A Proof of Theorem 5

We begin by introducing a technical lemma.
Lemma 7. Let a;,b; € [0,1] and |a; — b;| < A, fori € [k]. Then we can show
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Proof. Fix a binary vector z. For simplicity, let ¢; = af*(1 — a;)* % and d; = b]* (1 — b;)}~%i.

Since x; is either O or 1, we have |¢; — d;| = |a; — b;| < A;. Then we can deduce
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When summing up for all binary vectors x, we can write the coefficient of A; as

-1 K -1 k
S I (I d =T D e >, DCIT D &)

z€{0,1}F i=1 i=j+1 i=1z,€{0,1} z;€{0,1}  i=j+1lax,e{0,1}
j—1 k
=([]v2(I] v
i=1 i=j+1
= 27

where the second equality holds because 3, ¢4 1y a®(1— a)!=® = a+ (1 —a) = 1. This completes
the proof. O

Now we prove the main theorem.

Theorem 5. (Bayesian regret bound of Thompson sampling) The Bayesian regret of Algorithm 1
satisfies the following bound

BR(T) = O(v/KL3N3T1logT) = O(\/mKL*N3log(mL)).

Proof. We fix an episode [ and analyze the regret in this episode. Let ¢; = (I — 1)L so that the
episode starts at time ¢; + 1. Define

ty

Ni(k,r,n) = Zl{At,k =1,rp =r,ng =n}.
t=1

It counts the number of rounds where the arm k was chosen by the learner with history r; = r and
ni = n (see (3) for definition). Note that

ke [K],r €{0,1,p(k)}, and n € [L],

where p(k) is the initial success rate of the arm k. This implies there are 3K L tuples of (k,r,n).
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Let w?(k,r,n) denote the conditional probability of X; = 1 given a history (r,n) and a system
parameter 6. Also let w(k,r,n) denote the empirical mean of this quantity (using N;(k,r, n) past
observations and set the estimate to 0 if N;(k,r,n) = 0). Then define

O, ={0|VY(k,r,n), |(&—w)(k,rn) < m .
Since &(k, r,n) is Hy, -measurable, so is the set ©;. Using the Hoeffding inequality, one can show
PO* ¢ ©;) =P(0, ¢ ©,) < 35K L.
We now turn our attention to the following Bellman operator

TAVE (Hi1) = Bom [Ave - Xoyro + Vil o(Ho) | H 1.

Since 7 is a deterministic policy, Ay, is also deterministic given H;_; and m;. Let (k1, ..., ky)
be the active arms at time ¢; + ¢ and write w? (ki,rk;,nk;) = wo ;. Then we can rewrite
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where P! = Hivz1 wp’(1 — wg;)'~*i. Under the event that 6*, 6, € ©;, we have
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where the dependence on ¢; + ¢ comes from the mapping from i to k;. Lemma 7 provides
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From (7), (9), and the fact that |V7f’t| < LN, we obtain given H;_; and the event 6*,0;, € O,
N N
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Then by applying Lemma 4, we get
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The above inequality holds whenever 6*,0; € ©;. When * ¢ @l or 0, ¢ ©,, which happens with
probability less than 6K L, we have a trivial bound |V | () — vy " (#)] < LN. We can deduce
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Combining this with Lemma 3, we can show
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We further analyze the summation to finish the argument. Note that for this summation, we have
0*,0, € ©,. We shorten N;(k;, 7y, , nk,) to N; for simplicity. By the definition of A; in (8), we get
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where the second inequality holds because there are 3K L possible tuples of (k,r,n) and a tuple can
contribute at most 2L to the first summation.

‘We can bound the second term as follows
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For the first inequality, we use N;11 < N; + L < 2N;. The second inequality holds due to the
integral trick. Finally, the last inequality holds by the Cauchy-Schwartz inequality along with the fact
that Z(kﬂ‘ n) Nm+1(k, r, TL) = NT.

Combining (10), (11), (12), and our assumption that 7' = mL, we obtain

BR(T) = O()KLNT + KL?N + \/KL3N3T log(1/4)).

Since NT is a trivial upper bound of BR(T'), we may ignore the K L?>N term. Setting § =
completes the proof.
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