
Figure 3: Projecting 50-dimensional embeddings obtained by training a simple neural network
without SSE (Left), and with SSE-Graph (Center) , SSE-SE (Right) into 3D space using PCA.

Figure 4: Illustration of how SSE-Graph algorithm in Figure 1 works for a simple neural network.

5 Appendix

We find that SSE with knowledge graphs, i.e., SSE-Graph, can force similar embeddings to cluster when
compared to the original neural network without SSE-Graph. In Figure 3, one can easily see that more
embeddings tend to cluster into 2 black holes after applying SSE-Graph when embeddings are projected into
3D spaces using PCA. Interestingly, a similar phenomenon occurs when assuming the knowledge graph is a
complete graph, which we would introduce as SSE-SE below.

For experiments in Section 4, we use Julia and C++ to implement SGD. For experiments in Section 4, and
Section 4, we use Tensorflow and SGD/Adam Optimizer. For experiments in Section 4, we use Pytorch and
Adam with noam decay scheme and warm-up. We find that none of these choices affect the strong empirical
results supporting the effectiveness of our proposed methods, especially the SSE-SE. In any deep learning
frameworks, we can introduce stochasticity to the original embedding look-up behaviors and easily implement
SSE-Layer in Figure 1 as a custom operator.

5.1 Neural Networks with One Hidden Layer

To run SSE-Graph, we need to construct good-quality knowledge graphs on embeddings. We managed to
match movies in Movielens1m and Movielens10m datasets to IMDB websites, therefore we can extract plentiful
information for each movie, such as the cast of the movies, user reviews and so on. For simplicity reason, we
construct the knowledge graph on item-side embeddings using the cast of movies. Two items are connected by
an edge when they share one or more actors/actresses. For user side, we do not have good quality graphs: we
are only able to create a graph on users in Movielens1m dataset based on their age groups but we do not have
any side information on users in Movielens10m dataset. When running experiments, we do a parameter sweep
for weight decay parameter and then fix it before tuning the parameters for SSE-Graph and SSE-SE. We utilize
different ⇢ and p for user and item embedding tables respectively. The optimal parameters are stated in Table 1
and Table 2. We use the learning rate of 0.01 in all SGD experiments.

11

In the first leg of experiments, we examine users with fewer than 60 ratings in Movielens1m and Movielens10m
datasets. In this scenario, the graph should carry higher importance. One can easily see from Table 1 that without
using graph information, our proposed SSE-SE is the best performing matrix factorization algorithms among all
methods, including popular ALS-MF and SGD-MF in terms of RMSE. With Graph information, our proposed
SSE-Graph is performing significantly better than the Graph Laplacian Regularized Matrix Factorization method.
This indicates that our SSE-Graph has great potentials over Graph Laplacian Regularization as we do not
explicitly penalize the distances across embeddings but rather we implicitly penalize the effects of similar
embeddings on the loss.

In the second leg of experiments, we remove the constraints on the maximum number of ratings per user. We
want to show that SSE-SE can be a good alternative when graph information is not available. We follow the
same procedures in [31, 32]. In Table 2, we can see that SSE-SE can be used with dropout to achieve the
smallest RMSE across Douban, Movielens10m, and Netflix datasets. In Table 3, one can see that SSE-SE is
more effective than dropout in this case and can perform better than STOA listwise approach SQL-Rank [32] on
2 datasets out of 3.

In Table 2, SSE-SE has two tuning parameters: probability pu to replace embeddings associated with user-side
embeddings and probability pi to replace embeddings associated with item side embeddings because there are
two embedding tables. But here for simplicity, we use one tuning parameter ps = pu = pi. We use dropout
probability of pd, dimension of user/item embeddings d, weight decay of � and learning rate of 0.01 for all
experiments, with the exception that the learning rate is reduced to 0.005 when both SSE-SE and Dropout
are applied. For Douban dataset, we use d = 10,� = 0.08. For Movielens10m and Netflix dataset, we use
d = 50,� = 0.1.

5.2 Neural Machine Translation

We use the transformer model [30] as the backbone for our experiments. The control group is the standard
transformer encoder-decoder architecture with self-attention. In the experiment group, we apply SSE-SE towards
both encoder and decoder by replacing corresponding vocabularies’ embeddings in the source and target sen-
tences. We trained on the standard WMT 2014 English to German dataset which consists of roughly 4.5 million
parallel sentence pairs and tested on WMT 2008 to 2018 news-test sets. Sentences were encoded into 32,000
tokens using a byte-pair encoding. We use the SentencePiece, OpenNMT and SacreBLEU implementations
in our experiments. We trained the 6-layer transformer base model on a single machine with 4 NVIDIA V100
GPUs for 20,000 steps. We use the same dropout rate of 0.1 and label smoothing value of 0.1 for the baseline
model and our SSE-enhanced model. Both models have dimensionality of embeddings as d = 512. When
decoding, we use beam search with the beam size of 4 and length penalty of 0.6 and replace unknown words
using attention. For both models, we average last 5 checkpoints (we save checkpoints every 10,000 steps) and
evaluate the model’s performances on the test datasets using BLEU scores. The only difference between the
two models is whether or not we use our proposed SSE-SE with p = 0.01 in Equation 6 for both encoder and
decoder embedding layers.

5.3 BERT

In the first leg of experiments, we crawled one million user reviews data from IMDB and pre-trained the
BERT-Base model (12 blocks) for 500, 000 steps using sequences of maximum length 512 and batch size of 8,
learning rates of 2e�5 for both models using one NVIDIA V100 GPU. Then we pre-trained on a mixture of our
crawled reviews and reviews in IMDB sentiment classification tasks (250K reviews in train and 250K reviews in
test) for another 200, 000 steps before training for another 100, 000 steps for the reviews in IMDB sentiment
classification task only. In total, both models are pre-trained on the same datasets for 800, 000 steps with the
only difference being our model utilizes SSE-SE. In the second leg of experiments, we fine-tuned the two models
obtained in the first-leg experiments on two sentiment classification tasks: IMDB sentiment classification task
and SST-2 sentiment classification task. The goal of pre-training on IMDB dataset but fine-tuning for SST-2 task
is to explore whether SSE-SE can play a role in transfer learning.

The results are summarized in Table 6 for IMDB sentiment task. In experiments, we use maximum sequence
length of 512, learning rate of 2e�5, dropout probability of 0.1 and we run fine-tuning for 1 epoch for the two
pre-trained models we obtained before. For the Google pre-trained BERT-base model, we find that we need to
run a minimum of 2 epochs. This shows that pre-training can speed up the fine-tuning. We find that Google
pre-trained model performs worst in accuracy because it was only pre-trained on Wikipedia and books corpus
while ours have seen many additional user reviews. We also find that SSE-SE pre-trained model can achieve
accuracy of 0.9542 after fine-tuning for one epoch only. On the contrast, the accuracy is only 0.9518 without
SSE-SE for embeddings associated with output yi.

For the SST-2 task, we use maximum sequence length of 128, learning rate of 2e�5, dropout probability of 0.1
and we run fine-tuning for 3 epochs for all 3 models in Table 7. We report AUC, accuracy and F1 score for
dev data. For test results, we submitted our predictions to Glue website for the official evaluation. We find that

12

Figure 5: Simulation of a bound on ⇢

L,n

for the movielens1M dataset. Throughout the simulation, L
is replaced with ` (which will bound ⇢

L,n

by Jensen’s inequality). The SSE probability parameter
dictates the probability of transitioning. When this is 0 (box plot on the right), the distribution is that
of the samples from the standard Rademacher complexity (without the sup and expectation). As we
increase the transition probability, the values for ⇢

L,n

get smaller.

even in transfer learning, our SSE-SE pre-trained model still enjoys advantages over Google pre-trained model
and our pre-trained model without SSE-SE. Our SSE-SE pre-trained model achieves 94.3% accuracy on SST-2
test set versus 93.6 and 93.8 respectively. If we are using SSE-SE for both pre-training and fine-tuning, we can
achieve 94.5% accuracy on the SST-2 test set, which approaches the 94.9 score reported by the BERT-Large
model. SSE probability of 0.01 is used for fine-tuning.

5.4 Proofs

Throughout this section, we will suppress the probability parameters, p(., .|�) = p(., .).

Proof of Theorem 1. Consider the following variability term,

sup
⇥

|S(⇥)� Sn(⇥)|. (14)

Let us break the variability term into two components

EX,Y sup
⇥

��
Sn(⇥)� EY |X [Sn(⇥)]

��+ EX,Y sup
⇥

��EY |X [Sn(⇥)]� S(⇥)
��
,

where X,Y represent the random input and label. To control the first term, we introduce a ghost dataset (xi, y
0
i),

where y

0
i are independently and identically distributed according to yi|xi. Define

S

0
n(⇥) =

X

i

X

k

p(ji,k)`(E[k], y0
i|⇥) (15)

be the empirical SSE risk with respect to this ghost dataset.

We will rewrite EY |X [Sn(⇥)] in terms of the ghost dataset and apply Jensen’s inequality and law of iterated
conditional expectation:

E sup
⇥

��EY |X [Sn(⇥)]� Sn(⇥)
�� (16)

= E sup
⇥

��EY 0|X
⇥
S

0
n(⇥)� Sn(⇥)

⇤�� (17)

 EEY 0|X

sup
⇥

��
S

0
n(⇥)� Sn(⇥)

��
�

(18)

= E sup
⇥

��
S

0
n(⇥)� Sn(⇥)

��
. (19)

13

Notice that
S

0
n(⇥)� Sn(⇥) =

X

i

X

k

p(ji,k)
�
`(E[k], y0

i|⇥)� `(E[k], yi|⇥)
�

=
X

i

X

k

p(ji,k)
�
e(E[k], y0

i|⇥)� e(E[k], yi|⇥)
�
.

Because yi, y
0
i|X are independent the term (

P
k p(ji,k) (e(E[k], y0

i|⇥)� e(E[k], yi|⇥)))i is a vector of
symmetric independent random variables. Thus its distribution is not effected by multiplication by arbitrary
Rademacher vectors �i 2 {�1,+1}.

E sup
⇥

��
S

0
n(⇥)� Sn(⇥)

�� = E sup
⇥

�����
X

i

�i

X

k

p(ji,k)
�
e(E[k], y0

i|⇥)� e(E[k], yi|⇥)
�
����� .

But this is bounded by

2EE� sup
⇥

�����
X

i

�i

X

k

p(ji,k)e(E[k], yi|⇥)

����� .

For the second term,
E sup

⇥

��EY |X [Sn(⇥)]� S(⇥)
��

we will introduce a second ghost dataset x0
i, y

0
i drawn iid to xi, yi. Because we are augmenting the input then

this results in a new ghost encoding j0i. Let

S

0
n(⇥) =

X

i

X

k

p(j0i,k)`(E[k], y0
i|⇥) (20)

be the empirical risk with respect to this ghost dataset. Then we have that
S(⇥) = EX0EY 0|X0

S

0
n(⇥)

Thus,
E sup

⇥

��EY |X [Sn(⇥)]� S(⇥)
�� (21)

= E sup
⇥

��EX0
⇥
EY |X [Sn(⇥)]� EY 0|X0 [S0

n(⇥)]
⇤�� (22)

 EEX0

sup
⇥

��
EY |X [Sn(⇥)]� EY 0|X0 [S0

n(⇥)]
��
�

(23)

= E sup
⇥

��
EY |X [Sn(⇥)]� EY 0|X0 [S0

n(⇥)]
��
. (24)

Notice that we may write,

EY |X [Sn(⇥)]� EY 0|X0 [S0
n(⇥)] =

X

i

X

k

⇣
p(ji,k)� p(j0i,k)

⌘
L(E[k]|⇥)

Again we may introduce a second set of Rademacher random variables �0
i, which results in

E sup
⇥

��
EY |X [Sn(⇥)]� EY 0|X0 [S0

n(⇥)]
�� 2EE�0 sup

⇥

�����
X

i

�

0
i

X

k

p(ji,k)L(E[k]|⇥)

����� .

And this is bounded by

2EE�0 sup
⇥

�����
X

i

�

0
i

X

k

p(ji,k)L(E[k]|⇥)

����� 2E sup
⇥

�����
X

i

�

0
i

X

k

p(ji,k)`(E[k], yi|⇥)

�����

by Jensen’s inequality again.

Proof of Theorem 2. It is clear that 2B � B(⇥̂) + B(⇥⇤). It remains to show our concentration inequality.
Consider changing a single sample, (xi, yi) to (x0

i, y
0
i), thus resulting in the SSE empirical risk, Sn,i(⇥). Thus,

Sn(⇥)� Sn,i(⇥) =
X

k

p(ji,k) · `(E[k], yi|⇥)�
X

k

p(j0i,k) · `(E[k], y0
i|⇥)

=
X

k

p(ji,k) ·
�
`(E[k], yi|⇥)� `(E[k], y0

i|⇥)
�
+
X

k

⇣
p(j0i,k)� p(ji,k)

⌘
· `(E[k], y0

i|⇥)

 b

X

k

p(ji,k) +
X

k

p(j0i,k)

!
 2b.

Then the result follows from McDiarmid’s inequality.

14

	Introduction
	Related Work
	Stochastically Shared Embeddings
	General SSE with Knowledge Graphs: SSE-Graph
	Simplified SSE with Complete Graph: SSE-SE
	Theoretical Guarantees

	Experiments
	Appendix
	Neural Networks with One Hidden Layer
	Neural Machine Translation
	BERT
	Proofs

