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Abstract

Minimax optimal convergence rates for numerous classes of stochastic convex
optimization problems are well characterized, where the majority of results utilize
iterate averaged stochastic gradient descent (SGD) with polynomially decaying
step sizes. In contrast, the behavior of SGD’s final iterate has received much less
attention despite the widespread use in practice. Motivated by this observation, this
work provides a detailed study of the following question: what rate is achievable
using the final iterate of SGD for the streaming least squares regression problem
with and without strong convexity?
First, this work shows that even if the time horizon T (i.e. the number of iterations
that SGD is run for) is known in advance, the behavior of SGD’s final iterate with
any polynomially decaying learning rate scheme is highly sub-optimal compared
to the statistical minimax rate (by a condition number factor in the strongly convex
case and a factor of

√
T in the non-strongly convex case). In contrast, this paper

shows that Step Decay schedules, which cut the learning rate by a constant factor
every constant number of epochs (i.e., the learning rate decays geometrically)
offer significant improvements over any polynomially decaying step size schedule.
In particular, the behavior of the final iterate with step decay schedules is off
from the statistical minimax rate by only log factors (in the condition number
for the strongly convex case, and in T in the non-strongly convex case). Finally,
in stark contrast to the known horizon case, this paper shows that the anytime
(i.e. the limiting) behavior of SGD’s final iterate is poor (in that it queries iterates
with highly sub-optimal function value infinitely often, i.e. in a limsup sense)
irrespective of the stepsize scheme employed. These results demonstrate the
subtlety in establishing optimal learning rate schedules (for the final iterate) for
stochastic gradient procedures in fixed time horizon settings.

1 Introduction

Large scale machine learning relies almost exclusively on stochastic optimization methods [BB07],
which include stochastic gradient descent (SGD) [RM51] and its variants [DHS11, JZ13]. In this
work, we restrict our attention to the SGD algorithm where we are concerned with the behavior of the
final iterate (i.e. the last point when we terminate the algorithm). A majority of (minimax optimal)
theoretical results for SGD focus on polynomially decaying stepsizes [DGBSX12, RSS12, LJSB12,
Bub14] (or constant stepsizes [BM13, DB15a, JKK+16] for the case of least squares regression)
coupled with iterate averaging [Rup88, PJ92] to achieve minimax optimal rates of convergence.
However, practical SGD implementations typically return the final iterate of a stochastic gradient
procedure. This line of work in theory (based on iterate averaging) and its discrepancy with regards to
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Algorithm 1: Step Decay scheme
Input: Initial vector w, starting learning rate

η0, number of iterations T
Output: w
for `← 1 to log T do
η` ← η0/2

`

for t← 1 to T/log T do
w← w − η`∇̂f(w)

end

end

Figure 1: (Left) The Step Decay scheme for stochastic gradient descent. Note that the algorithm
requires just two parameters - the starting learning rate η0 and number of iterations T .
(Right) Plot of function value error vs. condition number for the final iterate of polynomially decaying
stepsizes i.e., equation(5,6), step-decay schedule (Algorithm 1) compared against the minimax optimal
suffix averaged iterate with a constant stepsize [JKK+16] for a synthetic two-dimensional least
squares regression problem(1). The condition number κ is varied as {50, 100, 200, 400}. Exhaustive
grid search is performed on starting stepsize and decay parameters. Initial excess risk is dσ2 and the
algorithm is run for T = κ2

max = 4002 steps (for all experiments); results are averaged over 5 random
seeds. Observe that the final iterate’s error grows linearly as a function of the condition number κ for
the polynomially decaying stepsize schemes, whereas, the error does not grow as a function of κ for
the geometric “step-decay” stepsize scheme. See section E.1 in supplementary material for details.

practice leads to the question with regards to the behavior of SGD’s final iterate. Indeed, this question
has motivated several efforts in stochastic convex optimization literature as elaborated below.

Non-Smooth Stochastic Optimization: The work of [Sha12] raised the question with regards to
the behavior of SGD’s final iterate for non-smooth stochastic optimization (with/without strong
convexity). The work of [SZ12] answered this question, indicating that SGD’s final iterate with
polynomially decaying stepsizes achieves near minimax rates (up to log factors) in an anytime (i.e. in
a limiting) sense (when number of iterations SGD is run for is not known in advance). Under specific
choices of step size sequences, [SZ12]’s result on SGD’s final iterate is tight owing to the recent work
of [HLPR18]. More recently [JNN19] presented an approach indicating that a more nuanced stepsize
sequence serves to achieve minimax rates (up to constant factors) for the non-smooth stochastic
optimization setting when the end time T is known in advance.

Least Squares Regression (LSR): In contrast to the non-smooth setting, the state of our under-
standing of SGD’s final iterate for smooth stochastic convex optimization, or, say, the streaming
least squares regression setting is far less mature − this gap motivates our paper’s contributions. In
particular, this paper studies SGD’s final iterate behavior under various stepsize choices for least
squares regression (with and without strong convexity). The use of SGD’s final iterate for the least
mean squares objective has featured in several efforts [WH60, Pro74, WS85, RS90], but these results
do not achieve minimax rates of convergence, which leads to the following question:

“ Can polynomially decaying stepsizes (known to achieve minimax rates when coupled with iterate
averaging [Rup88, PJ92]) offer minimax optimal rates on SGD’s final iterate when optimizing the
streaming least squares regression objective? If not, is there any other family of stepsizes that can
guarantee minimax rates on the final iterate of stochastic gradient descent? ”

This paper presents progress on answering the above question− refer to contributions below for more
details. Note that the oracle model employed by this work (to quantify SGD’s final iterate behavior)
has featured in a string of recent results that present a non-asymptotic understanding of SGD for least
squares regression, with the caveat being that these results crucially rely on iterate averaging with
constant stepsize sequences [BM13, DB15a, JKK+16, JKK+17b, JKK+17a, NR18].

Our contributions: This work establishes upper and lower bounds on the behavior of SGD’s final
iterate, as run with standard polynomially decaying stepsizes as well as step decay schedules which
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Table 1: Comparison of sub-optimality for final iterate of SGD (i.e., E [f(wT )] − f(w∗)) for
stochastic convex optimization problems. This paper’s focus is on SGD’s final iterate for streaming
least squares regression. The minimax rate refers to the best possible worst case rate with access to
stochastic gradients (typically achieved with iterate averaging methods [PJ92, DGBSX12, RSS12]);
the red shows the multiplicative factor increase (over the minimax rate) using the final iterate, under
two different learning rate schedules - the polynomial decay and the step decay (refer to Algorithm 1).
Polynomial decay schedules are of the form ηt ∝ 1/tα (for appropriate α ∈ [0.5, 1]). For the general
convex cases below, the final iterate with a polynomial decay scheme is off minimax rates by a log T

factor (in an anytime/limiting sense) [SZ12]. Here ∇̂f,∇f = E
[
∇̂f
]
,∇2f denotes the stochastic

gradient, gradient and the Hessian of the function f . With regards to least squares, we assume
equation (3), following recent efforts [BM13, DB15a, JKK+16]. While polynomially decaying
stepsizes are nearly minimax optimal for general (strongly) convex functions, this paper indicates
they are highly suboptimal on the final iterate for least squares. The geometrically decaying Step
Decay schedule (Algorithm 1) provides marked improvements over any polynomial decay scheme
on the final iterate for least squares. For simplicity of presentation, the results for least squares
regression do not show dependence on initial error. See Theorems 1 and 2 for precise statements (and
[NY83, SZ12, HLPR18] for precise statements of the general case).

Assumptions Minimax rate Rate w/ Final iterate
using best poly-decay

Rate w/ Final iterate
using Step Decay

General
convex functions

E
[∥∥∥∇̂f∥∥∥2

]
≤ G2

Diam (ConstraintSet) ≤ D
GD√
T

Θ
(
GD√
T
· log T

)
[SZ12, HLPR18]

–

Non-strongly convex
least squares regression Eq. (3) σ2d

T

Ω
(
σ2d
T ·

√
T

log T

)
(This work - Theorem 1)

O
(
σ2d
T · log T

)
(This work - Theorem 2)

General strongly
convex functions

E
[∥∥∥∇̂f∥∥∥2

]
≤ G2

∇2f � µI
G2

µT

Θ
(
G2

µT · log T
)

[SZ12, HLPR18]
–

Strongly convex
least squares regression

Eq. (3)
∇2f � µI

σ2d
T

Ω
(
σ2d
T · κ

)
(This work - Theorem 1)

O
(
σ2d
T · log T

)
(This work - Theorem 2)

tends to cut the stepsize by a constant factor after every constant number of epochs (see algorithm 1),
by considering the streaming least squares regression problem (with and without strong convexity).
Our main result indicates that step decay schedules offer significant improvements in achieving
near minimax rates over polynomially decaying stepsizes in the known horizon case (when the end
time T is known in advance). Figure 1 illustrates that this difference is evident (empirically) even
when optimizing a two-dimensional synthetic least squares objective. Table 1 provides a summary.
Finally, we present results that indicate the subtle (yet significant) differences between the known
time horizon case and the anytime (i.e. the limiting) behavior of SGD’s final iterate (see below). Note
that proofs of our main claims can be found in the supplementary material.

Our main contributions are as follows:

• Sub-optimality of polynomially decaying stepsizes: For the strongly convex least squares
case, this work shows that the final iterate of a polynomially decaying stepsize scheme
(i.e. with ηt ∝ 1/tα, with α ∈ [0.5, 1]) is off the minimax rate dσ2/T by a factor of the
condition number of the problem. For the non-strongly convex case of least squares, we
show that any polynomially decaying stepsize can achieve a rate no better than dσ2/

√
T

(up to log factors), while the minimax rate is dσ2/T .

• Near-optimality of the step-decay scheme: Given a fixed end time T , the step-decay scheme
(algorithm 1) presents a final iterate that is off the statistical minimax rate by just a log(T )
factor when optimizing the strongly convex and non-strongly convex least squares regression
1, thus indicating vast improvements over polynomially decaying stepsize schedules. We
note here that our Theorem 2 for the non-strongly case offers a rate on the initial error
(i.e., the bias term) that is off the best known rate [BM13] (that employs iterate averaging)
by a dimension factor. That said, Algorithm 1 is rather straightforward and employs the
knowledge of just an initial learning rate and number of iterations for its implementation.

1This dependence can be improved to log of the condition number of the problem (for the strongly convex
case) using a more refined stepsize decay scheme.
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• SGD has to query bad iterates infinitely often: For the case of optimizing strongly convex
least squares regression, this work shows that any stochastic gradient procedure (in a lim sup
sense) must query sub-optimal iterates (off by nearly a condition number) infinitely often.

• Complementary to our theoretical results for the stochastic linear regression, we evaluate the
empirical performance of different learning rate schemes when training a residual network
on the cifar-10 dataset and observe that the continuous variant of step decay schemes (i.e.
an exponential decay) indeed compares favorably to polynomially decaying stepsizes.

While the upper bounds established in this paper (section 3.2) merit extensions towards broader
smooth convex functions (with/without strong convexity), the lower bounds established in sections 3.1,
3.3 present implications towards classes of smooth stochastic convex optimization. Even in terms of
upper bounds, note that there are fewer results on non-asymptotic behavior of SGD (beyond least
squares) when working in the oracle model considered in this work (see below). [BM11, BM13,
Bac14, NSW16] are exceptions, yet they do not achieve minimax rates on appropriate problem
classes; [FGKS15] does not work in standard stochastic first order oracle model [NY83, ABRW12],
so their work is not directly comparable to examine extensions towards broader function classes.

As a final note, this paper’s result on the sub-optimality of standard polynomially decaying stepsizes
for classes of smooth and strongly convex optimization doesn’t contradict the (minimax) optimality
results in stochastic approximation [PJ92]. Iterate averaging coupled with polynomially decaying
learning rates (or constant learning rates for least squares [BM13, DB15a, JKK+16]) does achieve
minimax rates [Rup88, PJ92]. However, as mentioned previously, this work deals with SGD’s final
iterate behavior (i.e. without iterate averaging), since this bears more relevance towards practice.

Related work: [RM51] introduced the stochastic approximation problem and Stochastic Gradient
Descent (SGD). They present conditions on stepsize schemes satisfied by asymptotically convergent
algorithms: these schemes are referred to as “convergent” stepsize sequences. [Rup88, PJ92] proved
the asymptotic optimality of iterate averaged SGD with larger stepsize sequences. In terms of oracle
models and notions of optimality, there exists two lines of thought (see also [JKK+17b]):

Towards statistically optimal estimation procedures: The goal of this line of thought is to match
the excess risk of the statistically optimal estimator [Anb71, KC78, PJ92, LC98] on every problem
instance. Several efforts consider SGD in this oracle [BM11, Bac14, DB15b, FGKS15, NSW16]
presenting non-asymptotic results, often with iterate averaging. With regards to least squares,
[BM13, DB15a, FGKS15, JKK+16, JKK+17b, NR18] use constant step-size SGD with iterate
averaging to achieve minimax rates (on a per-problem basis) in this oracle model. SGD’s final
iterate behavior for least squares has featured in several efforts in the signal processing/controls
literature [WH60, NN67, Pro74, WS85, RS90, SSB98], without achieving minimax rates. This paper
works in this oracle model and analyzes SGD’s final iterate behavior with various stepsize choices.

Towards optimality under bounded noise assumptions: The other line of thought presents algorithms
with access to stochastic gradients satisfying bounded noise assumptions, aiming to match lower
bounds provided in [NY83, RR11, ABRW12]. Asymptotic properties of “convergent” stepsize
schemes have been studied in great detail [KC78, BMP90, LPW92, BB99, KY03, Lai03, Bor08].
[DGBSX12, LJSB12, RSS12, GL12, GL13a, HK14, Bub14, DFB16] use iterate averaged SGD to
achieve minimax rates for various problem classes non-asymptotically. [AZ18] present an alternative
approach towards minimizing the gradient norm with access to stochastic gradients. As noted, [SZ12]
achieves anytime optimal rates (upto a log T factor) with the final iterate of an SGD procedure, and
this is shown to be tight with the recent work of [HLPR18]. [JNN19] achieve minimax rates on the
final iterate using a nuanced stepsize scheme when the number of iterations is fixed in advance.

Geometrically Decaying Stepsize Schedules date to [Gof77]. [DD19] employ the stepdecay schedule
to prove high-probability guarantees for SGD with strongly convex objectives. In stochastic optimiza-
tion, several other works, including [GL13b, HK14, AFGO19, KM19] consider doubling argument
based approaches, where the epoch length is doubled everytime the stepsizes are halved. The step
decay schedule is employed to yield faster rates of convergence under certain growth (and related)
conditions both in convex [XLY16] and non-convex settings [YYJ18, DDC19].

Paper organization: Section 2 describes notation and problem setup. Section 3 presents our results
on the sub-optimality of polynomial decay schemes and the near optimality of the step decay scheme.
Section 3.3 presents results on the anytime behavior of SGD (i.e. the asymptotic/infinite horizon
case). Section 4 presents experimental results and Section 5 presents conclusions.
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2 Problem Setup

Notation: We present the setup and associated notation in this section. We represent scalars with
normal font a, b, L etc., vectors with boldface lowercase characters a,b etc. and matrices with
boldface uppercase characters A,B etc. We represent positive semidefinite (PSD) ordering between
two matrices using �. The symbol & represents that the inequality holds for some universal constant.

We consider here the minimization of the following expected square loss objective:

min
w

f(w) where f(w)
def
= 1

2E(x,y)∼D[(y − 〈w,x〉)2]. (1)

Note that the hessian of the objective H
def
= ∇2f(w) = E

[
xx>

]
. We are provided access to

stochastic gradients obtained by sampling a new example (xt, yt) ∼ D. These examples satisfy:

y = 〈w∗,x〉+ ε,

where, ε is the noise on the example pair (x, y) ∼ D and w∗ is a minimizer of the objective f(w).
Given an initial iterate w0 and stepsize sequence {ηt}, our stochastic gradient update is:

wt+1 ← wt − ηt∇̂f(wt−1); ∇̂f(wt) = −(yt − 〈wt,xt〉) · xt. (2)

We assume that the noise ε = y − 〈w∗,x〉 ∀ (x, y) ∼ D satisfies the following condition:

Σ
def
= E

[
∇̂f(w∗)∇̂f(w∗)>

]
= E(x,y)∼D[(y − 〈w∗,x〉)2xx>] � σ2H. (3)

Next, assume that covariates x satisfy the following fourth moment inequality:

E
[
‖x‖2 xx>

]
� R2 H (4)

This assumption is satisfied, say, when the norm of the covariates sup ‖x‖2 < R2, but is true more
generally. Finally, note that both 3 and 4 are general and are used in recent works [BM13, JKK+16]
that present a sharp analysis of SGD for streaming least squares problem. Next, we denote by

µ
def
= λmin (H) , L

def
= λmax (H) , and , κ def

= R2/µ

the smallest eigenvalue, largest eigenvalue and condition number of H respectively. µ > 0 in the
strongly convex case but not necessarily so in the non-strongly convex case (in section 3 and beyond,
the non-strongly case is referred to as the “smooth” case). Let w∗ ∈ arg minw∈Rd f(w). The
excess risk of an estimator w is f(w)− f(w∗). Given t accesses to the stochastic gradient oracle in
equation 2, any algorithm that uses these stochastic gradients and outputs ŵt has sub-optimality that
is lower bounded by σ2d

t . More concretely, we have that [VdV00]

lim
t→∞

E [f(ŵt)]− f(w∗)

σ2d/t
≥ 1 .

The rate of (1 + o(1)) · σ2d/t is achieved using iterate averaged SGD [Rup88, PJ92] with constant
stepsizes [BM13, DB15a, JKK+16]. This rate of σ2d/t is called the statistical minimax rate.

3 Main Results

Sections 3.1, 3.2 consider the fixed time horizon setting; the former presents the significant sub-
optimality of polynomially decaying stepsizes on SGD’s final iterate behavior, the latter section
presenting the near-optimality of SGD’s final iterate. Section 3.3 presents negative results on SGD’s
final iterate behavior (irrespective of stepsizes employed), in the anytime (i.e. limiting) sense.

3.1 Suboptimality of polynomial decay schemes

This section begins by showing that there exist problem instances where polynomially decaying
stepsizes considered stochastic approximation theory [RM51, PJ92] i.e., those of the form a

b+tα , for
any choice of a, b > 0 and α ∈ [0.5, 1] are significantly suboptimal (by a factor of the condition
number of the problem, or by

√
T in the smooth case) compared to the statistical minimax rate [KC78].
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Theorem 1. Under assumptions 3, 4, there exists a class of problem instances where the following
lower bounds on excess risk hold on SGD’s final iterate with polynomially decaying stepsizes when
given access to the oracle as written in equation 2.

Strongly convex case: Suppose µ > 0. For any condition number κ, there exists a least squares
problem instance with initial suboptimality f(w0)− f(w∗) ≤ σ2d such that, for any T ≥ κ 4

3 , and
for all a, b ≥ 0 and 0.5 ≤ α ≤ 1, and for the learning rate scheme ηt = a

b+tα , we have

E [f(wT )]− f(w∗) ≥ exp

(
− T

κ log T

)
(f(w0)− f(w∗)) +

σ2d

64
· κ
T
.

Smooth case: For any fixed T > 1, there exists a least squares problem instance such that, for all
a, b ≥ 0 and 0.5 ≤ α ≤ 1, and for the learning rate scheme ηt = a

b+tα , we have

E [f(wT )]− f(w∗) ≥
(
L · ‖w0 −w∗‖2 + σ2d

)
· 1√

T log T
.

For both cases (with/without strong convexity), the minimax rate is σ2d/T . In the strongly convex
case, SGD’s final iterate with polynomially decaying stepsizes pays a suboptimality factor of Ω(κ),
whereas, in the smooth case, SGD’s final iterate pays a suboptimality factor of Ω

( √
T

log T

)
.

3.2 Near optimality of Step Decay schemes

Given the knowledge of an end time T when the algorithm is terminated, this section presents the step
decay schedule (Algorithm 1), which offers significant improvements over standard polynomially
decaying stepsize schemes, and obtains near minimax rates (off by only a log(T ) factor).
Theorem 2. Suppose we are given access to the stochastic gradient oracle 2 satisfying Assumptions 3
and 4. Running Algorithm 1 with an initial stepsize of η1 = 1/(2R2) allows the algorithm to achieve
the following excess risk guarantees.

• Strongly convex case: Suppose µ > 0. We have:

E [f(wT )]− f(w∗) ≤ 2 · exp

(
− T

2κ log T log κ

)
(f(w0)− f(w∗)) + 4σ2d · log T

T
.

• Smooth case: We have:

E [f(wT )]− f(w∗) ≤ 2 ·
(
R2d · ‖w0 −w∗‖2 + 2σ2d

)
· log T

T

While theorem 2 presents significant improvements over polynomial decay schemes, as mentioned in
the contributions, the above result presents a worse rate on the initial error (by a dimension factor) in
the smooth case (i.e. non-strongly convex case), compared to the best known result [BM13], which
relies heavily on iterate averaging to remove this factor. It is an open question with regards to whether
this factor can actually be improved or not. Furthermore, comparing the initial error dependence
between the lower bound for the smooth case (Theorem 1) with the upper bound for the step decay
scheme, we believe that the dependence on the smoothness L should be improved to one on the R2.

In terms of the variance, however, note that the polynomial decay schemes, are plagued by a
polynomial dependence on the condition number κ (for the strongly convex case), and are off the
minimax rate by a

√
T factor (for the smooth case). The step decay schedule, on the other hand, is off

the minimax rate [Rup88, PJ92, VdV00] by only a log(T ) factor. It is worth noting that Algorithm 1
admits an efficient implementation in that it requires the knowledge only of R2 (similar to iterate
averaging results [BM13, JKK+16]) and the end time T . Finally, note that this log T factor can be
improved to a log κ factor for the strongly convex case by using an additional polynomial decay
scheme before switching to the Step Decay scheme.
Proposition 3. Suppose we are given access to the stochastic gradient oracle 2 satisfying Assump-
tions 3 and 4. Let µ > 0 and let κ ≥ 2. For any problem and fixed time horizon T/ log T > 5κ, there
exists a learning rate scheme that achieves

E [f(wT )]− f(w∗) ≤ 2 exp(−T/(6κ log κ)) · (f(w0)− f(w∗)) + 100 log2 κ ·
σ2d

T
.
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In order to have improved the dependence on the variance from log(T ) (in theorem 2) to log(κ)
(in proposition 3), we require access to the strong convexity parameter µ = λmin(H) in addition
to R2 and knowledge of the end time T . This parallels results known for general strongly convex
setting [RSS12, LJSB12, SZ12, Bub14, JNN19].

As a final remark, note that this section’s results (on step decay schemes) assumed the knowledge
of a fixed time horizon T . In contrast, most results SGD’s averaged iterate obtain anytime (i.e.,
limiting/infinite horizon) guarantees. Can we hope to achieve such guarantees with the final iterate?

3.3 SGD queries bad points infinitely often

This section shows that obtaining near statistical minimax rates with the final iterate is not possible
without knowledge of the time horizon T . More concretely, we show that irrespective of the learning
rate sequence employed (be it polynomially decaying or step-decay), SGD requires to query a point
with sub-optimality at least Ω(κ/ log κ) · σ2d/T for infinitely many time steps T .
Theorem 4. Suppose we are given access to a stochastic gradient oracle 2 satisfying Assumption 3, 4.
There exists a universal constant C > 0, and a problem instance, such that for SGD algorithm with
any ηt ≤ 1/2R2 for all t2, we have

lim sup
T→∞

E [f(wT )]− f(w∗)

(σ2d/T )
≥ C κ

log(κ+ 1)
.

The bad points guaranteed to exist by Theorem 4 are not rare. We show that such points occur at least
once in O

(
κ

log κ

)
iterations. Refer to Theorem 16 in appendix D in supplementary material.

4 Experimental Results

We present experimental validation on the suitability of the Step-decay schedule (or more precisely,
its continuous counterpart, which is the exponentially decaying schedule), and compare its with the
polynomially decaying stepsize schedules. In particular, we consider the use of:

ηt =
η0

1 + b · t
(5) ηt =

η0

1 + b
√
t

(6) ηt = η0 · exp (−b · t). (7)

Where, we perform a systematic grid search on the parameters η0 and b. In the section below, we
consider a real world non-convex optimization problem of training a residual network on the cifar-
10 dataset, with an aim to illustrate the practical implications of the results described in the paper.
Complete details of the setup are given in Appendix E in the supplementary material.

4.1 Non-Convex Optimization: Training a Residual Net on cifar-10

We consider training a 44−layer deep residual network [HZRS16a] with pre-activation
blocks [HZRS16b] (dubbed preresnet-44) on cifar-10 dataset. The code for implementing the network
can be found here 3. For all experiments, we use Nesterov’s momentum [Nes83] implemented in
pytorch 4 with a momentum of 0.9, batchsize 128, 100 training epochs, `2 regularization of 0.0005.

Our experiments are based on grid searching for the best learning rate decay scheme on the parametric
family of learning rate schemes described above (5),(6),(7); all grid searches are performed on a
separate validation set (obtained by setting aside one-tenth of the training dataset) and with models
trained on the remaining 45000 samples. For presenting the final numbers in the plots/tables, we
employ the best hyperparameters from the validation stage and train it on the entire 50, 000 samples
and average results run with 10 different random seeds. The parameters for grid searches and
other details are presented in Appendix E. Furthermore, we always extend the grid so that the best
performing grid search parameter lies in the interior of our grid search.

How does the step decay scheme compare with the polynomially decaying stepsizes? Figure 2
and Table 2 present a comparison of the performance of the three schemes (5)-(7). These results
demonstrate that the exponential scheme convicingly outperforms the polynomial step-size schemes.

2Learning rate more than 2/R2 will make the algorithm diverge.
3https://github.com/D-X-Y/ResNeXt-DenseNet
4https://github.com/pytorch

7

https://github.com/D-X-Y/ResNeXt-DenseNet
https://github.com/pytorch


Table 2: Comparing Train Cross-Entropy and Test 0/1 Error of various learning rate decay schemes
for the classification task on cifar-10 using a 44−layer residual net with pre-activations.

Decay Scheme Train Function Value Test 0/1 error
O(1/t) (equation (5)) 0.0713± 0.015 10.20± 0.7%

O(1/
√
t) (equation (6)) 0.1119± 0.036 11.6± 0.67%

exp(−t) (equation (7)) 0.0053± 0.0015 7.58± 0.21%

Figure 2: Plot of the training function value (left) and test 0/1− error (right) comparing the three
decay schemes (two polynomial) 5, 6, (and one exponential) 7 scheme.

Does suffix iterate averaging improve over final iterate’s behavior for polynomially decaying
stepsizes? Towards answering this question, firstly, we consider the best performing values of equa-
tion 5 and 6, and then, average iterates of the algorithm starting from 5, 10, 20, 40, 80, 85, 90, 95, 99
epochs when training the model for a total of 100 epochs. While such iterate averaging
(and their suffix) variants have strong theoretical support for (stochastic) convex optimiza-
tion [Rup88, PJ92, RSS12, Bub14, JKK+16], their impact on non-convex optimization is largely
debatable. Nevertheless, this experiments’s results (figure 3) indicates that suffix averaging tends to
hurt the algorithm’s generalization behavior (which is unsurprising given the non-convex nature of
the objective). Note that, figure 3 serves to indicate that averaging the final few (≤ 5) epochs tends to
offer nearly the same result as the final iterate’s behavior, indicating that the gains of using suffix
iterate averaging are relatively limited for several such settings.
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Figure 3: Performance of the suffix averaged iterate compared to the final iterate when varying the
iteration when iterate averaging is begun from {5, 10, 20, 40, 80, 85, 90, 95, 99} epochs for the 1/T

learning rate 5 (left) and the 1/
√
T learning rate 6 (right).

Does our result on “knowing” the time horizon (for step-decay schedule) present implications
towards hyper-parameter search methods that work based on results extracted from truncated
runs? Towards answering this question, consider the figure 4 and Tables 3 and 4, which present
a comparison of the performance of three exponential decay schemes each of which is tuned to
achieve the best performance at 33, 66 and 100 epochs respectively. The key point to note is that best
performing hyperparameters at 33 and 66 epochs are not the best performing at 100 epochs (which
is made stark from the perspective of the validation error - refer to table 4). This demonstrates that
hyper parameter selection methods that tend to discard hyper-parameters which don’t perform well at
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earlier stages of the optimization (i.e. based on comparing results on truncated runs), which, for e.g.,
is indeed the case with hyperband [LJD+17], will benefit from a round of rethinking.

Figure 4: Plot of the training function value (left) and test 0/1− error (right) comparing exponential
decay scheme (equation 7), with parameters optimized for 33, 66 and 100 epochs.

Table 3: Comparing training (softmax) function value by optimizing the exponential decay scheme
with end times of 33/66/100 epochs on cifar-10 dataset using a 44−layer residual net.

Decay Scheme Train FVal @33 Train FVal @66 Train FVal @100

exp(−t) [optimized for 33 epochs] (eqn (7)) 0.098± 0.006 0.0086± 0.002 0.0062± 0.0015
exp(−t) [optimized for 66 epochs] (eqn (7)) 0.107± 0.012 0.0088± 0.0014 0.0061± 0.0011
exp(−t) [optimized for 100 epochs] (eqn (7)) 0.3± 0.06 0.071± 0.017 0.0053± 0.0016

Table 4: Comparing test 0/1 error by optimizing the exponential decay scheme with end times of
33/66/100 epochs for the classification task on cifar-10 dataset using a 44−layer residual net.

Decay Scheme Test 0/1 @33 Test 0/1 @66 Test 0/1 @100

exp(−t) [optimized for 33 epochs] (eqn (7)) 10.36± 0.235% 8.6± 0.26% 8.57± 0.25%
exp(−t) [optimized for 66 epochs] (eqn (7)) 10.51± 0.45% 8.51± 0.13% 8.46± 0.19%
exp(−t) [optimized for 100 epochs] (eqn (7)) 14.42± 1.47% 9.8± 0.66% 7.58± 0.21%

5 Conclusions and Discussion

The main contribution of this work shows that the behavior of SGD’s final iterate for least squares
regression is much more nuanced than what has been indicated by prior efforts that have primarily
considered non-smooth stochastic convex optimization. The results of this paper point out the striking
limitations of polynomially decaying stepsizes on SGD’s final iterate, as well as sheds light on the
effectiveness of starkly different schemes based on a Step Decay schedule. Somewhat coincidentally,
practical implementations for certain classes of stochastic optimization do return the final iterate of
SGD with step decay schedule − this connection does merit an understanding through future work.
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A Preliminaries

Before presenting the lemmas establishing the behavior of SGD under various learning rate schemes,
we introduce some notation. We recount that the SGD update rule denoted through:

wt = wt−1 − ηt∇̂f(wt−1)

We then write out the expression for the stochastic gradient ∇̂f(wt−1).

∇̂f(wt−1) = xtx
>
t (wt−1 −w∗)− εtxt,

where, given the stochastic gradient corresponding to an example (xt, yt) ∼ D, with yt = 〈w∗,xt〉+
εt, the above stochastic gradient expression naturally follows. Now, in order to analyze the contraction
properties of the SGD update rule, we require the following notation:

Pt = I− ηtxtx>t .

Lemma 5. [For e.g. Appendix A.2.2 from [JKK+16]] Bias-Variance tradeoff: Running SGD for
T−steps starting from w0 and a stepsize sequence {ηt}Tt=1 presents a final iterate wT whose excess
risk is upper-bounded as:

〈H,E [(wT −w∗)⊗ (wT −w∗)]〉 ≤ 2 ·
(
〈H,E [PT · · ·P1(w0 −w∗)⊗ (w0 −w∗)P1 · · ·PT ]〉

+

〈
H,

T∑
τ=1

η2
τ · E [PT · · ·Pτ+1nτ ⊗ nτPτ+1 · · ·PT ]

〉)
,

where, Pt = I− ηt · xtx>t and nt = εtxt. Note that E [nt|Ft−1] = 0 and E [nt ⊗ nt|Ft−1] � σ2H,
where, Ft−1 is the filtration formed by all samples (x1, y1) · · · (xt−1, yt−1) until time t.

Proof. One can view the contribution of the above two terms as ones stemming from SGD’s updates,
which can be written as:

wt = wt−1 − ηt∇̂f(wt−1)

wt −w∗ = (I− ηtxtxt)(wt−1 −w∗) + ηtnt

wt −w∗ = Pt · · ·P1(w0 −w∗) +

T∑
τ=1

Pt · · ·Pτ+1ητnτ

From the above equation, the result of the lemma follows straightforwardly. Now, clearly, if the noise
ε and the inputs x are indepdent of each other, and if the noise is zero mean i.e. E [ε] = 0, the above
inequality holds with equality (without the factor of two). This is true more generally iff

E
[
εx(i)x(j)x(k)

]
= 0.

For more details, refer to [DB15a].

Now, in order to bound the total error, note that the original stochastic process associated with SGD’s
updates can be decoupled into two (simpler) processes, one being the noiseless process (which
corresponds to reducing the dependence on the initial error, and is termed “bias”), i.e., where, the
recurrence evolves as:

wbias
t −w∗ = Pt(w

bias
t−1 −w∗) (8)

The second recursion corresponds to the dependence on the noise (termed as variance), wherein, the
process is initiated at the solution, i.e. wvar

0 = w∗ and is driven by the noise nt. The update for this
process corresponds to:

wvar
t −w∗ = Pt(w

var
t−1 −w∗) + ηtnt, with wvar

0 = w∗ (9)

=

t∑
τ=1

Pt · · ·Pτ+1 · (ητnτ ).
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We represent by Bt the covariance of the tth iterate of the bias process, i.e.,

Bt = E
[(
wbias
t −w∗

) (
wbias
t −w∗

)>]
= E

[
PtBt−1P

>
t

]
= E [Pt · · ·P1B0P1 · · ·Pt]

The quantity that routinely shows up when bounding SGD’s convergence behavior is the covariance of
the variance error, i.e. Vt := E [(wvar

t −w∗)⊗wvar
t −w∗)]. This implies the following (simplified)

expression for Vt:

Vt = E [(wvar
t −w∗)⊗ (wvar

t −w∗)]

= E

[( t∑
τ=1

Pt · · ·Pτ+1 · (ητnτ )

)
⊗
( t∑
τ ′=1

Pt · · ·Pτ ′+1 · (η′τn′τ )

)]
=
∑
τ,τ ′

E [PT · · ·Pτ+1(ητnτ )⊗ (ητ ′nτ ′)Pτ ′+1 · · ·PT ]

=

T∑
τ=1

η2
τE [PT · · ·Pτ+1nτ ⊗ nτPτ+1 · · ·PT ]

Firstly, note that this naturally implies that the sequence of covariances Vτ , τ = 1, · · · , T initialized
at (say), the solution, i.e., V0 = 0 naturally grows to its steady state covariance, i.e.,

V1 � V2 � · · · � V∞.

See lemma 3 of [JKK+17a] for more details. Furthermore, what naturally follows in relating Vt to
Vt−1 is:

Vt � E
[
PtVt−1P

>
t

]
+ η2

t σ
2H. (10)

Lemma 6 (Lemma 5 of [JKK+17a]). Running SGD with a (constant) stepsize sequence η < 1/R2

achieves the following steady-state covariance:

V∞ �
ησ2

1− ηR2
I.

Lemma 7. Suppose η = 1/2R2, and V0 = ησ2

1−ηR2 I = 2ησ2I. For any sequence of learning rates
ηt ≤ η = 1/2R2 ∀ t ∈ {1, · · · , t}, then,

Vt � 2ησ2I ∀ t.

Proof. We will prove the lemma using an inductive argument. The base case, i.e. t = 0 follows from
the problem statement. Note also that for SGD, V0 = 0 implying the statement naturally follows. If,
say, Vt satisfies the equation above, from equation 10, we have the following covariance for Vt+1:

Vt+1 � E
[
PtVtP

>
t

]
+ η2

t σ
2H

= E
[
(I− ηtxtx>t )Vt(I− ηtxtx>t )

]
+ η2

t σ
2H

� 2ησ2E
[
(I− ηtxtx>t )(I− ηtxtx>t )

]
+ η2

t σ
2H

� 2ησ2I− 4ηtησ
2H + 2η2

t ησ
2R2H + η2

t σ
2H

� 2ησ2I− 2ηtησ
2H + η2

t σ
2H

= 2ησ2I + ηt · (ηt − 2η)σ2H

� 2ησ2I,

from which the lemma follows.

Lemma 8. (Reduction from Multiplicative noise oracle) Let Vt be the (expected) covariance of
the variance error. Then, the recursion that connects Vt+1 to Vt can be expressed as:

Vt+1 � (I− ηtH)Vt(I− ηtH) + 2η2
t σ

2H
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Proof. From equation 10, we already know that the evolution of the co-variance of the variance error
follows:

Vt+1 � E
[
PtVtP

>
t

]
+ η2

t σ
2H

� E [(I− ηtH)Vt(I− ηtH)] + η2
tE
[
xtx
>
t Vtxtx

>
t

]
+ η2

t σ
2H

� (I− ηtH)Vt(I− ηtH) + η2
t ‖Vt‖2R

2H + η2
t σ

2H

= (I− ηtH)Vt(I− ηtH) + η2
t · 2ησ2R2H + η2

t σ
2H

� (I− ηtH)Vt(I− ηtH) + 2η2
t σ

2H.

Where the steps follow from lemma 7, and owing from the fact that ηt ≤ η = 1/2R2 ∀ t.

Note: Basically, one could analyze an auxiliary process driven by noise with variance off by a factor
of two and convert the analysis into one involving exact (deterministic) gradients.
Lemma 9. [Bias decay - strongly convex case] Let the minimal eigenvalue of the Hessian µ =
λmin(H) > 0. Consider the bias recursion as in equation 8 with the stepsize set as η = 1/(2R2).
Then,

E
[∥∥wbias

t −w∗
∥∥2

2

]
≤ (1− 1/(2κ))E

[∥∥wbias
t−1 −w∗

∥∥2

2

]
Proof. The proof follows through straight forward computations:

E
[∥∥wbias

t −w∗
∥∥2

2

]
≤ E

[∥∥wbias
t−1 −w∗

∥∥2

2

]
− 2ηE

[∥∥wbias
t−1 −w∗

∥∥2

H

]
+ η2R2E

[∥∥wbias
t−1 −w∗

∥∥2

H

]
= E

[∥∥wbias
t−1 −w∗

∥∥2

2

]
− ηE

[∥∥wbias
t−1 −w∗

∥∥2

H

]
≤ (1− ηµ)E

[∥∥wbias
t−1 −w∗

∥∥2

2

]
,

where, the first line follows from the fact that E
[
‖xt‖22 xtx>t

]
� R2H and the result follows through

the definition of κ.

Lemma 10. [Reduction of the bias recursion with multiplicative noise to one resembling the
variance recursion] Consider the bias recursion that evolves as
Bt = E

[
(wt −w∗)(wt −w∗)>

]
= E

[
(I− γtxtx>t )Bt−1(I− γtxtx>t )

]
with B0 = (w0−w∗)(w0−w∗)>.

Then, the following recursion holds ∀γt ≤ 1/R2:

Bt � (I− γtH)Bt−1(I− γtH) + γ2
tR

2 ‖w0 −w∗‖2 H.

Proof. The result follows owing to the following computations:
Bt = E

[
(wt −w∗)(wt −w∗)>

]
= E

[
(I− γtxtx>t )Bt−1(I− γtxtx>t )

]
� (I− γtH)Bt−1(I− γtH) + γ2

t E
[
(x>t Bt−1xt)xtx

>
t

]
� (I− γtH)Bt−1(I− γtH) + γ2

t E [‖Bt−1‖2]R2H

� (I− γtH)Bt−1(I− γtH) + γ2
t E
[
‖wt−1 −w∗‖22

]
R2H

� (I− γtH)Bt−1(I− γtH) + γ2
t E
[
‖w0 −w∗‖22

]
R2H,

with the last inequality holding true if the squared distance to the optimum doesn’t grow as a part of
the recursion. We prove that this indeed is the case below:

E
[
‖wt−1 −w∗‖22

]
= E

[∥∥wt−2 − γt−1xt−1x
>
t−1 −w∗

∥∥2

2

]
≤ E

[
‖wt−2 −w∗‖22

]
− 2γt−1E

[
‖wt−2 −w∗‖2H

]
+ γ2

t−1R
2E
[
‖wt−2 −w∗‖2H

]
≤ E

[
‖wt−2 −w∗‖22

]
− γt−1E

[
‖wt−2 −w∗‖2H

]
≤ E

[
‖wt−2 −w∗‖22

]
.

Recursively applying the above argument yields the desired result.
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Note: This result implies that the bias error (in the smooth non-strongly convex case of the least
squares regression with multiplicative noise) can be bounded by employing a similar lemma as that
of the variance, where one can look at the quantity R2 · ‖w0 −w∗‖22 as the analog of the variance σ2

that drives the process.

Lemma 11. [Lower bounds on the additive noise oracle imply ones for the multiplicative noise
oracle] Under the assumption that the covariance of noise Σ = σ2H, the following statement holds.
Let Vt be the (expected) covariance of the variance error. Then, the recursion that connects Vt+1 to
Vt can be expressed as:

Vt+1 = E
[
(I− ηtxtx>t )Vt(I− ηtxtx>t )

]
+ η2

t σ
2H

Then,

Vt+1 � (I− ηtH)Vt(I− ηtH) + η2
t σ

2H

Proof. Let us consider firstly, the setting of (bounded) additive noise. Here, we have:

∇̂f(wt) = H(wt −w∗) + ζt, with E [ζt|wt] = 0, and E
[
ζtζ
>
t |wt

]
= σ2H.

Then, updates leading upto time t+ 1 can be written as:

wt+1 −w∗ =

t+1∏
τ=1

(I− ητH)(w0 −w∗) +

t+1∑
τ ′=1

ητ ′
t+1∏

τ=τ ′+1

(I− ητH)ζτ ′

This implies the covariance of the variance error is:

Ṽt+1 = E

( t+1∑
τ ′=1

ητ ′
t+1∏

τ=τ ′+1

(I− ητH)ζτ ′

)
⊗

 t+1∑
τ ′′=1

ητ ′′
t+1∏

τ=τ ′′+1

(I− ητH)ζτ ′′


=

t+1∑
τ ′=1

η2
τ ′E

 t+1∏
τ=τ ′+1

(I− ητH)ζτ ′ ⊗ ζτ ′
τ ′+1∏
τ=t+1

(I− ητH)


= (I− ηt+1H)Vt(I− ηt+1H) + η2

t+1σ
2H.

Now, let us consider the statement of the lemma:

Vt+1 = E
[
(I− ηt+1xt+1x

>
t+1)Vt(I− ηt+1xt+1x

>
t+1)

]
+ η2

t+1σ
2H

= (I− ηt+1H)Vt(I− ηt+1H) + η2
t+1E

[
(xt+1x

>
t+1 −H)Vt(xt+1x

>
t+1 −H)

]
+ η2

t+1σ
2H

� (I− ηt+1H)Vt(I− ηt+1H) + η2
t σ

2H.

Unrolling the above argument and straightforward induction, we see that Vt+1 � Ṽt+1, implying that
the process driven by the multiplicative noise oracle can be lower bounded (in a PSD sense) by one
that employs deterministic gradients with additive noise.

B Proofs of results in Section 3.1

Theorem 12. Consider the additive noise oracle setting, where, we have access to stochastic
gradients satisfying:

∇̂f(w) = ∇f(w) + ζ = H(w −w∗) + ζ,

where,

E [ζ|w] = 0, and, E
[
ζζ>|w

]
= σ2H

The following lower bounds hold on the final iterate of a Stochastic Gradient procedure with access
to the above stochastic gradients when using polynomially decaying stepsizes.
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Strongly convex case: Suppose µ > 0. For any condition number κ, there exists a problem instance
with initial suboptimality f(w0) − f(w∗) ≤ σ2d such that, for any T ≥ κ

4
3 , and for all a, b ≥ 0

and 0.5 ≤ α ≤ 1, and for the learning rate scheme ηt = a
b+tα , we have

E [f(wT )]− f(w∗) ≥ exp

(
− T

κ log T

)
(f(w0)− f(w∗)) +

σ2d

64
· κ
T
.

Smooth case: For any fixed T > 1, there exists a problem instance such that, for all a, b ≥ 0 and
0.5 ≤ α ≤ 1, and for the learning rate scheme ηt = a

b+tα , we have

E [f(wT )]− f(w∗) ≥
(
L · ‖w0 −w∗‖2 + σ2d

)
· 1√

T log T
.

Proof. Strongly convex case: The problem instance is simple. Consider the case where the inputs
are such that in every example x, there is only one co-ordinate that is non-zero. Furthermore, let each
co-ordinate be Gaussian with mean zero and variance for the first d/2 co-ordinates be dκ/3 whereas

the rest be 1. This implies H =


dκ/3

. . .
1

. . .

, where the first d2 diagonal entries are equal

to κ/3 and the remaining d
2 diagonal entries are equal to 1 and all the off diagonal entries are equal to

zero. Furthermore, consider the noise to be additive (and independent of x) with mean zero. Finally,

let us denote by v(i)
t

def
= E

[(
w

(i)
t − (w∗)

(i)
)2
]

the variance in the ith direction at time step t. Let

the initialization be such that v(i)
0 = 3σ2/κ for i = 1, 2, ..., d/2 and v(i)

0 = σ2 for i = d/2 + 1, ..., d.
This means that the variances for all directions with eigenvalue κ remain equal as t progresses and
similarly for all directions with eigenvalue 1. We have

v
(1)
T

def
= E

[(
w

(1)
T − (w∗)

(1)
)2
]

=

T∏
j=1

(1− ηjκ/3)
2
v

(1)
0 + κσ2/3

T∑
j=1

η2
j

T∏
i=j+1

(1− ηiκ/3)
2 and

v
(d)
T

def
= E

[(
w

(d)
T − (w∗)

(d)
)2
]

=

T∏
j=1

(1− ηj)2
v

(d)
0 + σ2

T∑
j=1

η2
j

T∏
i=j+1

(1− ηi)2
.

We consider a recursion for v(i)
t with eigenvalue λi (κ or 1). By the design of the algorithm, we know

v
(i)
t+1 = (1− ηtλi)2v

(i)
t + λiσ

2η2
t .

Let s(η, λ) = λσ2η2

1−(1−ηλ)2 be the solution to the stationary point equation x = (1 − ηλ)2 + λσ2η2.

Intuitively if we keep using the same learning rate η, then v(i)
t is going to converge to s(η, λi). Also

note that s(η, λ) ≈ σ2η/2 when ηλ� 1.

We first prove the following claim showing that eventually the variance in direction i is going to be at
least s(ηT , λi).

Claim 1. Suppose s(ηt, λi) ≤ v(i)
0 , then v(i)

t ≥ s(ηt, λi).

Proof. We can rewrite the recursion as

v
(i)
t+1 − s(ηt, λi) = (1− ηtλi)2(v

(i)
t − s(ηt, λi)).

In this form, it is easy to see that the iteration is a contraction towards s(ηt, λi). Further, v(i)
t+1 −

s(ηt, λi) and v(i)
t − s(ηt, λi) have the same sign. In particular, let t0 be the first time such that

s(ηt, λi) ≤ v(i)
0 (note that ηt is monotone and so is s(ηt, λi)), it is easy to see that v(i)

t ≥ v
(i)
0 when

t ≤ t0. Therefore we know v
(i)
t0 ≥ s(ηt0 , λi), by the recursion this implies v(i)

t0+1 ≥ s(ηt0 , λi) ≥
s(ηt0+1, λi). The claim then follows from a simple induction.
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If s(ηT , λi) ≥ v
(i)
0 for i = 1 or i = d then the error is at least σ2d/2 ≥ κσ2d/T and we are done.

Therefore we must have s(ηT , κ) ≤ v
(1)
0 = 3σ2/κ, and by Claim 1 we know v

(1)
T ≥ s(ηT , κ) ≥

σ2ηT /2. The function value is at least

E [f(wT )]− f(w∗) ≥ d

2
· κ · v(1)

T ≥ dκσ2ηT
12

.

To make sure E [f(wT )] − f(w∗) ≤ dκσ2

64T we must have ηT ≤ 1
6T . Next we will show that when

this happens, v(d)
T must be large so the function value is still large.

We will consider two cases, in the first case, b ≥ Tα. Since 1
16T ≥ ηT = a

b+Tα ≥
a
2b , we have

a
b ≤

1
8T . Therefore v(d)

T ≥ (1 − a
b )2T v

(d)
0 ≥ σ2/2, so the function value is at least E [f(wt)] ≥

d
2 · v

(d)
T ≥ dσ2

4 ≥
κdσ2

T , and we are done.

In the second case, b < Tα. Since 1
16T ≥ ηT = a

b+Tα ≥
a

2Tα , we have a ≤ 1
8T

α−1. The sum of
learning rates satisfy

T∑
i=1

ηi ≤
T∑
i=1

a

iα
≤

T∑
i=1

1

8
i−1 ≤ 0.125 log T.

Here the second inequality uses the fact that Tα−1i−α ≤ i−1 when i ≤ T . Similarly, we also know∑T
i=1 η

2
i ≤

∑T
i=1(0.125)2i−2 ≤ π2/384. Using the approximation (1 − u)2 ≥ exp(−2u − 4u2)

for u < 1/4, we get v(d)
T ≥ exp(−2

∑T
i=1 ηi − 4

∑T
i=1 η

2
i )v

(d)
0 ≥ σ2/5T

1
4 , so the function value

is at least E [f(wt)] ≥ d
2 · v

(d)
T ≥ dσ2

10T
1
4
≥ κdσ2

32T . This concludes the second case and proves the
strongly convex part of the theorem.

Smooth case: The proof of this part is quite similar to that of the strongly convex case above but
with a subtle change in the initialization. In order to make this clear, we will do the proof from

scratch with out borrowing anything from the previous argument. Let H =


1

. . .
d
κ

. . .

,

where the first d
2 diagonal entries are equal to 1 and the remaining d

2 diagonal entries are equal
to d

κ and all the off diagonal entries are equal to zero. We will use κ = 1√
T

. Let us denote by

v
(i)
t

def
= E

[(
w

(i)
t − (w∗)

(i)
)2
]

the variance in the ith direction at time step t. Let the initialization

be such that v(i)
0 = σ2/κ for i = 1, 2, ..., d/2 and v(i)

0 = σ2 for i = d/2 + 1, ..., d. This means that
the variances for all directions with eigenvalue κ remain equal as t progresses and similarly for all
directions with eigenvalue 1. We have

v
(1)
T

def
= E

[(
w

(1)
T − (w∗)

(1)
)2
]

=

T∏
j=1

(1− ηjκ/3)
2
v

(1)
0 + κσ2/3

T∑
j=1

η2
j

T∏
i=j+1

(1− ηiκ/3)
2 and

v
(d)
T

def
= E

[(
w

(d)
T − (w∗)

(d)
)2
]

=

T∏
j=1

(1− ηj)2
v

(d)
0 + σ2

T∑
j=1

η2
j

T∏
i=j+1

(1− ηi)2
.

We consider a recursion for v(i)
t with eigenvalue λi (1 or 1

κ ). By the design of the algorithm, we know

v
(i)
t+1 = (1− ηtλi)2v

(i)
t + λiσ

2η2
t .

Let s(η, λ) = λσ2η2

1−(1−ηλ)2 be the solution to the stationary point equation x = (1 − ηλ)2 + λσ2η2.

Intuitively if we keep using the same learning rate η, then v(i)
t is going to converge to s(η, λi). Also

note that s(η, λ) ≈ σ2η/2 when ηλ� 1.
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If s(ηT , λi) ≥ v(i)
0 for i = 1 or i = d then the error is at least σ2d/2κ ≥ κσ2d/T and we are done.

Therefore we must have s(ηT , κ) ≤ v
(1)
0 = 3σ2/κ, and by Claim 1 we know v

(1)
T ≥ s(ηT , κ) ≥

σ2ηT /2. The function value is at least

E [f(wT )]− f(w∗) ≥ d

2
· v(1)
T ≥ dσ2ηT

4
.

To make sure E [f(wT )]− f(w∗) ≤ dκσ2

64T log T we must have ηT ≤ κ
16T log T . Next we will show that

when this happens, v(d)
T must be large so the function value is still large.

We will consider two cases, in the first case, b ≥ Tα. Since κ
16T log T ≥ ηT = a

b+Tα ≥
a
2b , we

have a
b ≤

κ
8T log T . Therefore v(d)

T ≥ (1 − a
b )2T v

(d)
0 ≥ σ2/2, so the function value is at least

E [f(wt)]− f(w∗) ≥ d
2 ·

1
κ · v

(d)
T ≥ dσ2

4κ ≥
κdσ2

T , and we are done.

In the second case, b < Tα. Since κ
16T log T ≥ ηT = a

b+Tα ≥
a

2Tα , we have a ≤ 1
8 log T κT

α−1. The
sum of learning rates satisfy

T∑
i=1

ηi ≤
T∑
i=1

a

iα
≤

T∑
i=1

1

8 log T
κi−1 ≤ 0.125κ.

Here the second inequality uses the fact that Tα−1i−α ≤ i−1. Similarly, we also know

T∑
i=1

η2
i ≤

T∑
i=1

(0.125κ/ log T )2i−2 ≤ π2κ2/384.

Using the approximation (1−u)2 ≥ exp(−2u−4u2) for u < 1/4, we get v(d)
T ≥ exp(−2

∑T
i=1

ηi
κ −

4
∑T
i=1

η2i
κ2 )v

(d)
0 ≥ σ2/5, so the function value is at least E [f(wt)] ≥ d

2 ·
1
κ · v

(d)
T ≥ dσ2

10κ ≥
dσ2

10
√
T

. This concludes the second case and proves the strongly convex part of the theorem. Since

‖H‖ · ‖w0 −w∗‖2 = dσ2, we have

E [f(wT )]− f(w∗) ≥ σ2d ·min

(
κ

T log T
,

1

10
√
T

)
≥
(
L · ‖w0 −w∗‖2 + σ2d

)
· 1√

T log T
.

This proves the theorem.

Proof of Theorem 1. The proof of theorem 1 follows straightforwardly when combining the result of
lemma 11 and theorem 12.

C Proofs of results in Section 3.2

Theorem 13. Consider the additive noise oracle setting, where, we have access to stochastic
gradients satisfying:

∇̂f(w) = ∇f(w) + ζ = H(w −w∗) + ζ,

where,

E [ζ|w] = 0, and, E
[
ζζ>|w

]
� σ̂2H

Running Algorithm 1 with an initial stepsize of η1 = 1/R2, starting from the solution, i.e. w0 = w∗

allows the algorithm to obtain the following dependence on the variance error:

E [f(wvar
T )]− f(w∗) ≤ 2

dσ̂2 log T

T
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Proof. The learning rate scheme is as follows. Divide the total time horizon T into log T phases,
each of length T

log T . In the `th phase, the learning rate is set to be 1
2`R2 . The variance in the kth

coordinate can be bounded as

v
(k)
T ≤

T∏
j=1

(
1− ηjλ(k)

)2

v
(k)
0 + λ(k)σ̂2

T∑
j=1

η2
j

T∏
i=j+1

(
1− ηiλ(k)

)2

≤ exp

−2

T∑
j=1

ηjλ
(k)

 v
(k)
0

+ λ(k)σ̂2

log T∑
`=1

1

22`(R2)2

T/ log T∑
j=1

(
1− λ(k)

2`(R2)

)2j

·
log T∏
u=`+1

(
1− λ(k)

2uR2

)T/ log T

≤ exp

(
−2λ(k)

R2
· T

log T

)
v

(k)
0 + λ(k)σ̂2

log T∑
`=1

1

22`(R2)2
· 2`R2

λ(k)
·

log T∏
u=`+1

exp

(
− λ(k)T

2uR2 log T

)

≤ exp

(
−2λ(k)

R2
· T

log T

)
v

(k)
0 +

log T∑
`=1

σ̂2

2`R2

log T∏
u=`+1

exp

(
− λ(k)T

2uR2 log T

)
. (11)

Let `∗ def
= max

(
0, blog

(
λ(k)

R2 · T
log T

)
c
)

. We now split the summation in the second term in (11) into
two parts and bound each of them below.

`∗∑
`=1

σ̂2

2`R2

log T∏
u=`+1

exp

(
− λ(k)T

2uR2 log T

)
≤

`∗∑
`=1

σ̂2

2`R2

`∗∏
u=`+1

exp

(
− λ(k)T

2uR2 log T

)

≤
`∗∑
`=1

σ̂2

2`R2

`∗∏
u=`+1

exp
(
−2`

∗−u
)
≤

`∗∑
`=1

σ̂2

2`R2
exp

(
−2`

∗−`
)

≤ σ̂2

2`∗R2

`∗∑
`=1

2`
∗−` exp

(
−2`

∗−`
)
≤ σ̂2

2`∗R2
≤ σ̂2

λ(k)
· log T

T
. (12)

For the second part, we have

log T∑
`=`∗+1

σ̂2

2`R2

log T∏
u=`+1

exp

(
− λ(k)T

2uR2 log T

)
≤

log T∑
`=`∗+1

σ̂2

2`R2
≤

log T∑
`=`∗+1

σ̂2

2`∗R2
≤ σ̂2

λ(k)
· log T

T
.

(13)

Plugging (12) and (13) into (11), we obtain

v
(k)
T ≤ exp

(
−2λ(k)

R2
· T

log T

)
v

(k)
0 +

2σ̂2

λ(k)
· log T

T
.

The function suboptimality can now be bounded as

E [f(wvar
T )]− f(w∗) =

d∑
k=1

λ(k) · v(k)
T

≤
d∑
k=1

λ(k)

(
exp

(
−2λ(k)

R2
· T

log T

)
v

(k)
0 +

2σ̂2

λ(k)
· log T

T

)
.

E [f(wvar
T )]− f(w∗) ≤

d∑
k=1

(
L log T

T
v

(k)
0 + 2σ̂2 · log T

T

)
= 2

(
σ̂2d
) log T

T
.
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Proof of Theorem 2. Smooth case: The result follows by instantiating σ̂2 in theorem 13 with 2σ2

(lemma 8) and R2 ‖w0 −w∗‖22 (lemma 10) and using the lemma 5 to obtain the result.

Strongly convex case: As with the smooth case, the result relies on instantiating theorem 13 with
2σ2 (lemma 8) and using lemma 9 and then appealing to lemma 5.

Proposition 14. Consider the additive noise oracle setting, where, we have access to stochastic
gradients satisfying:

∇̂f(w) = ∇f(w) + ζ = H(w −w∗) + ζ,

where,

E [ζ|w] = 0, and, E
[
ζζ>|w

]
≤ σ2H

There exists a stepsize scheme with which, by starting at the solution (i.e. w0 = w∗) the algorithm
obtains the following dependence on the variance error, under the assumption that µ > 0 and κ ≥ 2.

E [f(wvar
T )]− f(w∗) ≤ 50 log2 κ ·

σ2d

T
.

Proof. The learning rate scheme is as follows.

We first break T into three equal sized parts. Let A = T/3 and B = 2T/3. In the first T/3 steps, we
use a constant learning rate of 1/R2. Note that at the end of this phase, (since T > κ) the dependence
on the initial error decays geometrically. In the second T/3 steps, we use a polynomial decay learning
rate ηA+t = 1

µ(κ+t/2) . In the third T/3 steps, we break the steps into log2(κ) equal sized phases.

In the `th phase, the learning rate to be used is 5 log2 κ
2`·µ·T . Note that the learning rate in the first phase

depends on strong convexity and that in the last phase depends on smoothness (since the last phase
has ` = log κ).

Recall the variance in the kth coordinate can be upper bounded by

v
(k)
T

def
= E

[(
w

(k)
T − (w∗)

(1)
)2
]
≤

T∏
j=1

(
1− ηjλ(k)

)2

v
(1)
0 + λ(k)σ2

T∑
j=1

η2
j

T∏
i=j+1

(
1− ηiλ(k)

)2

≤ exp

−2

T∑
j=1

ηjλ
(k)

 v
(1)
0 + λ(k)σ2

T∑
j=1

η2
j exp

−2

T∑
i=j+1

ηiλ
(k)

 .

We will show that for every k, we have

v
(k)
T ≤ v

(k)
0

T 3
+

50 log2 κ

λ(k)T
· σ2., (14)

which directly implies the theorem.

We will consider the first T/3 steps. The guarantee that we will prove for these iterations is: for any
t ≤ A, v(k)

t ≤ (1− λ(k)/R2)2tv
(k)
0 + σ2

R2 .

This can be proved easily by induction. Clearly this is true when t = 0. Suppose it is true for t− 1,
let’s consider step t. By recursion of v(k)

t we know

v
(k)
t = (1− λ(k)/R2)2v

(k)
t−1 + λ(k)σ2/(R2)2

≤ (1− λ(k)/R2)2tv
(k)
0 +

σ2

R2

(
(1− λ(k)/R2)2 + λ(k)/R2

)
≤ (1− λ(k)/R2)2tv

(k)
0 +

σ2

R2
.

Here the second step uses induction hypothesis and the third step uses the fact that (1− x)2 + x ≤ 1
when x ∈ [0, 1]. In particular, since (1−λ(k)/R2)2T/3 ≤ (1−1/κ)2T/3 ≤ (1−1/κ)3κ log T = 1/T 3,
we know at the end of the first phase, v(k)

A ≤ v(k)
0 /T 3 + σ2

R2 .
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In the second T/3 steps, the guarantee would be: for any t ≤ T/3, v(k)
A+t ≤ v

(k)
0 /T 3 + 2ηA+tσ

2.

We will again prove this by induction. The base case (t = 0) follows immediately from the guarantee
for the first part. Suppose this is true for A+ t− 1, let us consider A+ t, again by recursion we know

v
(k)
A+t = (1− λ(k)ηA+t−1)2v

(k)
A+t−1 + λ(k)σ2η2

A+t−1

≤ v(k)
0 /T 3 + 2ηA+t−1σ

2

(
(1− λ(k)ηA+t−1)2 +

1

2
λ(k)ηA+t−1

)
≤ v(k)

0 /T 3 + 2ηA+t−1σ
2(1− 1

2
µηA+t−1) ≤ v(k)

0 /T 3 + 2ηA+tσ
2.

Here the last line uses the fact that 2ηA+t−1(1− 1
2µηA+t−1) ≤ 2ηA+tσ

2, which is easy to verify by
our choice of η. Therefore, at the end of the second part, we have v(k)

B ≤ v(k)
0 /T 3 + 2σ2

µ(κ+T/6) .

Finally we will analyze the third part. Let T̂ = T/3 log2 κ, we will consider the variance v(k)

B+`T̂
at

the end of each phase. We will make the following claim by induction:

Claim 2. Suppose 2` · µ ≤ λ(k), then

v
(k)

B+`T̂
≤ v(k)

B exp(−3`) + 2T̂ η2
`λ

(k)σ2.

Proof. We will prove this by induction. When ` = 0, clearly we have v(k)
B ≤ v(k)

B so the claim is true.
Suppose the claim is true for `− 1, we will consider what happens after the algorithm uses η` for T̂
steps. By the recursion of the variance we have

v
(k)

`T̂
≤ v(k)

(`−1)T̂
· exp(−2η` · λ(k)T̂ ) + T̂ η2

`λ
(k)σ2.

Since 2` · µ ≤ λ(k), we know exp(−2η` · λ(k)T̂ ) ≤ exp(−3). Therefore by induction hypothesis we
have

v
(k)

B+`T̂
≤ v(k)

B exp(−3`) + exp(−3) · 2T̂ η2
`−1λ

(k) + T̂ η2
`λ

(k) ≤ v(k)
B exp(−3`) + 2T̂ η2

`λ
(k).

This finishes the induction.

By Claim 2, Let `∗ denote the number satisfying 2`
∗ · µ ≤ λ(k) < 2`

∗+1 · µ, by this choice we know
µ/λ(k) ≥ 1

2 exp(−3`?) we have

v
(k)
T ≤ v(k)

B+`∗T̂
≤ v(k)

B exp(−3`∗) + 2T̂ η2
`∗λ

(k)σ2

≤ v
(k)
0

T 3
+

24σ2

λ(k)T
+

50 log2 κ

3λ(k)T
· σ2.

≤ v
(k)
0

T 3
+

50 log2 κ

λ(k)T
· σ2.

Therefore, the function value is bounded by E [f(wvar
T )] − f(w∗) =

∑d
i=1 λ

(k)v
(k)
T ≤ 50 log2 κ

T ·
σ2d.

Proof of proposition 3. The proof of the proposition works similar to the proof of the strongly convex
case of theorem 2, wherein, we combine the result of proposition 14 with lemma 9 and lemma 5 to
obtain the result.

D Proofs of results in Section 3.3

All of our counter-examples in this section are going to be the same simple function. Let the inputs x
be such that only a single co-ordinate be active on each example. We refer to this case as the “discrete”
case. Furthermore, let each co-ordinate be a Gaussian with mean 0 and variance for the first d/2
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directions being dκ/3 and the final d/2 directions being 1. Furthermore, consider the noise to be
additive (and independent of x) with mean zero. This indicates that R2 = κ for this problem.

Intuitively, we will show that in order to have a small error in the first eigendirection (with eigenvalue
κ), one need to set a small learning rate ηt which would be too small to achieve a small error in the
second eigendirection (with eigenvalue 1). As a useful tool, we will decompose the variance in the
two directions corresponding to κ eigenvalue and 1 eigenvalue respectively as follows:

v
(1)
T

def
= E

[(
w

(1)
T − (w∗)

(1)
)2
]

=

T∏
j=1

(1− ηjκ)
2
v

(1)
0 + κσ2

T∑
j=1

η2
j

T∏
i=j+1

(1− ηiκ)
2

≥ exp

−2

T∑
j=1

ηjκ

 v
(1)
0 + κσ2

T∑
j=1

η2
j exp

−2

T∑
i=j+1

ηiκ

 and (15)

v
(2)
T

def
= E

[(
w

(2)
T − (w∗)

(2)
)2
]

=

T∏
j=1

(1− ηj)2
v

(2)
0 + σ2

T∑
j=1

η2
j

T∏
i=j+1

(1− ηi)2

≥ exp

−2

T∑
j=1

ηj

 v
(2)
0 + σ2

T∑
j=1

η2
j exp

−2

T∑
i=j+1

ηi

 . (16)

Theorem 15. Consider the additive noise oracle setting, where, we have access to stochastic
gradients satisfying:

∇̂f(w) = ∇f(w) + ζ = H(w −w∗) + ζ,

where,

E [ζ|w] = 0, and, E
[
ζζ>|w

]
= σ2H

There exists a universal constant C > 0, and a problem instance, such that for SGD algorithm with
any ηt ≤ 1/2κ for all t5, we have

lim sup
T→∞

E [f(wT )]− f(w∗)

(σ2d/T )
≥ C κ

log(κ+ 1)
.

Proof. Fix τ = κ/C log(κ + 1) where C is a universal constant that we choose later. We need to
exhibit that the lim sup is larger than τ . For simplicity we will also round κ up to the nearest integer.

Let T be a given number. Our goal is to exhibit a T̃ > T such that f(wT̃ )−f(w∗)

(σ2/T̃)
≥ τ . Given the

step size sequence ηt, consider the sequence of numbers T0 = T, T1, · · · , Tκ such that Ti is the first
number that

1

κ
≤

Ti∑
t=Ti−1+1

ηt ≤
3

κ
.

Note that such a number always exists because all the step sizes are at most 2/κ. We will also let ∆i

be Ti − Ti−1. Firstly, from (15) and (16), we see that
∑
t ηt = ∞. Otherwise, the bias will never

decay to zero. If f(wTi−1+∆i)− f(w∗) > τσ2d
Ti−1+∆i

for some i = 1, · · · , κ, we are done. If not, we
obtain the following relations:

σ2

∆1
≤ σ2

∆1∑
t=1

η2
T0+t ≤

exp(3)

κ
· E
[(

w
(1)
T0+∆1

− (w∗)
(1)
)2
]

≤ exp(3)(f(wT0+∆1
)− f(w∗)) ≤ exp(3)τσ2

T0 + ∆1

⇒ T0 ≤ (exp(3)τ − 1) ∆1.

5Learning rate more than 2/κ will make the algorithm diverge.

23



Here the second inequality is based on (15). We will use C1 to denote exp(3). Similarly, we have

σ2

∆2
≤ σ2

∆2∑
t=1

η2
T1+t ≤

C1

κ
E
[(

w
(1)
T1+∆2

− (w∗)
(1)
)2
]
≤ C1(f(wT1+∆2)− f(w∗)) ≤ C1τσ

2

T1 + ∆2

⇒ T1 ≤ (C1τ − 1) ∆2 ⇒ T0 ≤
(C1τ − 1)

2

C1τ
∆2.

Repeating this argument, we can show that

T = T0 ≤
(C1τ − 1)

i

(C1τ)
i−1

∆i and Ti ≤
(C1τ − 1)

j−i

(C1τ)
j−i−1

∆j ∀ i < j.

We will use i = 1 in particular, which specializes to

T1 ≤
(C1τ − 1)

j−1

(C1τ)
j−2

∆j ∀ j ≥ 2.

Using the above inequality, we can lower bound the sum of ∆j as
κ∑
j=2

∆j ≥ T1 ·
κ∑
j=2

(C1τ)
j−2

(C1τ − 1)
j−1
≥ T1 ·

1

C1τ
·
κ∑
j=2

(
1 +

1

C1τ

)j−2

≥ T1 ·
1

C1τ
· exp (κ/(C1τ)) . (17)

This means that

E [f(wTi)]− f(w∗) ≥ d

2
· E
[(

w
(2)
Ti
− (w∗)

(2)
)2
]
≥ exp(−6)σ2d ·

∆1∑
i=1

η2
T+i

≥ exp(−6)σ2d

∆1
≥ exp(−6)σ2d

T1
≥ exp (κ/(C1τ)− 3)

C1τ
· σ2d∑κ

j=2 ∆j
,

where we used (17) in the last step. Rearranging, we obtain

E [f(wTκ)]− f(w∗)

(σ2d/Tκ)
≥ exp (κ/(C1τ)− 3)

C1τ
.

If we choose a large enough C (e.g., 3C1), the right hand side is at least exp((C/C1) log(κ+1)−3)
κ ≥ κ.

Proof of theorem 4. Theorem 4 follows as a straightforward consequence of Theorem 15 and
lemma 11.

Theorem 16. There exists universal constants C1, C2 > 0 such that for any τ ≤ κ
CC1 log(κ+1) where

C is the constant in Theorem 4, for any SGD algorithm and any number of iteration T > 0 there

exists a T ′ ≥ T such that for any T̃ ∈ [T ′, (1 + 1/C2τ)T ′] we have
E[f(wT̃ )]−f(w∗)

(σ2d/T̃)
≥ τ .

Theorem 17. Consider the additive noise oracle setting, where, we have access to stochastic
gradients satisfying:

∇̂f(w) = ∇f(w) + ζ = H(w −w∗) + ζ,

where,

E [ζ|w] = 0, and, E
[
ζζ>|w

]
= σ2H

There exists universal constants C1, C2 > 0 such that for any τ ≤ κ
CC1 log(κ+1) where C is the

constant in Theorem 4, for any SGD algorithm and any number of iteration T > 0 there exists a

T ′ ≥ T such that for any T̃ ∈ [T ′, (1 + 1/C2τ)T ′] we have
E[f(wT̃ )]−f(w∗)

(σ2d/T̃)
≥ τ .
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To prove Theorem 17, we rely on the following key lemma, which says if a query point wT is bad
(in the sense that it has expected value more than 10τσ2d/T ), then it takes at least Ω(T/τ) steps to
bring the error back down.

Lemma 18. There exists universal constants C1, C2 > 0 such that for any τ ≤ κ
CC1 log(κ+1) where

C is the constant in Theorem 4, suppose at step T , the query point wT satisfies f(wT )− f(w∗) ≥
C1τσ

2d/T , then for all T̃ ∈ [T, (1 + 1
C2τ

)T ] we have E [f(wT̃ )]− f(w∗) ≥ τσ2d/T ≥ τσ2d/T̃ .

Proof of Lemma 18. Since f(wT )− f(w∗) ≥ C1τσ
2d/T and

f(wT ) = d
2

(
κ
(
w

(1)
T − (w∗)

(1)
)2

+
(
w

(2)
T − (w∗)

(2)
)2
)

, we know either(
w

(1)
T − (w∗)

(1)
)2

≥ C1τσ
2/2κT or

(
w

(2)
T − (w∗)

(2)
)2

≥ C1τσ
2/2T . Either way, we

have a coordinate i with eigenvalue λi (κ or 1) such that
(
w

(i)
T − (w∗)

(i)
)2

≥ C1τσ
2/(2Tλi).

Similar as before, choose ∆ to be the first point such that

ηT+1 + ηT+2 + · · ·+ ηT+∆ ∈ [1/λi, 3/λi].

First, by (15) or (16), we know for any T ≤ T̃ ≤ T + ∆, E
[(

w
(i)

T̃
− (w∗)

(i)
)2
]
≥

exp(−6)C1τσ
2/(2λiT ) just by the first term. When we choose C1 to be large enough the con-

tribution to function value by this direction alone is larger than τσ2/T . Therefore every query in
[T, T + ∆] is still bad.

We will consider two cases based on the value of S2 :=
∑T+∆

T̃=T+1
η2
T̃

.

If S2 ≤ C2τ/(λ
2
iT ) (where C2 is a large enough universal constant chosen later), then by Cauchy-

Schwartz we know

S2 ·∆ ≥ (

T+∆∑
T̃=T+1

ηT̃ )2 ≥ 1/λ2
i .

Therefore ∆ ≥ T/C2τ , and we are done.

If S2 > C2τ/(λ
2
iT ), by Equation (15) and (16) we know

E
[(

w
(i)
T+∆ − (w∗)

(i)
)2
]
≥ σ2

T+∆∑
T̃=T+1

η2
T̃

exp

−2λi

T+∆∑
j=T̃+1

ηj


≥ exp(−6)σ2

T+∆∑
T̃=T+1

η2
T̃
≥ exp(−6) · C2τσ

2/(λ2
iT ).

Here the first inequality just uses the second term in Equation (15) or (16), the second inequality
is because

∑T+∆

j=T̃+1
ηj ≤

∑T+∆
j=T+1 ηj ≤ 3/λi and the last inequality is just based on the value

of S2. In this case as we can see as long as C2 is large enough, T + ∆ is also a point with

E [f(wT+∆)] − f(w∗) ≥ λiE
[(

w
(i)
T+∆ − (w∗)

(i)
)2
]
≥ C1τσ

2/(T + ∆), so we can repeat the

argument there. Eventually we either stop because we hit case 1: S2 ≤ C2τ/λ
2
iT or the case 2 S2 >

C2τ/λ
2
iT happened more than T/C2τ times. In either case we know for any T̃ ∈ [T, (1 + 1/C2)T ]

E [f(wT̃ )]− f(w∗) ≥ τσ2/T ≥ τσ2/T̃ as the lemma claimed.

Proof of Theorem 17. Theorem 17 is an immediate corollary of Theorem 15 and Lemma 18.

Proof of Theorem 16. Theorem 16 is an immediate corollary of Theorem 17 and lemma 11
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E Details of experimental setup

E.1 Synthetic 2-d Streaming Least Squares Experiments

As mentioned in the main paper, we consider four condition numbers namely κ ∈ {50, 100, 200, 400}.
We run all experiments for a total of κ2

max = 4002 = 160000 iterations. The two eigenvalues of the
Hessian are 1 and 1/κ respectively and the noise level σ2 = 1 and we average our results with five
random seeds. All our grid search results for the polynomially decaying learning rates are conducted
on a 8× 8 grid of learning rates × decay factor and whenever a best run lands at the edge of the grid,
the grid is extended so that we have the best run in the interior of the grid search. For the step decay
schedules, note that we fix the learning rate (details below), and vary only the decay factor.

For the O(1/t) learning rate, we search for decay parameter over 8−points log-spaced between
{1/(200κ), 5000/κ}. The starting learning rate is searched over 8 points logarithmically spaced
between {1/κ, 5}.

For the O(1/
√
t) learning rate, the decay parameter is searched over 8 logarithmically spaced points

between {1/(2500κ), 100/κ}. The starting learning rate is searched between {1/(10κ), 5} with 8
logarithmically spaced points.

For the step decay schedule experiments, we kept the initial learning rate to be 0.1 and
swept over when to decay in multiples of T/ log T , i.e., vary some parameter c ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2, 4} where the learning rate decays by a factor of 2 every c · T/logT
steps. We found that the values chosen in most experiments were very close to 1, i.e., they were either
1 or 1.25 or some very rare cases, 1.5.

With regards to the suffix iterate averaging, we used a constant stepsize of 0.1 and averaged iterates
over the final half of the iterations.

E.2 Non-Convex experiments on cifar-10 dataset with a 44-layer residual net

As mentioned in the main paper, for all the experiments, we use the Nesterov’s Accelerated gradient
method [Nes83] implemented in pytorch 6 with a momentum set to 0.9 and batchsize set to 128, total
number of training epochs set to 100, `2 regularization set to 0.0005.

With regards to learning rates, we consider 10−values geometrically spaced as {1, 0.6, · · · , 0.01}. To
set the decay factor for any of the schemes such as 5,6, and 7, we use the following rule. Suppose we
have a desired learning rate that we wish to use towards the end of the optimization (say, something
that is 100 times lower than the starting learning rate, which is a reasonable estimate of what is
typically employed in practice), this can be used to obtain a decay factor for the corresponding decay
scheme. In our case, we found it advantageous to use an additively spaced grid for the learning rate
γt, i.e., one which is searched over a range {0.0001, 0.0002, · · · , 0.0009, 0.001, · · · , 0.009} at the
80th epoch, and cap off the minimum possible learning rate to be used to be 0.0001 to ensure that
there is progress made by the optimization routine. For any of the experiments that yield the best
performing gridsearch parameter that falls at the edge of the grid, we extend the grid to ensure that
the finally chosen hyperparameter lies in the interior of the grid. All our gridsearches are run such
that we separate a tenth of the training dataset as a validation set and train on the remaining 9/10th

dataset. Once the best grid search parameter is chosen, we train on the entire training dataset and
evaluate on the test dataset and present the result of the final model (instead of choosing the best
possible model found during the course of optimization).

6https://github.com/pytorch
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