

Algorithm 1 Energy training algorithm
Input: data dist. pD (x), step size λ, number of steps
K
B  ∅
while not converged do

x+
i � pD

x0
i � B with 95% probability and U otherwise

. Generate sample from q� via Langevin dynamics:
for sample step k = 1 to K do

x̃k  x̃k−1 � r xE� (x̃k−1) + ω, ω �
N (0, σ)

end for
x−i = Ω(x̃k

i )

. Optimize objective αL 2 + L ML wrt θ:
∆θ  r �

1
N

P
i α(E� (x+

i )2 + E� (x−i )2) +

E� (x+
i ) � E� (x−i )

Update θ based on ∆θ using Adam optimizer

B  B [ x̃i

end while

Figure 2: Conditional ImageNet32x32 EBM samples

4 Image Modeling

(a) GLOW Model (b) EBM (c) EBM (10 historical) (d) EBM Sample Buffer

Figure 3: Comparison of image generation techniques on unconditional CIFAR-10 dataset.

In this section, we show that EBMs are effective generative models for images. We show EBMs
are able to generate high fidelity images and exhibit mode coverage on CIFAR-10 and ImageNet.
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