
Supplementary Material382

A Omitted Results from Section 2383

A.1 Warm-Up: Basic Algorithm384

In this subsection, we present a basic algorithm that achieves α = 1 and whose runtime is385

poly(d)2Õ(1/(εγ2)). Despite its slow runtime, this algorithm serves as a warm-up for our more386

sophisticated constant factor approximation algorithm in the next subsection.387

We start by establishing a basic structural property of this setting which motivates our basic algorithm.388

We start with the following simple claim:389

Claim A.1. Let MD = E(x,y)∼D[xxT ] and w∗ be a unit vector such that errDγ (w∗) ≤ OPTDγ ≤390

1/2. Then, ‖MD‖2 ≥ w∗TMDw∗ ≥ γ2/2.391

Proof. By assumption, Pr(x,y)∼D[|〈w∗,x〉| ≥ γ] ≥ 1/2, which implies that392

E(x,y)∼D[(〈w∗,x〉)2
] ≥ γ2/2. The claim follows from the fact that vTMDv =393

E(x,y)∼D[(〈v,x〉)2
], for any v ∈ Rd, and the definition of the spectral norm.394

Claim A.1 allows us to obtain an approximation to the optimal halfspace by projecting on the space395

of large eigenvalues of MD. We will need the following terminology: For δ > 0, let V D≥δ be the396

space spanned by the eigenvalues of MD with magnitude at least δ and V D<δ be its complement. Let397

ProjV (v) denote the projection operator of vector v on subspace V . Then, we have the following:398

Lemma A.2. Let δ > 0 and w′ = ProjV D≥δ(w
∗). Then, errDγ/2(w′) ≤ errDγ (w∗) + 4δ/γ2.399

Proof. Let w∗ = w′ + w′′, where w′′ = ProjV D<δ(w
∗). Observe that for any (x, y), if400

y〈w′,x〉 ≤ γ/2 then y〈w∗,x〉 ≤ γ, unless |〈w′′,x〉| ≥ γ/2. Hence, errDγ/2(w′) ≤ errDγ (w∗) +401

Pr(x,y)∼D[|〈w′′,x〉| ≥ γ/2]. By definition of w′′ and MD, we have that E(x,y)∼D[(〈w′′,x〉)2] ≤ δ.402

By Markov’s inequality, we thus obtain Pr(x,y)∼D[(〈w′′,x〉)2 ≥ γ2/4] ≤ 4δ/γ2, completing the403

proof of the lemma.404

Motivated by Lemma A.2, the idea is to enumerate over V D≥δ , for δ = Θ(εγ2), and output a vector v405

with smallest empirical γ/2-margin error. To turn this into an actual algorithm, we work with a finite406

sample set and enumerate over an appropriate cover of the space V D≥δ . The pseudocode is as follows:

Algorithm 2 Basic 1-Agnostic Proper Learning Algorithm

1: Draw a multiset S = {(x(i), y(i))} of i.i.d. samples from D, where m = Ω(log(1/τ)/(ε2γ2)).
2: Let D̂m be the empirical distribution on S.
3: Let MD̂m = E(x,y)∼D̂m [xxT ].

4: Set δ = εγ2/16. Use SVD to find a basis of V D̂m≥δ .

5: Compute a δ/2-cover, Cδ/2, in `2-norm, of V D̂m≥δ ∩ Sd−1.

6: Let v ∈ argminw∈Cδ/2errD̂mγ/4(w).
7: return hv(x) = sign(〈v,x〉).

407

First, we analyze the runtime of our algorithm. The SVD of MD̂m can be computed in poly(d/δ)408

time. Note that V D̂m≥δ has dimension at most 1/δ. This follows from the fact that MD̂m is PSD409

and its trace is
∑d
i=1 λi = tr(MD̂m) = E(x,y)∼D̂m [tr(xxT )] ≤ 1, where we used that ‖x‖2 ≤ 1410

with probability 1 over D̂m. Therefore, the unit sphere of V D̂m≥δ has a δ/2-cover Cδ/2 of size411

(2/δ)O(1/δ) = 2Õ(1/(εγ2)) that can be computed in output polynomial time.412

11



We now prove correctness. The main idea is to apply Lemma A.2 for the empirical distribution413

D̂m combined with Fact 2.4. We proceed with the formal proof: First, we claim that for m =414

Ω(log(1/τ)/ε2), with probability at least 1−τ/2 over S, we have that errD̂mγ (w∗) ≤ errDγ (w∗)+ε/8.415

To see this, note that errD̂mγ (w∗) can be viewed as a sum of Bernoulli random variables with416

expectation errDγ (w∗). Hence, the claim follows by a Chernoff bound. By an argument similar to417

that of Lemma A.2, we have that errD̂mγ/4(v) ≤ errD̂mγ/2(w′) + ε/2. Indeed, we can write v = w′ + r,418

where ‖r‖2 ≤ δ/2, and follow the same argument.419

In summary, we have the following sequence of inequalities:420

errD̂mγ/4(v) ≤ errD̂mγ/2(w′) + ε/2 ≤ errD̂mγ (w∗) + ε/2 + ε/4

≤ errDγ (w∗) + ε/2 + ε/4 + ε/8 ,

where the second inequality uses Lemma A.2 for D̂m. Finally, we use Fact 2.4 for γ/4 and ε/8 to421

obtain that errD0−1(hv) ≤ errD̂mγ/4(v) + ε/8 ≤ OPTDγ + ε. The proof follows by a union bound.422

A.2 Algorithm for α-Agnostic Learning423

In this section, we show that if one wishes to obtain an α-agnostic learner for some large α� 1, one424

can obtain runtime exponential in 1/(αγ)2 rather than 1/γ2. Formally we prove:425

Theorem A.3. There is an algorithm that uses Õ(1/(ε2γ2)) samples, runs in time poly(d) ·426

(1/ε)Õ(1/(αγ)2) and is a α-agnostic proper learner for γ-margin halfspaces with probability 9/10.427

Let D be a distribution over Bd × {−1, 1}. Suppose that there exists a unit vector w∗ ∈ Rd such that428

Pr(x,y)∼D[y〈w∗,x〉 ≥ γ] ≥ 1−OPTDγ for some OPTDγ > 0. Suppose additionally that γ, ε > 0429

and α > 1. We will give an algorithm that given sample access to D along with γ, α, ε,OPTDγ ,430

draws O(log(α/ε)/(γε)2) samples, runs in time poly(d)(1/γε)Õ(1/(αγ)2) and with probability at431

least 9/10 returns a w with Pr(x,y)∼D[sign(〈w,x〉) 6= y) < O(α ·OPTDγ + ε).432

We begin by providing an algorithm that works if the distribution D is given explicitly. We will be433

able to reduce to this case by using the empirical distribution over a sufficiently large set of samples.434

Proposition A.4. Let D be an explicit distribution over Bd × {−1, 1}. Suppose that there exists435

a unit vector w∗ so that Pr(x,y)∼D[y〈w∗,x〉 ≥ γ] ≥ 1 − OPTDγ for some OPTDγ > 0. Sup-436

pose additionally that γ, ε > 0 and α > 1. There exists an algorithm that given D along with437

γ, α, ε,OPTDγ , runs in time poly(d)(|supp(D)|/(αγ · OPTDγ ))Õ(1/(αγ)2) and returns a w with438

Pr(x,y)∼D[sign(〈w,x〉) 6= y] < O(α ·OPTDγ + ε).439

Our main technical tool here will be the vector of Chow parameters [Cho61, OS08, DDFS14]:440

Definition A.5. Given a boolean function f : Bd → {±1}, and a distribution D on Bd the Chow441

parameters vector of f , is the vector Chow(f) given by the expectation Ex∼D[f(x)x].442

We note that learning the Chow parameters of the halfspace fw∗(x) = sign(〈w∗,x〉) determines the443

function fw∗ up to small error. In particular:444

Lemma A.6. Let g : Bd → {±1} satisfy Prx∼D[fw∗(x) 6= g(x)] ≥ ε. Then, we have that445

‖Chow(fw∗)−Chow(g)‖2 ≥ εγ.446

Proof. We note that447

‖Chow(fw∗)−Chow(g)‖2 ≥ 〈w∗,Chow(fw∗)−Chow(g)〉
= Ex∼D[〈w∗,x〉(fw∗(x)− g(x))]

= Ex∼D[|〈w∗,x〉| − g(x)〈v,x〉]
= 2Ex∼D[|〈w∗,x〉| · 1fw∗ (x)6=g(x)].

However, there is at least an ε probability that f(x) 6= g(x) and y〈w∗,x〉 ≥ γ, which implies that448

|〈w∗,x〉| ≥ γ. Therefore, this expectation is at least εγ.449

12



Lemma A.6, combined with the gradient descent type algorithm in [DDFS14], implies that learning450

an approximation to Chow(fw∗) is sufficient to learn a good hypothesis.451

Lemma A.7 ([DDFS14]). There is a polynomial time algorithm that given an explicit distribution452

D and a vector c with ‖Chow(fw∗) − c‖2 ≤ εγ, returns a w so that Pr(x,y)∼D[sign(〈w,x〉) 6=453

sign(〈w∗,x〉)] ≤ ε+OPTDγ . In particular, for this w we have that Pr(x,y)∼D[sign(〈w,x〉) 6= y] =454

O(ε+ OPTDγ ).455

Thus, it will suffice to approximate the Chow parameters of fw∗ to error αγ · OPTDγ . One might456

consider using the empirical Chow parameters, namely P = E(x,y)∼D[yx] for this purpose. In the457

realizable case, this would be the right thing to do, but we are working in the agnostic setting. We458

note that since y = sign(〈w∗,x〉) for all but an OPTDγ -fraction of x, and since the x are vectors459

in the unit ball, the error has `2-norm at most OPTDγ . In fact, if we have some vector w so that460

〈w, P − Chow(fw∗)〉 ≥ αγ · OPTDγ , then there must be some (x, y) in the domain of D with461

|〈x,w〉| ≥ αγ. The idea is to guess this w and then guess the true projection of Chow(fw∗) onto462

w.463

We present the pseudo-code for the algorithm establishing Proposition A.4 as Algorithm 3 below.

Algorithm 3 α-Agnostic Proper Learner of Proposition A.4
1: Let m be a sufficiently large multiple of log(1/αγ)/(αγ)2.
2: Let P = E(x,y)∼D[yx]

3: for every sequence x(1), . . . ,x(m) from D do
4: Let V be the span of x(1), . . . ,x(m).
5: Let C be a (αγ ·OPTDγ )-cover of the unit ball of V .
6: for each g ∈ C do
7: Let P ′ be obtained by replacing the projection of P onto V with g. In particular,
P ′ = P − ProjV (P ) + g.

8: Run Lemma A.7 to find a hypothesis w.
9: end for

10: end for
11: return The hypothesis that produces smallest empirical error among all w’s in Line 8.

464

Proof of Proposition A.4. Firstly, note that the runtime of this algorithm is clearly465

poly(d)
(

|D|
OPTDγ αγ

)Õ(1/(αγ)2)

. It remains to show correctness. We note that by Lemma A.7 it466

suffices to show that some P ′ is within O(αγ ·OPTDγ ) of Chow(fw∗). For this it suffices to show467

that there is a sequence x(1), . . . ,x(m) so that ‖ProjV ⊥(Chow(fw∗)− P )‖2 = O(αγOPTDγ ).468

To show this, let Vi be the span of x(1),x(2), . . . ,x(i). We claim that if ‖ProjV ⊥i (Chow(fw∗) −
P )‖2 � αγ ·OPTDγ , then there exists an x(i+1) in the support of D so that

‖ProjV ⊥i+1
(Chow(fw∗)− P )‖22 = ‖ProjV ⊥i (Chow(fw∗)− P )‖22(1− Ω(αγ)2).

To show this, we let w be the unit vector in the direction of ProjV ⊥i (Chow(fw∗)−P ). We note that

‖ProjV ⊥i (Chow(fw∗)−P )‖2 = 〈w,Chow(fw∗)−P 〉 = E(x,y)∼D[〈w,x〉(sign(〈w∗,x〉)−y)] .

Since sign(〈w∗,x〉) − y is 0 for all but an OPTDγ -fraction of (x, y), we have that there must be469

some x(i+1) so that 〈x(i+1),w〉 � ‖ProjV ⊥i (Chow(fw∗)− P )‖2/OPTDγ � αγ. If we chose this470

x(i+1), we have that471

‖ProjV ⊥i+1
(Chow(fw∗)− P )‖22 ≤ ‖ProjV ⊥i (Chow(fw∗)− P )‖22 − 〈x(i+1),Chow(fw∗)− P 〉2

= ‖ProjV ⊥i (Chow(fw∗)− P )‖22(1− 〈x(i+1),w〉2)

= ‖ProjV ⊥i (Chow(fw∗)− P )‖22(1− Ω(αγ)2).

13



Therefore, unless some ‖ProjV ⊥i (Chow(fw∗)− P )‖22 = O(αγ ·OPTDγ ), we have that472

‖ProjV ⊥m (Chow(fw∗)− P )‖22 = ‖P −Chow(fw∗)‖22 exp(−Ω(m(αγ)2))

≤ OPTDγ exp(log(αγ)) = OPTDγ αγ.

So in either case, we have some sequence of xs so that the projection onto V ⊥ of Chow(fw∗)− P473

is sufficiently small. This completes our analysis.474

In order to extend this to a proof of Theorem A.3, we will need to reduce to solving the problem on a475

finite sample set. This result can be obtained from Proposition A.4 by some fairly simple reductions.476

Firstly, we note that we can assume that OPTDγ ≥ ε/α, as increasing it to this value does not change477

the problem.478

Secondly, we note that if we let D̂ be the empirical distribution over a set of Ω(d/ε2) random samples,479

then with at least 2/3 probability we have that480

• Pr(x,y)∼D̂[y〈w∗,x〉 ≥ γ] ≥ 1−O(OPTDγ )481

• For any vector w, Pr(x,y)∼D[sign(〈w,x〉) 6= y] = Pr(x,y)∼D̂[sign(〈w,x〉) 6= y] +O(ε).482

The first statement here is by applying the Markov inequality to the probability that y〈w∗,x〉 < γ,483

and the second is by the VC-inequality [DL01]. We note that if the above hold, applying the algorithm484

from Proposition A.4 to D̂ will produce an appropriate w. This produces an algorithm that uses485

O(d/ε2) samples and has runtime O(d/γε)Õ(1/(αγ)2).486

Unfortunately, this algorithm is not quite satisfactory as the runtime and sample complexity scale487

poorly with the dimension d. In order to fix this, we will make use of an idea from [KS04]. Namely,488

we will first apply dimension reduction to a smaller number of dimensions before applying our489

algorithm. In particular, we will make use of the Johnson-Lindenstrauss lemma:490

Lemma A.8 ([JL84]). There exists a probability distribution over linear transformations A : Rd →491

Rm with m = O(log(1/δ)/ε2) so that for any unit vectors v,w ∈ Rd, PrA[|〈v,w〉−〈Av, Aw〉| >492

ε] < δ. Additionally, there are efficient algorithms to sample from such distributions over A.493

We note that this implies in particular that ‖Av‖2 = 1± ε except for with probability δ. Thus, by494

tweaking the parameters a little bit and letting hA(v) = Av/‖Av‖2, we have that hA(v) is always a495

unit vector and that 〈hA(v), hA(w)〉 = 〈v,w〉 ± ε except with probability δ.496

Next, we note that by taking ε = γ/2 and δ = OPTDγ in the above we have that497

PrA,(x,y)∼D[y〈hA(w∗), hA(x)〉 < γ/2]

≤ Pr(x,y)∼D[y〈w∗,x〉 < γ] + PrA,(x,y)∼D[|〈hA(w∗), hA(x)〉 − 〈w∗,x〉| > γ/2]

= O(OPTDγ ).

Thus, by the Markov inequality, with large constant probability over A we have that

Pr(x,y)∼D[y〈hA(w∗), hA(x)〉 < γ/2] = O(OPTDγ ).

But this means that the distribution (hA(x), y) satisfies the assumptions for our algorithm (with γ
replaced by γ/2 and OPTDγ by O(OPTDγ )), but in dimension m = O(log(α/ε)/γ2). Running the
algorithm described above on this set will find us a vector w so that

Pr(x,y)∼D[sign(〈w, hA(x)〉) 6= y] = O(αOPTDγ + ε).

However, it should be noted that

sign(〈w, hA(x)〉) = sign(〈w, Ax〉/‖Ax|2) = sign(〈w, Ax〉) = sign(AT 〈w,x〉) .

Thus, ATw satisfies the necessary conditions.498

Our final algorithm is given below:499

14



Algorithm 4 α-Agnostic Proper Learning of Theorem A.3
1: Pick A : Rd → Rm with m = O(log(α/ε)/γ2) from an appropriate Johnson-Lindenstrauss

family and define fA appropriately.
2: Take O(m/ε2) random samples and let D̂ be the uniform distribution over (Ax/‖Ax|2, y) for

samples (x, y) from this set.
3: Run the algorithm from Proposition A.4 on D̂ using γ/2 instead of γ to find a vector w.
4: return ATw.

B Omitted Results from Section 3500

B.1 Lower Bounds with Stronger Quantifiers on Parameters501

Before we proceed to our proofs, let us first state a running time lower bound with stronger quantifier.502

Recall that previously we only rule out algorithms that work for all combinations of d, γ, ε. Below503

we relax the quantifier so that we need the for all quantifier only for d.504

Lemma B.1. Assuming the (randomized) ETH, for any universal constant α ≥ 1, there exists505

ε0 = ε0(α) such that there is no α-agnostic learner for γ-margin halfspaces that runs in time506

O(2(1/γ)2−o(1))poly(d) for all d and for some 0 < ε < ε0 and 1
d0.5−o(1)

≤ γ = γ(d) ≤ 1
(log d)0.5+o(1)

507

that satisfies γ(d+1)
γ(d) ≥ Ω(1).508

We remark here that the lower and upper bounds on γ are essentially (i.e., up to lower order509

terms) the best possible. On the upper bound front, if γ ≥ Õ
(

1√
log d

)
, then our algorithmic result510

(Theorem 2.1) already give a poly(d, 1
ε )-time α-agnostic learner for γ-margin halfspaces (for all511

constant α > 1). On the other hand, if γ ≤ O( 1
d0.5+o(1)

), then the trivial algorithm that exactly solves512

ERM for m = O
(
d
ε2

)
samples only takes 2O(d/ε2) time, which is already asymtotically faster than513

2(1/γ)2−o(1) . The last condition that γ(d+1)
γ(d) is not too small is a sanity-check condition that prevents514

“sudden jumps” in γ(d) such as γ(d) = 1
(log d)0.1 and γ(d+ 1) = 1

(d+1)0.1 ; note that the condition is515

satisfied by “typical functions” such as γ(d) = 1
dc or γ(d) = 1

(log d)c for some constant c.516

As for ε, we only require the algorithm to work for any ε that is not too large, i.e., no larger than517

ε0(α). This later number is just a constant (when α is a constant). We note that it is still an interesting518

open question to make this requirement as mild as possible; specifically, is it possible to only require519

the algorithm to work for any ε < 1/2?520

B.2 Reduction from k-Clique and Proof of Theorem 3.2521

We now proceed to the proofs of our results, starting with Theorem 3.2.522

To prove Theorem 3.2, we reduce from the k-Clique problem. In k-Clique, we are given a graph G523

and an integer k, and the goal is to determine whether the graph G contains a k-clique (as a subgraph).524

We take the perspective of parameterized complexity. Recall that a parameterized problem with525

parameter k is said to be fixed parameter tractable (FPT) if it can be solved in time f(k)poly(n) for526

some computable function f , where n denotes the input size.527

It is well-known that k-Clique is complete for the class W[1] [DF95]. In other words, under the528

(widely-believed) assumption that W[1] does not collapse to FPT (the class of fixed parameter529

tractable problems), we cannot solve k-Clique in time f(k)poly(n) for any computable function f .530

We shall not formally define the class W[1] here; interested readers may refer to the book of Downey531

and Fellows for a much more in-depth discussion of the topic [DF13].532

Our reduction starts with an instance of k-Clique and produces an instance of agnostic learning with533

margin γ such that γ = Ω(1/k) (and the dimension is polynomial):534

Lemma B.2. There exists a polynomial-time algorithm that takes as input an n-vertex graph instance535

G and an integer k, and produces a distribution D over Bd × {±1} and γ, κ ∈ [0, 1] such that536

15



• (Completeness) If G contains a k-clique, then OPTDγ ≤ κ.537

• (Soundness) If G does not contains a k-clique, then OPTD0−1 > κ+ 0.001
n3 .538

• (Margin Parameter) γ ≥ Ω( 1√
k

).539

We remark here that, in Lemma B.2 and throughout the remainder of the section, we say that an540

algorithm produces a distribution D over Bd × {±1} to mean that it outputs the set of samples541

{(x(i), y(i))}i∈[m] and numbers di for each i ∈ [m] representing the probability of (x(i), y(i)) with542

respect to D. Note that this is stronger than needed since, to prove hardness of learning, it suffices to543

have an oracle that can sample from D, but here we actually explicitly produce a full description of544

D. Moreover, note that this implicitly implies that the support of D is of polynomial size (and hence,545

for any given h, errDγ (h) and errD0−1(h) can be efficiently computed).546

As stated above, Lemma B.2 immediately implies Theorem 3.2 because, if we can agnostically learn547

γ-margin halfspaces in time f( 1
γ )poly(d, 1

ε ), then we can solve k-Clique in f(O(
√
k))poly(n) time,548

which would imply that W[1] is contained in (randomized) FPT. This is formalized below.549

Proof of Theorem 3.2. Suppose that we have an f( 1
γ )poly(d, 1

ε )-time agnostic learner for γ-margin550

halfspaces. Given an instance (G, k) of k-Clique, we run the reduction from Lemma B.2 to produce551

a distribution D. We then run the learner on D with ε = 0.001
n3 (and with δ = 1/3). Note that the552

learner runs in time f(O(
√
k))poly(n) and produces a halfspace h. We then compute errD0−1(h); if553

it is no more than κ+ 0.001
n3 , then we output YES. Otherwise, output NO.554

The algorithm described above solves k-Clique (correctly with probability 2/3) in FPT time. Since555

k-Clique is W[1]-complete, this implies that W[1] is contained in randomized FPT.556

We now move on to prove Lemma B.2. Before we do so, let us briefly describe the ideas behind it.557

The dimension d will be set to n, the number of vertices of G. Each coordinate wi is associated with558

a vertex i ∈ V (G). In the completeness case, we would like to set wi = 1√
k

iff i is in the k-clique559

and wi = 0 otherwise. To enforce a solution to be of this form, we add two types of samples that560

induces the following constraints:561

• Non-Edge Constraint: for every non-edge (i, j), we should have wi + wj ≤ 1√
k

. That is,562

we should “select” at most one vertex among i, j.563

• Vertex Selection Constraint: each coordinate of w is at least 1√
k

. Note that we will violate564

such constraints for all vertices, except those that are “selected”.565

If we select the probabilities in D so that the non-edge constraints are weighted much larger than the566

vertex selection constraints, then it is always better to not violate any of the first type of constraints.567

When this is the case, the goal will now be to violate as few vertex selection constraints as possible,568

which is the same as finding a maximum clique, as desired.569

While the above paragraph describes the core idea of the reduction, there are two additional issues570

we have to resolve:571

• Constant Coordinate: first, notice that we cannot actually quite write a constraint of the572

form wi + wj ≤ 1√
k

using the samples because there is no way to express a value like 1√
k

573

directly. To overcome this, we have a “constant coordinate” w∗, which is supposed to be574

a constant, and replace the right hand side of non-edge constraints by w∗√
k

(instead of 1√
k

).575

The new constraint can now be represented by a sample.576

• Margin: in the above reduction, there was no margin at all! To get the appropriate margin,577

we “shift” the constraint slightly so that there is a margin. For instance, instead of w∗√
k

for a578

non-edge constraint, we use 1.1w∗√
k

. We now have a margin of ≈ 0.1√
k

and it is still possible579

to argue that the best solution is still to select a clique.580

The reduction, which follows the above outline, is formalized below.581

16



Proof of Lemma B.2. Given a graph G = (V,E), we use n to denote the number of vertices |V | and582

we rename its vertices so that V = [n]. We set d = n+ 1; we name the first coordinate ∗ and each of583

the remaining coordinates i ∈ [n]. For brevity, let us also define β = 1− 0.01
n2 . The distribution D is584

defined as follows:585

• Add a labeled sample (−e∗,−1) with probability β
2 in D. We refer to this as the positivity586

constraint for ∗.587

• For every pair of distinct vertices i, j that do not induce an edge in E, add a labeled sample588

( 1
2

(
1.1√
k
e∗ − ei − ej

)
, 1) with probability β

2((n2)−|E|)
inD. We refer to this as the non-edge589

constraint for (i, j).590

• For every vertex i, add a labeled sample ( 1
2

(
ei − 0.9√

k
e∗
)
, 1) with probability 0.01

n3 in D.591

We refer to this as the vertex selection constraint for i.592

Finally, let γ = 0.1
2
√

2k
, κ = (n− k)

(
0.01
n3

)
. It is obvious that the reduction runs in polynomial time.593

Completeness. Suppose that G contains a k-clique; let S ⊆ V denote the set of its vertices. We594

define w by w∗ = 1√
2

and, for every i ∈ V , wi = 1√
2k

if i ∈ S and wi = 0 otherwise. It is clear that595

‖w‖2 = 1 and that, for every (x, y) ∈ supp(D), we have | 〈w,x〉 | ≥ 0.1
2
√

2k
. Finally, observe that all596

the first two types of constraints are satisfied, and a vertex selection constraint for i is unsatisfied iff597

i /∈ S. Thus, we have errDγ (w) = (n− k)
(

0.01
n3

)
= κ, which implies that OPTDγ ≤ κ as desired.598

Soundness. Suppose contrapositively that OPTD0−1 ≤ κ+ 0.001
n3 ; that is, there exists w such that599

errD0−1(w) ≤ κ+ 0.001
n3 . Observe that each labeled sample of the first two types of constraints has600

probability more than β
2n2 > κ+ 0.001

n3 . As a result, w must correctly classifies these samples. Since601

w correctly classifies (−e∗,−1), it must be that w∗ > 0.602

Now, let T be the set of vertices i such that w mislabels the vertex selection constraint for i. Observe603

that |T | < (κ+ 0.001
n3 )

0.01
n3

< n− k + 1. In other words, S := V \ T is of size at least k. We claim that S604

induces a k-clique in G. To see that this is true, consider a pair of distinct vertices i, j ∈ S. Since w605

satisfies the vertex selection constraints for i and for j, we must have wi,wj ≥ 0.9√
k

. This implies606

that (i, j) is an edge, as otherwise w would mislabel the non-edge constraint for (i, j).607

As a result, G contains a k-clique as desired.608

B.3 Reduction from k-CSP and Proofs of Theorems 3.1, 3.3 and Lemma B.1609

In this section, we will prove Theorems 3.1 and 3.3, by reducing from the hardness of approximation610

of constraint satisfaction problems (CSPs), given by PCP Theorems.611

B.3.1 CSPs and PCP Theorem(s)612

Before we can state our reductions, we have to formally define CSPs and state the PCP theorems we613

will use more formally. We start with the definition of k-CSP:614

Definition B.3 (k-CSP). For any integer k ∈ N, a k-CSP instance L = (V,Σ, {Πq}q∈Q) consists of615

• The variable set V ,616

• The alphabet Σ, which we sometimes refer to as labels,617

• Constraints set {ΠS}S∈Q, where Q ⊆
(
V
k

)
is a collection of k-size subset of V . For each618

subset S = {v1, . . . , vk}, ΠS ⊆ ΣS is the set of accepting answers for the constraint ΠS .619

Here we think of each f ∈ ΣS as a function from f : S → Σ.620

A k-CSP instance is said to be regular if each variable appears in the same number of constraints.621

17



An assignment φ is a function φ : V → Σ. Its value, denoted by valL(φ), is the fraction of constraints622

S ∈ Q such that4 φ|S ∈ ΠS . Such constraints are said to be satisfied by φ. The value of L, denoted623

by val(L), is the maximum value among all assignments, i.e., val(L) := maxφ valL(φ).624

In the ν-GAP-k-CSP problem, we are given a regular instance L of k-CSP, and we want to distinguish625

between val(L) = 1 and val(L) < ν.626

Throughout this subsection, we use n to denote the instance size of k-CSP, that is n =
∑
S∈Q |ΠS |.627

The celebrated PCP theorem [AS98, ALM+98] is equivalent to the proof of NP-hardness of approxi-628

mating ν-Gap-k-CSP for some constant k and ν < 1. Since we would like to prove (tight) running629

time lower bounds, we need the versions of PCP Theorems that provides strong running time lower630

bounds as well. For this task, we turn to the Moshkovitz-Raz PCP theorem, which can not only631

achieve arbitrarily small constant ν > 0 but also almost exponential running time lower bound.632

Theorem B.4 (Moshkovitz-Raz PCP [MR10]). Assuming ETH, for any 0 < ν < 1, ν-Gap-2-CSP633

cannot be solved in time O(2n
1−o(1)

), even for instances with |Σ| = Oν(1).634

As for our hardness of approximation result (Theorem 3.3), we are aiming to get as large a ratio as635

possible. For this purpose, we will use a PCP Theorem of Dinur, Harsha and Kindler, which achieves636

ν = 1
poly(n) but need k to be polyloglog(n).637

Theorem B.5 (Dinur-Harsha-Kindler PCP [DHK15]). n−Ω(1)-Gap-polyloglog(n)-CSP is NP-hard.638

Finally, we state the Sliding Scale Conjecture (SSC) of Bellare et al. [BGLR94], which says that the639

NP-hardness with ν = 1
poly(n) holds even in the case where k is constant:640

Conjecture 1 (Sliding Scale Conjecture [BGLR94]). For some constant k, n−Ω(1)-Gap-k-CSP is641

NP-hard.642

B.3.2 Reducing from k-CSP to Agnostically Learning Halfspaces with Margin643

Having set up the notation, we now move on to the reduction from k-CSP to agnostic learning of half-644

spaces with margin. Our reduction can be viewed as a modification of the reduction from [ABSS97];645

compared to [ABSS97], we have to (1) be more careful so that we can get the margin in the com-646

pleteness and (2) modify the reduction to work even for k > 2.647

Before we precisely state the formal properties of the reduction, let us give a brief informal intuition648

behind the reduction. Given an instance L = (V,Σ, {ΠS}S∈Q) of k-CSP, we will create a distribution649

D on Bd × {±1}, where the dimension d is equal to n. Each coordinate is associated with an650

accepting answer of each constraint; that is, each coordinate is (S, f) where S ∈ Q and f ∈ ΠS . In651

the completeness case where we have a perfect assignment φ, we would like the halfspace’s normal652

vector to set w(S,f) = 1 iff f is the assignment to predicate S in φ (i.e., f = φ|S), and zero otherwise.653

To enforce this, we add three types of constraints:654

• Non-negativity Constraint: that each coordinate of w should be non-negative.655

• Satisfiability Constraint: that for each S ∈ Q, w(S,f) is positive for at least one f ∈ ΠS .656

• Selection Constraint: for each variable v ∈ V and label σ ∈ Σ, we add a constraint that the657

sum of all w(S,f), for all S that v appears in and all f that assigns σ to v, is non-positive.658

Notice that, for the completeness case, we satisfy the first two types of constraints, and we violate the659

selection constraints only when φ(v) = σ. Intuitively, in the soundness case, we will not be able to660

“align” the positive w(S,f) from different S’s together, and we will have to violate a lot more selection661

constraints.662

Of course, there are many subtle points that the above sketch does not address, such as the margin; on663

this front, we add one more special coordinate w∗, which we think of as being equal to 1, and we664

add/subtract δ times this coordinate to each of the constraints, which will create the margin for us.665

Another issue is that the normal vector of the halfspace (and samples) as above have norm more than666

one. Indeed, our assignment in the completeness case has norm O(
√
n). Hence, we have to scale the667

4We use φ|S to denote the restriction of φ on the domain S.

18



normal vector down by a factor of O(
√
n), which results in a margin of γ = Ω(1/

√
n). This is the668

reason why we arrive at the running time lower bound of the form 2γ
2−o(1)

.669

The properties and parameter dependencies of the reduction are encapsulated in the following theorem.670

Theorem B.6. There exists a polynomial time reduction that takes as input a regular instance671

L = (V,Σ, {ΠS}S∈Q) of k-CSP and a real number ν > 0, and produces a distribution D over672

Bd × {±1} and positive real numbers γ, κ, ε, α such that673

• (Completeness) If L is satisfiable, then OPTDγ ≤ κ.674

• (Soundness) If val(L) < ν, then OPTD0−1 > α · κ+ ε.675

• (Margin Parameter) γ = Ω

(
1

∆|Σ|3k
√
|Q|

)
, where ∆ denotes the number of constraints676

each variable appears in.677

• (Approximation Ratio) α = Ω
(

(1/ν)1/k

k

)
.678

• (Error Parameter) ε = Ω
(

1
∆|Σ|k

)
· α.679

• (Dimension) d = n+ 1.680

Proof. Before we define D, let us specify the parameters:681

• First, we let d be 1 + n. We name the first coordinate as ∗ and each of the remaining682

coordinates are named (S, f) for a constraint S ∈ Q and f ∈ ΠS .683

• Let Z := 2
(
|V | · |Σ|+ 2k|Q|+ 2k

∑
e∈E |Πe|

)
be our “normalizing factor”, which will684

be used below to normalized the probability.685

• Let δ := 0.1
∆|Σ|2k be the “shift parameter”. Note that this is not the margin γ (which will be686

defined below).687

• Let s := 10∆|Σ|k be the scaling factor, which we use to make sure that all our samples lie688

within the unit ball.689

• Let the gap parameter α be (1/ν)1/k

40k .690

• Finally, let κ = |V |
Z and ε = κ · α.691

Note that α as defined above can be less than one. However, this is not a problem: in the subsequent692

proofs of Theorems 3.1 and 3.3, we will always choose the settings of parameters so that α > 1.693

We are now ready to define the distribution D on Bd × {±1}, as follows:694

1. Add a labeled sample (−e∗,−1) with probability 1/2 to D. This corresponds to the695

constraint w∗ > 0; we refer to this as the positivity constraint for ∗.696

2. Next, for each coordinate (S, f), add a labeled sample
(

1
s

(
e(S,f) + δ · e∗

)
, 1
)

with prob-697

ability 2k/Z to D. This corresponds to w(S,f) + δ · w∗ ≥ 0 scaled down by a factor of698

1/s so that the vector is in the unit ball; we refer to this as the non-negativity constraint for699

(S, f).700

3. For every S ∈ Q, add a labeled sample
(

1
s

(∑
f∈ΠS

e(S,f) − (1− δ)e∗
)
, 1
)

with proba-701

bility 2k/Z to D. This corresponds to the constraint
∑
f∈ΠS

w(S,f) ≥ (1− δ)w∗, scaled702

down by a factor of 1/s. We refer to this constraint as the satisfiability constraint for S.703

19



4. For every variable v ∈ V and σ ∈ Σ, add a labeled sample704 (
1
s

(∑
S∈Q:v∈S

∑
f∈ΠS :f(v)=σ e

(S,f) − δe∗
)
,−1

)
with probability 1/Z to D. This cor-705

responds to the constraint
∑
S∈Q:v∈S

∑
f∈ΠS :f(v)=σw(S,f) < δ ·w∗, scaled down by a706

factor of 1/s. We refer to this as the selection constraint for (v, σ).707

Completeness. Suppose that there exists an assignment φ : V → Σ that satisfies all the constraints708

of L. Consider the halfspace with normal vector w defined by w∗ = ζ and709

w(S,f) =

{
ζ if f = φ|S ,
0 otherwise,

where ζ := 1√
1+|Q|

is the normalization factor. It is easy to see that the positivity constraints and the710

satisfiability constraints are satisfied with margin at least γ = ζ · δ/s = Ω

(
1

∆|Σ|3k
√
|Q|

)
. Finally,711

observe that the sum
∑
S∈Q:v∈S

∑
f∈ΠS :f(v)=σw(S,f) is zero if f(v) 6= σ; in this case, the selection712

constraint for (v, σ) is also satisfied with margin at least γ. As a result, we only incur an error713

(with respect to margin γ) for the selection constraint for (v, φ(v)) for all v ∈ V ; hence, we have714

errDγ (w) ≤ 1
Z · |V | = κ as desired.715

Soundness. Suppose contrapositively that there exists w with errD0−1(w) ≤ α · κ+ ε = 2ακ. We716

will “decode” back an assignment with value at least ν of the CSP from w.717

To do so, first observe that from the positivity constraint for ∗, we must have w∗ > 0, as otherwise718

we would already incur an error of 1/2 > 2ακ with respect to D. Now, since scaling (by a positive719

factor) does not change the fraction of samples violated, we may assume w.l.o.g. that w∗ = 1.720

Next, we further claim that we may assume without loss of generality that w does not violate any721

non-negativity constraints (2) or satisfiability constraints (3). The reason is that, if w violates a722

non-negativity constraint for (S = {v1, . . . , vk}, f), then we may simply change w(S,f) to zero. This723

reduces the error by 2k/Z, while it may only additionally violate k additional selection constraints for724

(v1, f(v1)), . . . , (vk, f(vk)) which weights k/Z in total with respect to D. As a result, this change725

only reduces the error in total. Similarly, if the satisfiability constraint of S is unsatisfied, we may726

change w(S,f) for some f ∈ ΠS to a sufficiently large number so that this constraint is satisfied; once727

again, in total the error decreases. Hence, we may assume that the non-negativity constraints (2) and728

satisfiability constraints (3) all hold.729

Now, for every vertex v, let Lv ⊆ Σ denote the set of labels σ ∈ Σ such that the selection constraint730

for (v, σ) is violated. Since we assume that errD0−1(w) ≤ 2ακ, we must have
∑
v∈V |Lv| ≤731

(2ακ)/(1/Z) = 2α|V |.732

Next, let Vsmall denote the set of all variables v ∈ V such that |Lv| ≤ 20αk. From the bound we just733

derived, we must have |Vsmall| ≥
(
1− 1

10k

)
|V |.734

Another ingredient we need is the following claim:735

Claim B.7. For every constraint S = {v1, . . . , vk} ∈ Q, there exist σ1 ∈ Lv1 , . . . , σk ∈ Lvk that736

induces an accepting assignment for ΠS (i.e., f ∈ ΠS where f is defined by f(vi) = σi).737

Proof. Suppose for the sake of contradiction that no such σ1 ∈ Lv1 , . . . , σk ∈ Lvk exists. In other738

words, for every f ∈ ΠS , there must exist i ∈ [k] such that the selection constraint for (vi, f(vi)) is739

not violated. This means that740

δ = δ ·w∗ >
∑

S′∈Q:v∈S′

∑
f ′∈ΠS′ :f

′(v)=σ

w(S′,f ′)

≥ w(S,f) +
∑

S′∈Q:v∈S′

∑
f ′∈ΠS′ :f

′(v)=σ

−δ ·w∗

≥ w(S,f) − δ ·∆|Σ|k

where the second inequality comes from our assumption, that the non-negativity constraints are741

satisfied.742

20



Hence, by summing this up over all f ∈ ΠS , we get743 ∑
f∈ΠS

w(S,f) ≤ δ · (∆|Σ|k + 1) · |Σ|k < (1− δ),

which means that the satisfiability constraint for S is violated, a contradiction.744

We can now define an assignment φ : V → Σ for L as follows. For every v ∈ V , let φ(v) be a random745

label in Lv. Notice here that, by Claim B.7, the probability that a constraint S = {v1, . . . , vk} is746

satisfied is at least
∏
i∈[k] |Lvi |−1. Hence, the expected total number of satisfied constraints is at least747 ∑

S={v1,...,vk}∈Q

∏
i∈[k]

|Lvi |−1 ≥
∑

S={v1,...,vk}∈Q:v1,...,vk∈Vsmall

∏
i∈[k]

|Lvi |−1

≥
∑

S={v1,...,vk}∈Q:v1,...,vk∈Vsmall

(20αk)−k.

Recall that we have earlier bound |Vsmall| to be at least
(
1− 1

10k

)
|V |. Hence, the fraction of748

constraints that involves some variable outside of Vsmall is at most
(

1
10k

)
· (k) = 0.1. Plugging this749

into the above inequality, we get that the expected total number of satisfied constraints is at least750

0.9|Q| · (20αk)−k > |Q| · ν,

where the equality comes from our choice of α. In other words, we have val(L) > ν as desired.751

B.3.3 Proofs of Theorems 3.1, 3.3 and Lemma B.1752

We now prove Theorem 3.1, by simply applying Theorem B.6 with appropriate parameters on top of753

the Moshkovitz-Raz PCP.754

Proof of Theorem 3.1. Suppose contrapositively that, for some constant α̃ ≥ 1 and ζ > 0, we have755

an O(2(1/γ)2−ζ2d
1−ζ

)f( 1
ε ) time α̃-agnostic proper learner for γ-margin halfspaces.756

Let ν > 0 be a sufficiently small constant so that the parameter α (when k = 2) from Theorem B.6 is757

at least α̃. (In particular, we pick ν = 1
C(α̃)k

for some sufficiently large constant C.)758

Given an instanceL of ν-Gap-2-CSP, we run the reduction from Theorem B.6 to produce a distribution759

D. We then run the learner on D with error parameter ε as given by Theorem B.6 (and with δ = 1/3).760

Note that the learner runs in O(2(1/γ)2−ζ2d
1−ζ

)f( 1
ε ) = 2O(n1−ζ/2) time, and produces a halfspace h.761

We compute errD0−1(h); if it is no more than α · κ+ ε, then we output YES. Otherwise, output NO.762

The algorithm describe above solves ν-Gap-2-CSP (correctly with probability 2/3) in 2O(n1−ζ/2)763

time, which, by Theorem B.4, violates (randomized) ETH.764

Next, we prove Lemma B.1. The main difference from the above proof is that, since the algorithm765

works only for some margin γ = γ(d). We will select the dimension d to be as large as possible so766

that γ(d) is still smaller than the margin given by Theorem B.6. This dimension d will be larger than767

the dimension given by Theorem B.6; however, this is not an issue since we can simply “pad” the768

remaining dimensions by setting the additional coordinates to zeros. This is formalized below.769

Proof of Lemma B.1. Let α̃ ≥ 1 be any constant. Let ν > 0 be a sufficiently small constant so that770

the parameter α (when k = 2) from Theorem B.6 is at least α̃. (In particular, we pick ν = 1
C(α̃)k

for771

some sufficiently large constant C.) Let ε0 = ε0(α̃) be the parameter ε given by Theorem B.6.772

Suppose contrapositively that, for some ζ > 0, there is an α̃-agnostic learner A for γ(d̃)-margin773

halfspaces that runs in time O(2(1/γ)2−ζ )poly(d̃) for all dimensions d̃ and for some 0 < ε∗ < ε0(α)774

and γ(d̃) that satisfies775

1

d̃0.5−ζ
≤ γ(d̃) ≤ 1

(log d̃)0.5+ζ
(4)

21



and776

γ(d̃+ 1)

γ(d̃)
≥ ζ. (5)

We may assume without loss of generality that ζ < 0.1.777

We create an algorithm B for ν-Gap-2-CSP as follows:778

• Given an instance L of ν-Gap-2-CSP of size n, we first run the reduction from Theorem B.6779

with ν as selected above to produce a distribution D on Bd × {±1} (where d = n+ 1). Let780

the margin parameter γ be as given in Theorem B.6; observe that γ = Ων(1/
√
n).781

• Let d̃ be the largest intger so that γ(d̃) ≥ γ. Observe that, from the lower bound in (5),782

we have γ(d) ≥ 1
d0.5−ζ

. Hence, for a sufficiently large d, γ(d) is larger than γ (which is783

Oν(1/
√
d)). In other words, we have d̃ ≥ d.784

• Create a distribution D′ as follows: for each (x, y) ∈ supp(D), we create a sample (x′, y)785

in D′ with the same probability and where x′ ∈ Bd̃ is x concatenated with 0s in the last786

d̃− d coordinates.787

• Run the learner A on D′ with parameter γ(d̃) and ε. Suppose that it outputs a halfspace h.788

We compute errD
′

0−1(h); if this is no more than α · κ+ ε0(α), then output YES. Otherwise,789

output NO.790

It is simple to see that, in the completeness case, we must have OPTD
′

γ(d̃)
≤ OPTD

′

γ = OPTDγ ≤ κ;791

hence,Awould (with probability 2/3) output a halfspace hwith 0-1 error at most α·κ+ε0(α), and we792

output YES. On the other hand, in the soundness case, we have OPTD
′

0−1 = OPTD
′

0−1 > α ·κ+ε0(α̃),793

and we always output NO. Hence, the algorithm is correct with probability 2/3.794

Next, to analyze the running time of B, let us make a couple additional observations. First, from (5),795

we have796

γ(d̃) ≤ γ/ζ ≤ O(1/
√
n). (6)

Furthermore, from the upper bound in (5), we have797

d̃ ≤ 2(1/γ(d̃))
1

0.5+ζ ≤ 2O(n
1

1+2ζ ) ≤ 2O(n1−ζ), (7)

where the last inequality follows from ζ < 0.1.798

As a result, the algorithm runs in time O(2(1/γ(d))2−ζ )poly(d̃) ≤ 2O(n1−ζ/2), which from Theo-799

rem B.4 would break the (randomized) ETH.800

Finally, we prove Theorem 3.3, which is again by simply applying Theorem B.6 to the Dinur-Harsha-801

Kindler PCP and the Sliding Scale Conjecture.802

Proof of Theorem 3.3. By plugging in our reduction from Theorem 3.3 to Theorem B.5, we get803

that it is NP-hard to, given a distribution D, distinguish between OPTDγ ≤ κ or OPTD0−1 >804

α · κ + Ω( 1
poly(d) ) where γ = 1

dpolyloglog(d) and α = d1/polyloglog(d) = (1/γ)1/polyloglog(1/γ). In other805

words, if we have a polynomial time α-agnostic learner for γ-margin halfspaces for this regime of806

parameter, then NP = RP.807

Similarly, by plugging in our reduction the Sliding Scale Conjecture, we get that it is NP-hard to,808

given a distribution D, distinguish between OPTDγ ≤ κ or OPTD0−1 > α · κ + Ω( 1
poly(d) ) where809

γ = 1/dO(1) and α = dΩ(1) = (1/γ)Ω(1). In other words, if we have a polynomial time α-agnostic810

learner for γ-margin halfspaces for this regime of parameter, then NP = RP.811

22


