
A Experimental setup327

A.1 Density estimation and toy problems hyperparameters328

Table 4 reports the training configurations for the 2D toy problems and the 5 tabular datasets. For329

tabular data the best performing architecture has been found after some preliminary experiments,330

while this was not needed for the 2D toy problems. During our preliminary experiments we tested331

different integrand network architectures, we tested on the number of hidden layers L 2 {3, 4} and332

on their dimension D 2 {50, 100, 150, 200}. The architecture of the embedding networks is the333

best performing MADE network used in NAF [Huang et al., 2018]. We used the Adam optimizer334

and tried different learning rate � 2 {10�3, 5 ⇥ 10�4, 10�4
}. When the learning rate chosen was335

greater than 10�4 we schedule once the learning rate to 10�4 after the first plateau. We also tested336

for different weights decay values W 2 {10�5, 10�2
}. The batch size was chosen to be as big as337

possible while not harming the learning procedure. We observed during our preliminary experiments338

that choosing the number of integration steps at random (uniformly from 20 to 100) for each batch339

regularizes the complexity of the integral. For MNIST, we observed that 25 integration steps was340

enough if the Lipschitz constant of the network is constraint (with the normalization proposed by341

Gouk et al. [2018]) to be smaller than 1.5.342

Dataset POWER GAS HEPMASS MINIBOONE BSDS300 MNIST 2D Toys

Lipschitz - - - - 2.5 1.5 -

N°integ. steps rand rand rand rand rand 25 50

Embedding net 2 ⇥ 100 2 ⇥ 100 2 ⇥ 512 1 ⇥ 512 2 ⇥ 1024 1 ⇥ 1024 4 ⇥ 50

Integrand net (L ⇥ D) 4 ⇥ 150 3 ⇥ 200 4 ⇥ 200 3 ⇥ 50 4 ⇥ 150 3 ⇥ 150 4 ⇥ 50

Learning rate (�) 10�3 10�3 10�3 10�3 10�4 10�3 10�3

N°flows 5 10 5 3 5 5 1

Embedding Size 30 30 30 30 30 30 10

Weight decay (W ) 10�5 10�2 10�4 10�2 10�2 10�2 10�5

Batch size 10000 10000 100 500 100 100 100

Table 4: Training configurations for density estimation and toy problems.

A.2 Variational auto-encoders343

Table 5 presents the architectural settings of the normalizing flows used inside the variational auto-344

encoders. The number of values outputted by the encoder is always taken to be equal to 320. These345

values as well as the 64-dimensional noise vector are the inputs of the embedding network which is346

constantly made of one hidden layer of 1280 neurons. We have performed a small grid search on the347

integrand network architecture, we took a look at 2 different number L 2 {3, 4} of hidden layers of348

dimensions D 2 {100, 150}.349

Dataset MNIST Freyfaces Omniglot Caltech 101

Lipschitz - - - -

N°integ. steps rand rand rand rand

Encoder Output 320 320 320 320

Embedding net 1 ⇥ 1280 1 ⇥ 1280 1 ⇥ 1280 1 ⇥ 1280

Integrand net 4 ⇥ 100 3 ⇥ 100 4 ⇥ 100 4 ⇥ 100

N°flows 16 8 16 16

Embedding Size 30 30 30 30

Table 5: Training configurations of variational auto-encoder.
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B Clenshaw-Curtis module350

Algorithm 1 Clenshaw-Curtis quadrature
Input: x: A tensor of scalar values that represent the superior integration bounds.

h: A tensor of vectors that representing embeddings.
Output: F : A tensor of scalar values that represent the integral of

R x

0
f(t;h) dt .

Hyper-parameters: f : A derivable function R ! R.
N : The number of integration steps.

1: procedure FORWARD(x, h; f , N )
2: . Compute weights and evaluation steps for Clenshaw-Curtis quadrature
3: w, �x = COMPUTE_CC_WEIGHTS(N )
4: F = 0

5: for i 2 [1, N ] do
6: xi = x0 + 1

2 (x� x0)(�x[i] + 1) . Compute the next point to evaluate
7: �F = f(xi;h)

8: F = F +w[i]�F

9: end for
10: F = F

2 (x� x0)

11: return F

12: end procedure

Inputs: x: A tensor of scalar values that represent the superior integration bounds.
h: A tensor of vectors that representing embeddings.
rout : The derivatives of the loss function with respect to

R x

0
f(t;h) dt for all x.

Outputs: rx: The gradient of
R x

0
f(t;h) dt with respect to x.

r✓: The gradient of
R x

0
f(t;h) dt with respect to f parameters.

rh: The gradient of
R x

0
f(t;h) dt with respect to h.

Hyper-parameters: f : A derivable function R ! R.
N : The number of integration steps.

1: procedure BACKWARD(x, h, rout; f , N )
2: . Compute weights and evaluation steps for Clenshaw-Curtis quadrature
3: w, �x = COMPUTE_CC_WEIGHTS(N )
4: F,r✓,rh = 0, 0, 0

5: for i 2 [1, N ] do
6: xi = x0 + 1

2 (x� x0)(�x[i] + 1) . Compute the next point to evaluate
7: �F =f(xi;h)

8: . Sum up for all samples of the batch the gradients with respect to inputs h
9: �rh =

PB
j=1 rhj

�
�jF

�
rj

out(x
j � xj

0)

10: . Sum up for all samples of the batch the gradients with respect to parameters ✓
11: �r✓ =

PB
j=1 r✓

�
�jF

�
rj

out(x
j � xj

0)

12: rh = rh +w[i]�rh

13: r✓ = r✓ +w[i]�r✓

14: end for
15: . Gradients with respect to superior integration bound.
16: rx = f(x,h)rout

17: return rx, r✓ , rh

18: end procedure
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C Generated images from MNIST351

Figure 4 presents samples generated from two UMNN-MAF trained on MNIST, respectively with352

(sub-figure a) and without (sub-figure b) labels. The samples are generated with different levels353

of noise, which are the product of the inversion of the network with random values drawn from354

N (0, T ), with T being the sampling temperature. The sampling temperature increases linearly from355

0.1 (top rows) to 1.0 (bottom rows). We can observe that the unconditional model fails to incorporate356

digit structure when the level of noise is too small. However, when the level is sufficient it is able to357

generate random digits with a high level of heterogeneity.358

(a) (b)

Figure 4: (a): Class-conditional generated images from MNIST. The temperature of sampling in-
creases from 0.1 (top row) to 1.0 (bottom row). Columns correspond to different classes. (b):
Unconditional generated images from MNIST. The temperature of sampling goes from 0.1 at top
row to 1.0 at bottom row. Columns are different random noise values.
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