
Table 5: Accuracy evaluation of sentiment analysis methods.

Experiment Small (1M Params.) Large

Model SmallCNN LSTM TFiLM SmallCNN LSTM TFiLM
Accuracy 78.1% 95.2% 95.6% 78.0% 95.2% 95.3%
Params. 1.06e6 1.03e6 1.04e6 1.50e6 9.61e6 2.77e7
Secs. per Epoch 896 1141 340 1069 1655 728

Figure 3: Learning curves for the 1-million parameter Yelp-2 experiment. Left: validation accuracy; Right:
validation loss. Note that the accuracy and loss converge several epochs slower for the LSTM model compared
with the TFiLM model.

A Additional Sentiment Analysis Experiments

Additional Comparisons. To measure the memory and run-time efficiency of the TFiLM model,
we compare the TFiLM model against the basic SmallCNN architecture and a one-layer LSTM
network. We run two experiments, one in which the number of parameters between the models is
normalized to about 1 million, and one in which we increase the size of each model so that it uses
almost all of the memory of the GPU (a NVIDIA Tesla P100). Note that in the latter experiment the
number of parameters varies depending which layer acts as the memory bottleneck.

Evaluation. Table 5 presents the results of our experiments. In keeping with our other findings, in
each experiment, the TFiLM model preforms significantly better than the basic SmallCNN architec-
ture. The TFiLM model performs only slightly better than the LSTM model; this is unsurprising,
as the sequences are only of length 256, short enough that the pure RNN can avoid the vanishing
gradient problem.

Moreover, the TFiLM model trains on average over 50% faster than the SmallCNN model and almost
twice as fast as the LSTM model. Figure 3 presents learning curves for the 1-million parameter
Yelp-2 experiment. On this experiment, the TFiLM model trains over twice as fast as the SmallCNN
model and over three times as fast as the LSTM model.

B Time Series Super-Resolution Model Details

Bottleneck Convolutional Layers The core of the model is formed by K successive downsam-
pling and upsampling layer blocks: each performs a convolution, dropout, and ReLU non-linearity.
Downsampling block k = 1, 2, ...,K contains max(26+k, 512) convolutional filters of length
min(27−k + 1, 9) with a stride of 2. Upsampling block k has max(27+(K−k+1), 512) filters of
length min(27−(K−k+1) + 1, 9). Thus, at a downsampling step, we halve the spatial dimension and
double the filter size; during upsampling, this is reversed. This bottleneck architecture resembles a
conovlutional auto-encoder and encourages the model to learn a hierarchy of features.

Max Pooling. Because we expect correlation between data at consecutive time-steps, operating the
LSTM over T/B × C tensors would be inefficient, especially in the first downsampling blocks. We

13

Table 6: Comparison of audio super-resolution results with a bidirectional LSTM in the TFiLM layer. Switching
to a BiLSTM generally provides a minor improvement in performance.

Experiment Ratio Obj. TFiLM TFiLM Improvement
w/LSTM w/BiLSTM

SINGLESPEAKER 4 SNR 16.8 16.9 +0.1
LSD 3.5 3.6 -0.1

PIANO 4 SNR 19.3 20.5 +1.2
LSD 2.2 2.1 +0.2

MULTISPEAKER 2 SNR 19.8 19.6 -0.2
LSD 1.8 1.7 +0.1

MULTISPEAKER 4 SNR 15.0 15.1 +0.1
LSD 2.7 2.6 +0.1

use max pooling to reduce the size of the LSTM inputs. Specifically, after step 1 of Algorithm 1, we
apply max pooling to condense F blk

n,b,t,c tensors into F blk’
n,b,t,c,f,s = Fn,((b×t)−f)/s,c tensors, where f

is the pooling spatial extent and s is the pooling stride.

Skip Connections. When the source series x is similar to the target y, downsampling features will
also be useful for upsampling [24]. We thus add additional skip connections that stack the tensor of
k-th downsampling features with the (K − k + 1)-th tensor of upsampling features. We also add an
additive residual connection from the input to the final output: the model thus only needs to learn
y − x. This speeds up training.

Subpixel Shuffling. To increase the time dimension during upscaling, we have implemented a
one-dimensional version of the subpixel layer of [47], which has been shown to be less prone to
produce artifacts [41]. Given a N × T × C input tensor, the convolution in a U-block outputs a
tensor of shape N × T × C/2. The subpixel layer reshuffles this tensor into another one of size
N × 2T × C/4; these are concatenated with C/4 features from the downsampling stage, for a final
output of size N × 2T × C/2. Thus, we have halved the number of filters and doubled the spatial
dimension.

C Bidirectional RNN

In some applications – like real-time audio super-resolution – samples from the future may not be
accessible; therefore, in our experiments we left the TFiLM RNN uni-directional for full generality.
To assess the impact of using a bidirectional RNN, we reran some of our super-resolution experiments
with a BiLSTM. As Table 6 shows, in most cases the BiLSTM provides only a minor benefit, and in
some cases it even reduces performance (perhaps due to overfitting).

D TSNE Embeddings

We generated t-Distributed Stochastic Neighbor Embedding (t-SNE) plots of the adaptive batch
normalization parameters on the MULTISPEAKER audio super-resolution task and on the 1-million
parameter Yelp review sentiment analysis task. t-SNE is a non-linear dimensionality reduction
algorithm that allows one to visualize relationships between the activations on different data points.
Figure 4 shows that activations of the final TFiLM layer reflect high-level concepts, including the
gender of the speaker and the sentiment of the review.

E MUSHRA Test

We confirmed our objective audio super-resolution experiments with a study in which human raters
assessed the quality of super-resolution using a MUSHRA (MUltiple Stimuli with Hidden Reference

14

Figure 4: Left: t-SNE plot of activations after the final TFiLM layer for the r = 4 model trained on MULTI-
SPEAKER recordings. The male speakers (blue) are generally separated from the female speakers (red). Right:
t-SNE plot of activations after the final TFiLM layer for 1-million parameter Yelp review experiment. The
positive reviews (blue) are seperated from the negative reviews (red).

0 1000 2000 3000 4000 5000
Step

0.00

0.01

0.02

0.03

0.04

0.05

V
a
lid

a
ti

o
n
 L

2
 l
o
ss

Model Ablation Analysis
No additive or stacking connections

No additive connection

Full model

Figure 5: Model ablation analysis on the MULTISPEAKER audio super-resolution task with r = 4.

and Anchor) test. For each trial, an audio sample was upscaled using different techniques3. We
collected four VCTK speaker recordings of audio samples from the MULTISPEAKER testing set. For
each recording, we collected the original utterance, a downsampled version at r = 4, and signals
super-resolved using Splines, DNNs, and our model (six versions in total). We recruited 10 subjects
and used an online survey to them to rate each sample reconstruction on a scale of 0 (extremely
bad) to 100 (excellent). Table 7 summarizes the results. Our method ranked as the best of the three
upscaling techniques.

F Additional Ablation Analysis.

Table 7: MUSHRA test user study scores. We show
scores for each sample, averaged over individual users.
The average across all samples is also displayed.

MULTISPEAKER Sample
1 2 3 4 Average

Ours 69 75 64 37 61.3
DNN 51 55 66 53 56.3

Spline 31 25 38 47 35.3

Figure 5 displays the result of a longer ablation
analysis: the green line displays the validation
set `2 loss of the original model over time; the
yellow curve removes the additive residual con-
nection; the green curve further removes the
additive skip connection (while preserving the
same total number of filters). This shows that
symmetric skip connections are crucial for at-
taining good performance; additive connections
provide an additional small, but perceptible, im-
provement.

3We anonymously posted our set of samples to https://anonymousqwerty.github.io/audio-sr/. We will release
our source code there as well.

15

Table 9: Out-of-distribution performance. We train models on the PIANO and MULTISPEAKER datasets at r = 4
and measure SNR and LSD (in dB) on a different testing dataset.

PIANO (TEST) MULTISPKR (TEST)
SNR LSD SNR LSD

PIANO (TRAIN) 23.5 3.6 9.6 4.1
MULTISPKR (TRAIN) 0.7 8.1 16.1 3.5

G Understanding the Generalization of the Super-Resolution Model

We tested the sensitivity of our method to out-of-distribution input via an audio super-resolution
experiment in which the training set did not use a low-pass filter, while the test set did, and vice versa.
We focused on the PIANO task and r = 2. The output from the model was noisier than expected,
indicating that generalization is an important concern. We suspect this behavior may be common in
super-resolution algorithms but has not been widely documented. A potential solution might be to
train on data that has been generated using multiple techniques.

In addition, we examined the ability of our model to generalize from speech to music and vice versa.
We found that switching domains produced noisy output, again highlighting the specialization of the
model.

Table 8: Sensitivity of the model to whether low-
resolution audio was subject to a low-pass filter
(LPF) in dB.

LPF (Test) No LPF (Test)
SNR LSD SNR LSD

LPF (Train) 30.1 3.4 0.42 4.5
No LPF (Train) 0.43 4.4 33.2 3.3

Table 9 reports objective metrics for models trained
on the MULTISPEAKER and the PIANO tasks and
tested both on the same and on the other dataset.
Listening to the samples, we found that although
the model predicts many high frequencies, these are
often corrupted with noise. Thus, our neural networks
appear to learn a dictionary that is specialized to the
type of audio that they are trained on.

H Missing Data Imputation

Table 10: Accuracy evaluation of time series impu-
tation methods (using L2 distance) with zero-out
rates of 10%, 20%, and 30%.

% Missing Spline DNN Conv. Full
10% 2.48 2.45 1.00 0.84
20% 3.55 3.30 1.39 1.22
30% 4.32 3.97 1.69 1.48

We also considered the super-resolution task of imput-
ing missing values in daily retail sales data. Missing
values naturally occur in financial time series due
to bookkeeping errors or censoring, and they occur
in other domains for myriad reasons. Robustness
to missing values improves the reliability of down-
stream machine learning algorithms.

We downloaded publicly available grocery retail sales
data from Kaggle’s Grocery Sales Forecasting Com-
petition [28]. From this data, we extracted sales fig-
ures for 1452 items on 1024 days. We split the data 80% / 20% into training and testing sets, and we
experiment with setting 10%, 20%, and 30% of the values to zero uniformly at random. We train the
model (with and without TFiLM layers) to fill in the missing values. We train for 50 epochs using
the ADAM optimizer with a learning rate of 3× 10−4. As in the audio super-resolution tasks, we
compare our results with a cubic B-spline and a DNN. (The DNN hyper-parameters are the same as
in the audio experiments.)

As Table 10 shows, the convolutional architecture consistently outperforms both baselines, and
including TFiLM layers consistently provides an additional benefit.

16

