
Response to all reviewers:1

We thank the reviewers for carefully reviewing our paper and providing constructive feedback. To the best of our2

knowledge, we are the first paper formulating policy poisoning in batch RL and control, and there are fruitful new3

directions to explore, such as extending our attack to more complex RL learners. We believe our paper will trigger a4

line of new research on data poisoning attack on RL/Control.5

Response to reviewer 1: We thank reviewer 1 for positive comments.6

We will move some of the analysis and proofs back to the main text for better readability.7

Response to reviewer 3: We thank the reviewer for valuable comments.8

(1) Is the attack trivial? Our study has an emphasis on finding the *optimal* way of changing the rewards to achieve9

a target policy. The optimality guarantee is not trivial - one needs to solve a (bi-level) optimization to achieve it.10

Furthermore, we provide theoretical analysis to bound the optimal change of rewards measured by `p norm for arbitrary11

p, which is important to understanding the minimal effort an attacker has to spend to achieve successful attack.12

(2) Definition of poisoning ratio. We apologize for the confusing definition in the paper. In our experiment, we actually13

computed poisoning ratio as ‖r− r0‖2/‖r0‖2 instead of ‖r− r0‖2/‖r‖2, so this is just a typo of writing. We agree14

with the reviewer that if all rewards are shifted by a constant, the policy does not change, but the poisoning ratio does.15

However, the poisoning ratio is a metric that tries to capture the notion of *attack cost*, which not only depends on16

the policy change, but also ties to the magnitude of the clean rewards. Conceptually, the same “absolute” change17

on larger clean rewards should mean smaller attack cost, thus should have smaller poisoning ratio. This is exactly18

the case if we divide by ‖r0‖. Besides, from the optimization perspective, our attack optimizes ‖r − r0‖, which is19

equivalent to optimizing ‖r− r0‖/‖r0‖ or ‖r− r0‖/‖r0 −mean(r0)‖. But we do think the reviewer’s suggestion is20

also reasonable, so we computed the poisoning ratio using the suggested metric ‖r− r0‖/‖r0 −mean(r0)‖, and the21

results for experiment 2,3 and 4 are 14.66%, 8.64%, and 0.77% respectively, which is just slightly higher than those22

reported in the paper. We will include the metric suggested by the reviewer in the revised version.23

Regarding large attack on a single transition, it is true that small poisoning ratio does not fully capture the magnitude of24

change on each individual reward, if the metric is `2 norm (as we did in our experiments). However, as our formulation25

uses general `p norm, one can consider using `∞ norm instead, which will avoid the example the reviewer mentioned.26

Response to reviewer 4: We thank the reviewer for constructive comments.27

(1) Bi-level optimization formulation. We follow the notation in state-of-the-art literatures on data poisoning attacks28

(e.g, [1]). However, we can map the notation to Bard et al. 2000 paper as follows.29

The leader optimization is (25), where the decision variables is the poisoned rewards r. We have only one follower30

problem (30), together with LQR solution constraint (26) to (29). The decision variables for the follower problem is31

on the LHS of (30). The (19) is not a follower problem because the estimates Â and B̂ are attack-independent, thus32

can be computed beforehand based on the clean data. The estimates Â and B̂ then appear as parameters of our main33

optimization in (26) to (29), which are constraints to ensure that the LQR solution is equal to the target policy (our34

attack goal). Constraint (31) is simple. We point out that when converting the follower problem (30) into its equivalent35

KKT condition, one should incorporate its decision variables into the leader-level optimization since there will be no36

follower problem anymore, which is why we write decision variables for both leader and follower problem on the LHS37

of (25). We will make it more clear in the revised version.38

(2) scalability issue. We agree that the scalability issue is a weakness of our paper. However, since we are aiming39

for *global optimality* in our attack, we require the RL learner to take the form of some convex optimization (e.g.,40

LP in discrete MDP case), which can be replaced with its KKT equivalent. For more complex learners such as deep41

RL learners, as they rely on highly non-convex neural networks, the KKT condition approach may not apply. In that42

case, solving the global optimality using convex optimization might not be feasible, but approximate methods such as43

gradient descent can be used to find locally optimal solutions. We agree scalability is important, and we will discuss it44

in the revised paper. We leave that as future work, as our main goals of the paper is to first formally define the problem45

of adversarial poisoning in RL/control and study if *globally optimal attack* is achievable.46

We actually also experimented on a continuous domain: Linear Quadratic Regulator, which is a classic continuous47

control problem and arguably represents many real world control problems.48
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