
A Proof of Theorem 5

We begin by introducing a technical lemma.

Lemma 7. Let ai, bi ∈ [0, 1] and |ai − bi| ≤ ∆i for i ∈ [k]. Then we can show

∑
x∈{0,1}k

|
∏
i

axi
i (1− ai)1−xi −

∏
i

bxi
i (1− bi)1−xi | ≤ 2

k∑
j=1

∆j . (6)

Proof. Fix a binary vector x. For simplicity, let ci = axi
i (1 − ai)1−xi and di = bxi

i (1 − bi)1−xi .
Since xi is either 0 or 1, we have |ci − di| = |ai − bi| ≤ ∆i. Then we can deduce

|
k∏
i=1

ci −
k∏
i=1

di| ≤ (

k−1∏
i=1

ci)|ck − dk|+ |
k−1∏
i=1

ci −
k−1∏
i=1

di|dk

≤ (

k−1∏
i=1

ci)∆k + |
k−1∏
i=1

ci −
k−1∏
i=1

di|dk

≤ (

k−1∏
i=1

ci)∆k + (

k−2∏
i=1

ci)∆k−1dk + |
k−2∏
i=1

ci −
k−2∏
i=1

di|dk−1dk

≤ · · ·

≤
k∑
j=1

(

j−1∏
i=1

ci)∆j(

k∏
i=j+1

di).

When summing up for all binary vectors x, we can write the coefficient of ∆j as

∑
x∈{0,1}k

(

j−1∏
i=1

ci)(

k∏
i=j+1

di) = (

j−1∏
i=1

∑
xi∈{0,1}

ci)(
∑

xj∈{0,1}

1)(

k∏
i=j+1

∑
xi∈{0,1}

di)

= (

j−1∏
i=1

1)2(

k∏
i=j+1

1)

= 2,

where the second equality holds because
∑
x∈{0,1} a

x(1−a)1−x = a+ (1−a) = 1. This completes
the proof.

Now we prove the main theorem.

Theorem 5. (Bayesian regret bound of Thompson sampling) The Bayesian regret of Algorithm 1
satisfies the following bound

BR(T ) = O(
√
KL3N3T log T ) = O(

√
mKL4N3 log(mL)).

Proof. We fix an episode l and analyze the regret in this episode. Let tl = (l − 1)L so that the
episode starts at time tl + 1. Define

Nl(k, r, n) =

tl∑
t=1

1{At,k = 1, rk = r, nk = n}.

It counts the number of rounds where the arm k was chosen by the learner with history rk = r and
nk = n (see (3) for definition). Note that

k ∈ [K], r ∈ {0, 1, ρ(k)}, and n ∈ [L],

where ρ(k) is the initial success rate of the arm k. This implies there are 3KL tuples of (k, r, n).
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Let ωθ(k, r, n) denote the conditional probability of Xk = 1 given a history (r, n) and a system
parameter θ. Also let ω̂(k, r, n) denote the empirical mean of this quantity (using Nl(k, r, n) past
observations and set the estimate to 0 if Nl(k, r, n) = 0). Then define

Θl = {θ | ∀(k, r, n), |(ω̂ − ωθ)(k, r, n)| <

√
2 log(1/δ)

1 ∨Nl(k, r, n)
}.

Since ω̂(k, r, n) isHtl-measurable, so is the set Θl. Using the Hoeffding inequality, one can show
P(θ? /∈ Θl) = P(θl /∈ Θl) ≤ 3δKL.

We now turn our attention to the following Bellman operator

T θπl
V θlπl,t

(Ht−1) = Eθ,πl
[Atl+t ·Xtl+t + V θlπl,t

(Ht)|Ht−1].

Since πl is a deterministic policy, Atl+t is also deterministic given Ht−1 and πl. Let (k1, . . . , kN )
be the active arms at time tl + t and write ωθ(ki, rki , nki) = ωθ,i. Then we can rewrite

T θπl
V θlπl,t

(Ht−1) =

N∑
i=1

ωθ,i +
∑

x∈{0,1}N
P θxV

θl
πl,t

(Ht−1 ∪ (Atl+t, x)), (7)

where P θx =
∏N
i=1 ω

xi

θ,i(1− ωθ,i)1−xi . Under the event that θ?, θl ∈ Θl, we have

|ωθl,i − ωθ?,i| < 1 ∧

√
8 log(1/δ)

1 ∨Nl(ki, rki , nki)
=: ∆i(tl + t), (8)

where the dependence on tl + t comes from the mapping from i to ki. Lemma 7 provides∑
x∈{0,1}N

|P θlx − P θ
?

x | ≤ 2

N∑
i=1

∆i(tl + t). (9)

From (7), (9), and the fact that |V θπ,t| ≤ LN , we obtain givenHt−1 and the event θ?, θl ∈ Θl,

|(T θ
?

πl
− T θlπl

)V θlπl,t
(Ht−1)| ≤ (2LN + 1)

N∑
i=1

∆i(tl + t) ≤ 3LN

N∑
i=1

∆i(tl + t).

Then by applying Lemma 4, we get

|V θlπl,1
(∅)− V θ

?

πl,1
(∅)| ≤ 3LNEθ?,πl

L∑
t=1

N∑
i=1

∆i(tl + t).

The above inequality holds whenever θ?, θl ∈ Θl. When θ? /∈ Θl or θl /∈ Θl, which happens with
probability less than 6δKL, we have a trivial bound |V θlπl,1

(∅)− V θ?πl,1
(∅)| ≤ LN . We can deduce

|V θlπl,1
(∅)− V θ

?

πl,1
(∅)| ≤ 3LN1(θ?, θl ∈ Θl)Eθ?,πl

L∑
t=1

N∑
i=1

∆i(tl + t) + 6δKL2N.

Combining this with Lemma 3, we can show

BR(T ) ≤ 6δmKL2N + Eθ?∼Q3LN

m∑
l=1

1(θ?, θl ∈ Θl)Eθ?,πl

L∑
t=1

N∑
i=1

∆i(tl + t). (10)

We further analyze the summation to finish the argument. Note that for this summation, we have
θ?, θl ∈ Θl. We shorten Nl(ki, rki , nki) to Nl for simplicity. By the definition of ∆i in (8), we get

m∑
l=1

L∑
t=1

N∑
i=1

∆i(tl + t) ≤
m∑
l=1

L∑
t=1

N∑
i=1

1{Nl ≤ L}+ ∆i1{Nl > L}

≤ 6KL2 +

m∑
l=1

L∑
t=1

N∑
i=1

1{Nl > L}

√
8 log(1/δ)

Nl
,

(11)
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where the second inequality holds because there are 3KL possible tuples of (k, r, n) and a tuple can
contribute at most 2L to the first summation.

We can bound the second term as follows
m∑
l=1

L∑
t=1

N∑
i=1

1{Nl > L}
√

1

Nl
=

m∑
l=1

∑
(k,r,n)

1{Nl > L}(Nl+1 −Nl)
√

1

Nl

≤
m∑
l=1

∑
(k,r,n)

(Nl+1 −Nl)

√
2

Nl+1

≤
√

8
∑

(k,r,n)

√
Nm+1(k, r, n)

≤
√

24KLNT.

(12)

For the first inequality, we use Nl+1 ≤ Nl + L ≤ 2Nl. The second inequality holds due to the
integral trick. Finally, the last inequality holds by the Cauchy-Schwartz inequality along with the fact
that

∑
(k,r,n)Nm+1(k, r, n) = NT .

Combining (10), (11), (12), and our assumption that T = mL, we obtain

BR(T ) = O(δKLNT +KL3N +
√
KL3N3T log(1/δ)).

Since NT is a trivial upper bound of BR(T ), we may ignore the KL3N term. Setting δ = 1
T

completes the proof.
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