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1 Supplementary data and algorithms

vact
K3: MAP3K on vinh

K3 : MAP3K off vact
K2: MAP2K on vinh

K2 : MAP2K off vact
K : MAPK on vinh

K : MAPK off
Exp 1 0.1 0.1 0.1 2.0 0.1 1.0
Exp 2 0.2 0.3 0.2 3.0 0.2 1.5
Exp 3 0.1 0.3 0.5 5.0 0.3 4.0

Table 1: The rates parameters in Case study 1 (MAPK). Each row corresponds to a set v.

vact
SOS-EGFR vact

SOS-IGFR vact
Ras-SOS vact

PI3K-EGFR vact
PI3K-IGFR vact

PI3K-Ras vact
AKT-PI3K vact

Raf-Ras vact
Raf-AKT vact

Mek-Raf vact
Erk-Mek

Rates 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05

Table 2: The activation rates parameters in Case study 2 (IGF). Activation rates are formatted as vact
child-parent

vinh
SOS vinh

Ras vinh
PI3K vinh

AKT vinh
Raf vinh

Raf-AKT vinh
Mek vinh

Erk
Rates 0.5 0.5 0.5 0.5 0.3 0.01 0.5 0.5

Table 3: The deactivation rates parameters in Case study 2 (IGF). All but one rate are auto-deactivation. vinh
RAF-ACT

is formatted as vinh
child-parent

Runtime All the experiments were performed on a Macbook pro with intel 2.2 GHz core i7 and 16
GB RAM. The counterfactual inference (Algorithm 2) on the MAPK and growth factor models with
one sample was computed in 4.89 seconds and 10.4 seconds with stochastic variational inference.
For the MAPK model, Algorithm 3 with trajectories of length 30 took 0.1 seconds, and Algorithm 4
with 1000 seeds took 1800 seconds. For the IGF model, the Algorithm 3 with trajectories of length
30 took 0.9 and Algorithm 4 with 300 seeds took 1245 seconds.
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Algorithm 3 Deterministic counterfactual simulation
and evaluation with Markov process model

Inputs: Markov process model M
Rate sets v and v′

Equilibrium time point T
Index of counterfactual intervention target i
Index of counterfactual query target j
Noise prior for SCM NPrior

Output: Histogram of causal effects
1: procedure CF-DETERMINSIM(M, v, v′, T , i, j, NPrior)
2: I Simulate expected value at equilbrium (Eq. (9) below) using v
3: x = E(sim(M,v)[T ])
4: I Simulate expected value at equilibrium (Eq. (9) below) using v′

5: x′ = E(sim(M,v′)[T ])
6: I Calculate causal effects
7: for index k in array ∆ do
8: δtrue = x′j − xj
9: I Simulate CF value from SCM

10: C = GetSCM(M)
11: x∗j ∼ CFQuery(C,NPrior,x, x′i)
12: I Calculate difference
13: ∆[k] = x∗j − xj

14: I Compare ∆ to δtrue
15: histogram(∆, verticle-line = δtrue)

Algorithm 4 Stochastic counterfactual simulation
and evaluation with Markov process model

Inputs: Markov process model M
Rate sets v and v′

Equilibrium time point T
Index of counterfactual intervention target i
Index of counterfactual query target j
List of random seeds S
Noise prior for SCM NPrior

Output: Histogram of causal effects
1: procedure CF-STOCHSIM(M, v, v′, T , i, j, S, NPrior)
2: I Simulate a deterministic equilibrium using v′

3: xd′ = sim(M,v′)[T ]
4: for index k in S, & collectors ∆M, ∆C do
5: I Simulate a stochastic equilbrium using v
6: xs = sim(M,v, seed = S[k])[T ]
7: I Simulate a stochastic equilibrium using v′

8: xs′ = sim(M,v′, seed = S[k])[T ]
9: I Calculate causal effects

10: ∆M[k] = xs
′

j − xsj

11: I Simulate CF value from SCM using xd′

12: C = GetSCM(M)

13: x∗j ∼ CFQuery(C,NPrior,x, xd
′

i )
14: I Calculate difference
15: ∆C[k] = x∗j − xsj
16: I Compare ∆C to ∆M
17: overlayHistograms(∆C,∆M)
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2 Supplementary methods and proofs

2.1 Markov process equilibrium as causal Bayesian network

In many domains, Markov process models can have arbitrary levels of granularity in terms of the
components in the system and their interactions. This is certainly true in systems biology, where
Markov process models (called stochastic kinetic models in this context) vary in details of chemical
reactions between molecular species. In order to generalize the proposed procedure, we assume that
the random variables in the Markov process model are place invariants.

Definition 2.1. Place invariant A place invariant (also called p-invariant or s-invariant) is a set of
model components with a constant sum across all the model states. A minimal place invariant cannot
be decomposed into smaller place invariants [4].

We assume a Markov process model with a unique equilibrium distribution and no cycles (in most
cases, the cycles can be collapsed into a larger p-invariant). Therefore, the equilibrium distribution is
factorized according to a directed acyclic graph, given by solving each dP (X(t))

dt for each variable X
in the model. We cast this distribution as a causal Bayesian network, with the conditional probability
distributions given by the equilibrium distributions.

2.2 Comparison to other intervention approaches

In causal inference literature, a commonly used definition of intervention is the “ideal" intervention,
which directly sets the value of the target variable, and cuts off the influence of the targets’ direct
parents. This definition is adapted to dynamic processes in [2, 3, 5], where an ideal intervention fixes
the target variable at a specific value throughout the transient states of the system until the equilibrium
is reached, and then blocks all influence on the intervened variable with no side effects. The prior
work on ideal interventions largely focused on the equivalence between the equilibrium outcome of
the intervention on the dynamic model, and the “do”-style ideal interventions on an equilibrium SCM.
Reference [3] refers to this as the equilibrium-manipulation commutability property.

This manuscript uses a different approach. We define an intervention on a Markov process as a
manipulation of the parameter rates, to indirectly achieve a desired equilibrium value of a target
variable. Unless the manipulation sets the reaction rate to zero, the parent variables are still influencing
the intervention target upon the intervention. This definition of the intervention is motivated by
the biological application, where it is common to have directly manipulable rates (e.g., through a
catalyst), and where the equilibrium values are typically an indirect result of the manipulation.

In contrast to the prior work on ideal interventions in dynamic processes, this manuscript aims to cast
an equilibrium probability model G as an SCM, in order to make useful counterfactual inference on
that model. We show that with zero or first order hazard functions, we can work directly with the
solutions to a system of ordinary differential equations on the expectations of each variable in the
system. These constitute what [5] calls a labeled set of equilibrium equations.

The distinction between manipulable and non-manipulable causes is treated in depth in the causal
inference literature [8, 9]. Those interested in working with ideal interventions with our proposed
approach could view the solutions to the expectation equations as a “labeled set of equilibrium
equations" in [5]. Since the expectation equations are deterministic, this can help investigate whether
the equilibrium-manipulation commutability conditions in Lemma 1 of [5] could apply to ideal
interventions in expectation with our approach.

Those interested in working with ideal interventions with our proposed approach could view the
solutions to the expectation equations as a “labeled set of equilibrium equations" in [5]. Since the ex-
pectation equations are deterministic, this can help investigate whether the equilibrium-manipulation
commutability conditions in Lemma 1 of [5] could apply to ideal interventions in expectation with
our approach.
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2.3 Details of the motivating example

2.3.1 Summary

Assume that species Y is regulated by species X1 and X2. A particle of any of these three species is
in either an active or inactive state. X1 is an activator of Y, meaning that an interaction with active X1

converts inactive Y into active Y. X1 is an deactivator. An interaction with active X2 converts active
Y to inactive Y. We can represent the reactions under a mass action kinetic assumption as follows:

Xon
1 + Yoff v1→ Xon

1 + Yon and Xon
2 + Yon v2→ Xon

2 + Yoff (1)

v1 and v2 are the rate parameters for the two reactions. In this example, X1 is p-invariant, as the sum
of active (“on") and inactive (“off") particles is constant. The same holds for X2 and Y.

2.4 Building a probability model of the system

Let X1(t), X2(t), and Y (t) represent the total active-state particle count in a cell of X1, X2, and Y
respectively at time t. Let Ty represent the total particle count (active and inactive) in a cell of Y,
such that Ty − Y (t) is the number of inactive particles of Y at time t.

Let π(y, t) = P (Y (t) = y | Ty, X1(t), X2(t)) represent the conditional probability distribution of
Y (t). Each particle of Y is in active state with some probability, i.e. a Bernoulli trial. Therefore Y (t)
is the sum of Bernoulli random variables such that π(y, t) is a Binomial distribution with Ty trials.

Let θy(X1(t), X2(t)) denote the probability that a particle of Y is in active state at time t. This
probability is needed to fully specify the Binomial distribution. The following derivation demonstrates
how θy(X1(t), X2(t)) is a function of X1(t), X2(t).

2.4.1 Finding the equilibrium probability distribution for Y (t)

The hazard rate function of a biochemical reaction is the probability that the reaction occurs in a given
instant. It is determined by the particle counts at that instant, and by the rate parameters. Let h1(Y (t))
and h2(Y (t)) represent the hazard rate functions for activation and deactivation respectively:

h1(Y (t)) = v1X1(t)(Ty − Y (t)) (2)
h2(Y (t)) = v2X2(t)Y (t) (3)

Let S1 and S2 denote the change in particle count after reactions in Eq. (1).

S1 = 1

S2 = −1

The Kolmogorov forward equations determine the change in π(y, t) as the system evolves in time.

d

dt
π(y, t) =

2∑
i=1

(hi(y − Si)π(y − Si, t)− hi(y)π(y, t))

Let Eπ(.) denote the conditional expectation function over π(y, t), i.e. Eπ(f(Y (t))) ≡∑Ty

y=0 f(y)π(y, t).

Lemma 2.1. If the hazard functions are zero or first order, then solving for equilibrium of d
dtEπ(Y (t))

yields the equilibrium solution to the d
dtπ(y, t)
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Proof. By Kolmogorov’s forward equation, the change in the expectation of Y (t) is

d

dt
Eπ(Y (t)) =

d

dt

Ty∑
y=0

yπ(y, t) =

Ty∑
y=0

y
d

dt
π(y, t)

=

Ty∑
y=0

y

[
2∑
i=1

(hi(y − Si)π(y − Si, t)− hi(y)π(y, t))

]

=

2∑
i=1

 Ty∑
y=0

yhi(y − Si)π(y − Si | Ty, X1(t), X2(t))−
Ty∑
y=0

yhi(y)π(y, t)


=

2∑
i=1

 Ty∑
y=0

(y + Si)hi(y)π(y, t)−
Ty∑
y=0

yhi(y)π(y, t)


=

2∑
i=1

(Eπ((Y (t) + Si)hi(Y (t)))− Eπ(hi(Y (t))))

=

2∑
i=1

SiEπ (hi(Y (t)))

If hazards are zero or first order, then the linearity property of the expectation operator allows for
an analytical solution. Without loss of generality, we demonstrate this with the motivating example.
Substituting in the hazard functions in Eq. (3):

d

dt
Eπ(Y (t)) =

2∑
i=1

SiEπ (hi(Y (t)))

= Eπv1X1(t)(Ty − Y (t))− Eπv2X2(t)Y (t)

= v1X1(t)Ty − v1X1(t)Eπ(Y (t))− v2X2(t)Eπ(Y (t))

= v1X1(t)Ty − (v1X1(t) + v2X2(t))Eπ(Y (t)) (4)

Let θy(X1(t), X2(t)) denote the probability that a particle of Y is in active state at time t.
θy(X1(t), X2(t)) is a function X1(t), X2(t). This follows from the fact that π(y, t) has a Bino-
mial distribution, and therefore θy is determined by the expectation Eπ(Y (t)).

θy(X1(t), X2(t)) ≡
Eπ(Y (t))

Ty
(5)

Substituting Equation 5 into 4:

d

dt
Eπ(Y (t)) = v1X1(t)Ty − (v1X1(t) + v2X2(t))Tyθy(X1(t), X2(t))

d

dt
θy(X1(t), X2(t)) = v1X1(t)− (v1X1(t) + v2X2(t)) θy(X1(t), X2(t)) (6)

The analytical solution is:

θy(X1(t), X2(t)) = e−t(v1X1(t)+v2X2(t)) +
v1X1(t)

v1X1(t) + v2X2(t)
(7)

Therefore the probability distribution of Y (t) is given by

Y (t) ∼ Binomial(Ty, θy(X1(t), X2(t))) (8)
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θy(X1(t), X2(t)) achieves steady-state when d
dtθy(X1(t), X2(t)) = 0. The solution is found by

setting the left-hand side in Eq. (6) to 0, or alternatively, taking the limit in time of Eq. (7)

lim
t→∞

θy(X1(t), X2(t)) =
v1X1(t)

v1X1(t) + v2X2(t)
(9)

θy(X1(t), X2(t)) is the only component of the Binomial probability distribution of Y (t) that varies
in time. The steady-state solution of Eq. (7) also provides the steady-state distribution of Y (t) (also
referred to as stationary or invariant distribution in stochastic process literature). For simplicity
we assume that the counts of active X1 and X2 are also the results of processes with stationary
distributions. Let Y , X1 and X2 represent steady state active particle counts for Y, X1, and X2. Then
the steady-state distribution of Y is given by:

θy(X1, X2) =
v1X1

v1X1 + v2X2
(10)

Y ∼ Binomial (Ty, θy(X1, X2)) (11)

2.5 Connections to causal constraint models

The rate laws in a dynamic model describe the mechanistic relationships between variables of the
model. Our goal is to build a causal model of the system at equilibrium that is faithful to these
relationships.

However, particular sets of interventions could mutate the mechanisms underpinning these relation-
ships. For example, the mechanisms in the dynamic model may give rise to a conservation law, i.e.,
that the sum of the values of a particular subset of variables is constant in time, though the values
themselves may vary. In would be possible to specify interventions that violate this conservation law.
The equilibrium SCM model assumes that the mechanisms connected to this conservation law are
invariant and has no way of prohibiting a set of interventions that violate this assumption. The SCM’s
predictions of the equilibrium behavior of a set of interventions that violate this conservation law
would be inconsistent with simulated interventions from the dynamic model.

Blom et al. address this problem by introducing causal constraint models (CCMs), an extension to
SCM models of the equilibrium of dynamic models [1]. CCMs explicitly identify sets of interventions
for which the functional relationships derived from the underlying dynamic model are invariant.

Our work illustrates the process of converting a dynamic model to an equilibrium SCM and demon-
strates counterfactual inferences consistent with the dynamic model ground truth. We apply simplify-
ing assumptions to our dynamic models designed to avoid the conflicts between SCM intervention
and the dynamic model mechanism that Blom et al.’s work addresses. In the following subsections,
we show that the examples we use in this work do not have any intervention constraints that would
warrant the use of a CCM.

The case studies used in this work are special cases of the enzyme kinetic reactions that take the form:

E + S
Kon


Koff

[ES]
K2→ E + P

P
voff→ S

where E is a enzyme, S is a substrate, and P is a product. Blom et al. in constrast use the following
enzyme model as an example:

∅ K0→ S

E + S
K1


K-1

[ES]
K2→ E + P

P
K3→ ∅
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Our enzyme model is a special case of the Blom et al. model where substrate does not appear from
nothing nor substrate disappear into nothing, but rather product converts back to product.

Further, we simplify the model such that it collapses over the intermediate compound (simplifying
from Michaelis–Menten kinetics to mass action kinetics):

E + S
von→ E + P

P
voff→ S

Finally, when modeling the hazard rates in our Markov process model, we incorporate the fact that in
our model there is a conservation law between product and substrate. Let P (t) and S(t) be the total
amount of product and substrate at time t, and T = P (t) + S(t) be the unchanging total. Instead
of modeling the production rate law of P as vonE(t)S(t), we eliminate the variable S(t) from our
model and use vonE(t)(T − P (t)). This, combined with the elimination of the compound [ES] from
the model, remove the need for the causal constraints outlined in Blom et al. enzyme model.

We believe that our work and Blom et al.’s CCM framework are complimentary. CCM’s could be used
to avoid making simplifying assumptions when they are not appropriate relative to the complexity of
the dynamic system. Our approach of modeling the dynamic model as a Markov process in order to
derive a probability model of equilibrium, then finding an SCM that entails that probability model, is
unexplored in CCMs. We believe this would be a fruitful avenue for future work.

2.6 Proof the inverse Binomial CDF transform is a monotonic conversion.

Definition 2.2. Monotonic condition. A variable Y is said to be monotonic relative to variable
X in a given structural causal model if and only if, given X = x and noise variable N = n, the
structural assignment fY (x, n) is monotonic in x for all n. If the monotonicity condition is true, then
E(Y |do(X = x)) >= E(Y |do(X = x′))⇒ fY (x, n) ≥ fY (x′, n) ∀n [6, 7].
Definition 2.3. Monotonic conversion. A monotonic conversion is a conversion of a probabilistic
generative model of Y to a structural assignment (which assigns a value of Y to a deterministic
function of a random noise input) such that the assignment satisfies the monotonic condition.
Lemma 2.2. Let N be a noise variable with a Uniform(0, 1), and let n be a sample of N . Let
random variable Y be generated from a probabilistic generative model Y ∼ Binomial(T, θ(x)). Let
T be the total number of trials, and θ(x) be the success probability, where {x, θ(x) : x ∈ N, 0 <
θ(x) < 1}. Assume that θ(x) is monotonic in x (as in Eq. (15), except with X2 held constant).
Let F−1(θ(x), T, n) denote the inverse Binomial CDF of Y , parameterized by θ(x) and T . If
E(Y |do(X = x)) ≥ E(Y |do(X = x′)), then the inverse CDF of Y fY (x, n) = F−1((θ(x), T, n)
is a monotonic conversion.

Proof. Let y = E(Y |do(X = x)) and y′ = E(Y |do(X = x′)). Given y and y′, there exists a value
of n∗ ∈ (0, 1) such that y = F−1(θ(x), T, n∗) and y′ = F−1(θ(x′), T, n∗). Therefore, if y ≥ y′

then F−1(θ(x), T, n∗) ≥ F−1(θ(x′), T, n∗).

2.7 Poisson distribution example

The examples and case studies in the manuscript each had equilibrium distributions that factored
into binomial distributions. However, these results are not specific to the Binomial distribution. The
following illustrates a similar model that works with the Poisson distribution. Suppose that Ty in
Eq. 11 were unknown. Within the probabilistic modeling framework, we can model Ty as a latent
variable with distribution πT .

Ty ∼ πT (12)

θy(X1, X2) =
v1X1

v1X1 + v2X2
(13)

Y ∼ Binomial (Ty, θy(X1, X2)) (14)
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A useful result from hierarchical Bayesian modeling is to set πT to a Poisson distribution with
parameter λ, which simplifies the model as follows [10]:

θy(X1, X2) =
v1X1

v1X1 + v2X2
(15)

Y ∼ Poisson (λθy(X1, X2)) (16)

We can then set the structural assignment for Y in the SCM using an inverse Poisson CDF. Let
F−1Pois(µ, n) be the inverse CDF transform that given a parameter µ and a variable n sampled from a
uniform on the unit interval, returns a sample of a Poisson-distributed random variable distributed
according to a Poisson distribution with mean µ:

n ∼ Uniform(0, 1) (17)

Y ∼ F−1Pois(λθy(X1, X2), n) (18)

In general, the approach outlined in this manuscript works with any closed-form equilibrium condi-
tional distributions derived from the underlying Markov process model.
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