
7 Supplementary Material

This supplementary material provides additional details illustrating the proposed approach. We start
by deriving the form of the smoothing kernel for the RDMM model in Sec. 7.1. Based on this kernel
form we can then detail the derivation of the RDMM optimality conditions in Sec. 7.2. In Sec. 7.3,
we prove that the regularization energy is conserved over time, which allows formulating our RDMM
shooting strategy based on initial conditions only. Sec. 7.4 details the good theoretical behavior of our
model. Sec. 7.5 describes the optimization/training strategy with regard to the the initial pre-weight
regularization. Sec. 7.6 visualizes the inference process of the LDDMM/RDMM method. Sec. 7.7
analyzes the behavior of the OMT term. Lastly, Sec. 7.8 details the settings of our experiments.

7.1 Variational Derivation of the Smoothing Kernel

The derivation of our RDMM model makes use of a smoothing kernel of the form K =∑N−1
i=0 wiKσiwi. This kernel form is a direct consequence of the definition of our variational

definition of the smoothing kernel.

Recall that similar to [23] we define

‖v‖2L := inf

{
N−1∑
i=0

‖νi‖2Vi
| v =

N−1∑
i=0

wiνi

}
, (7.1)

for a given velocity field v. To compute an explicit form of the norm ‖v‖2L we need to solve the
constrained optimization problem of this definition. Specifically, we introduce the vector-valued
Lagrange multiplier m. Thus the Lagrangian, L, becomes2

L({νi},m) =

N−1∑
i=0

1

2
‖νi‖2Vi

− 〈m,wiνi − v〉

=

N−1∑
i=0

1

2
〈Liνi, νi〉 − 〈m,wiνi − v〉 .

(7.2)

The variation of the Lagrangian is

δL({νi},m; {δνi}, δm) =

N−1∑
i=0

〈Liνi, δνi〉 − 〈δm,wiνi − v〉 − 〈m,wiδνi〉 . (7.3)

By collecting all the terms, the optimality conditions (i.e., where the variation vanishes) are

Liνi = wim, ∀i and v =

N−1∑
i=0

wiνi. (7.4)

Hence, we can write the norm ‖v(t)‖2L in the following form :

‖v‖2L =

N−1∑
i=0

〈Liν∗i , ν∗i 〉 =

N−1∑
i=0

〈wim,L−1
i wim〉 =

N−1∑
i=0

〈m,wiKσi?(wim)〉 . (7.5)

Consequentially, the associated kernel is K =
∑N−1
i=0 wiKσi

wi. Assuming the kernel can be written
as a convolution, we can therefore express the velocity as:

v =

N−1∑
i=0

wiνi =

N−1∑
i=0

wiKσi
? (wim) . (7.6)

7.2 Optimality Conditions

In this section we derive the RDMM optimality conditions. Both for the image-based and the
momentum-based cases. Recall that the overall registration energy of RDMM can be written as:

E(v, I, {hi}) =
1

2

∫ 1

0

‖v(t)‖2L dt+ Sim(I(1), I1) + Reg({hi(0)}) (7.7)

2We multiply the objective function by 1
2

for convenience. This does not change the solution.

1

under the constraints3 

It + 〈∇I, v〉 = 0, I(0) = I0,

(hi)t + 〈∇hi, v〉 = 0, hi(0) = (hi)0,

wi = Gσ ? hi,

νi = Kσi
? (wim),

v =
∑N−1
i=0 wiνi .

(7.8)

Proof of Thm. (1)
We compute the variations of the Lagrangian, L to the energy (i.e., where constraints are added via
Lagrangian multipliers) with respect to v, λ, I , {hi} and {γi}:

δL =
∂

∂ε
L (v + εdv, I + εdI, {hi + εdhi}, λ+ εdλ, {γi + εdγi)}|ε=0

=

∫ 1

0

1

2
δ(‖v(t)‖2L)− 〈dλ, It + (DI)v〉 − 〈λ, dIt + (DdI)v + (DI)dv〉

−
N−1∑
i=0

{〈dγi, hit + (Dhi)v〉+ 〈γi, dhit + (Ddhi)v + (Dhi)dv〉} dt

+

〈
δ

δI(1)
Sim(I(1), I1), dI(1)

〉
+

N−1∑
i=0

〈
δ

δhi(0)
Reg({hi(0)}), dhi(0)

〉
.

(7.9)

We use ∫ 1

0

〈λ, dIt〉 dt =

∫ 1

0

〈−λt, dI〉 dt+ 〈λ, dI〉10 . (7.10)

According to Green’s theorem and assuming v vanishes on the boundary, we get

〈λ, (DdI)v〉 = 〈−div(λv), dI〉+

∫
∂Ω

dIλv · dS = 〈−div(λv), dI〉 . (7.11)

Similarly, we have ∫ 1

0

〈γi, dhit〉 dt =

∫ 1

0

〈−γit, dhi〉 dt+ 〈γi, dhi〉10 (7.12)

〈γi, (Ddhi)v〉 = 〈−div(γiv), dhi〉+

∫
∂Ω

dhiγiv · dS = 〈−div(γiv), dhi〉 . (7.13)

Now, Eq. (7.9) reads

δE =

∫ 1

0

1

2
δ(‖v(t)‖2L)− 〈dλ, It + (DI)v〉+ 〈λt + div(λv), dI〉

+

N−1∑
i=0

{−〈dγi, hit + (Dhi)v〉+ 〈γit + div(γiv), dhi〉} −

〈
λ∇I +

N−1∑
i=0

γi∇hi, dv

〉
dt

− 〈λ, dI〉10 −
N−1∑
i=0

〈γi, dhi〉10

+

〈
δ

δI(1)
Sim(I(1), I1), dI(1)

〉
+

N−1∑
i=0

〈
δ

δhi(0)
Reg({hi(0)}), dhi(0)

〉
.

(7.14)

We first collect dI(1) and dhi(0) to obtain the final condition on λ and the initial condition on γ:{
−λ(1) + δ

δI(1) Sim(I(1), I1) = 0,

γi(0) + δ
δhi(0) Reg({hi(0)}) = 0 .

(7.15)

3In this section, to simplify the notation, we denote the partial derivative ∂t by only the subscript t.

2

Next, we work on
∫ 1

0
1
2δ(‖v(t)‖2L) dt. Remember, we have v = K ? m

def.
=
∑N−1
i=0 wiνi, where

νi = Kσi
? (wim), wi ≥ 0, thus

∫ 1

0

1

2
δ(‖v(t)‖2L) dt =

∫ 1

0

1

2
〈dm, v〉+

1

2
〈m,

N−1∑
i=0

widνi + νidwi〉dt . (7.16)

Note that for radially symmetric kernels (such as Gaussian kernels) K = K, 〈K ∗ a, b〉 = 〈K ∗ b〉

〈K ∗ a, b〉 =

∫ ∞
x=−∞

(∫ ∞
y=−∞

K(x− y)a(y)

)
b(x)dx

=

∫ ∞
y=−∞

a(y)

∫ ∞
x=−∞

K(x− y)b(x)dxdy

=

∫ ∞
y=−∞

a(y)

∫ ∞
x=−∞

K(y − x)︸ ︷︷ ︸
K(x):K(−x)

b(x)dxdy

=

∫ ∞
x=−∞

a(x)

∫ ∞
y=−∞

K(x− y)b(y)dydx

= 〈a,K ∗ b〉 .

(7.17)

Thus, we can get
1

2
〈νidwi + widνi,m〉 =

1

2
〈dwiKσi

? (wim) + wiKσi
? (dwim+ widm),m〉

=
1

2
〈mTKσi

? (wim), dwi〉+
1

2
〈wim,Kσi

? (dwim)〉+
1

2
〈wim,Kσi

? (widm)〉

=
1

2
〈mTKσi ? (wim), dwi〉+

1

2
〈mTKσi ? (wim), dwi〉+

1

2
〈wiKσi ? (wim), dm〉

=〈Gσ ? (mT νi), dhi〉+
1

2
〈wiνi, dm〉 .

(7.18)

Substituting Eq. (7.18) into Eq. (7.16), we get∫ 1

0

1

2
δ(‖v(t)‖2L) dt =

∫ 1

0

〈dm, v〉+

N−1∑
i=0

〈Gσ ? (mT νi), dhi〉dt . (7.19)

Next, we decompose the 〈λ∇I +
∑N−1
i=0 γi∇hi, dv〉 terms. We define the momentum, m = λ∇I +∑N−1

i=0 γi∇hi.

〈λ∇I +

N−1∑
i=0

γi∇hi, dv〉 = 〈m,
N−1∑
i=0

dwiKσi ? (wim) + wiKσi ? (dwim+ widm)〉

=

N−1∑
i=0

〈mTKσi ? (wim), dwi〉+ 〈mTKσi ∗ (wim), dwi〉+ 〈wiKσi ? (wim), dm〉

=

N−1∑
i=0

〈Gσ ? [mTKσi ? (wim) +mTKσi ? (wim)], dhi〉+ 〈wiKσi ? (wim), dm〉

=

N−1∑
i=0

2〈Gσ ? (mT νi), dhi〉+ 〈wiνi, dm〉 .

Now, we can collect the variation dhi for hi and dm for m and obtain the optimality conditions
−Gσ ? (mT νi) + γit + div(γiv) = 0, (7.20)

v −
N−1∑
i=0

wiνi = 0 . (7.21)

3

Finally, we get the optimality conditions for image-based RDMM derived from Eq. (7.7) and Eq. (7.8):

It + 〈∇I, v〉 = 0, I(0) = I0 ,

hit + 〈∇hi, v〉 = 0, hi(0) = (hi)0 ,

λt + div(λv) = 0 ,

γit + div(γiv) = Gσ ? (m · νi) ,
−λ(1) + δ

δI(1) Sim(I(1), I1) = 0 ,

γi(0) + δ
δhi(0) Reg({hi(0)}) = 0 ,

(7.22)

where νi = Kσi
? (wim) and m = λ∇I +

∑N−1
i=0 γi∇hi.

Proof of Thm. (2) We now derive the optimality conditions for the momentum-based formulation of
RDMM. We start by taking the time derivative of the momentum and obtain

−mt = −(λ∇I)t − (

N−1∑
i=0

∇hiγi)t (7.23)

= −λt∇I − λ∇It −
N−1∑
i=0

{γit∇hi + γi∇(hit)} . (7.24)

By substituting the time derivatives λt, It, γit, and hit from Eq. (7.22) we obtain

−mt = div(λv)∇I + λ∇(∇IT v) +

N−1∑
i=0

[
div(γiv)−Gσ ? (mT νi)

]
∇hi + γi∇(∇hTi v) . (7.25)

Using the following two relations,

div(λv) = ∇λT v + λdiv(v) and ∇(∇IT v) = HIv + (Dv)T∇I (7.26)

where D denotes the Jacobian and H the Hessian, we can rewrite Eq. (7.25) as

−mt = ((∇λ)T v + λdiv(v))∇I + λ(HIv + (Dv)T∇I) (7.27)

+

N−1∑
i=0

[
(∇γi)T v + γidiv(v)−Gσ ? (mT νi)

]
∇hi + γi(Hhiv + (Dv)T∇hi(7.28)

= (λ∇I +

N−1∑
i=0

γi∇hi)div(v) + (Dv)T [λ∇I +

N−1∑
i=0

γi∇hi] + (∇λT v)∇I (7.29)

+ λHIv +

N−1∑
i=0

[
(∇γi)T v

]
∇hi + γiHhiv −Gσ ? (mT νi)∇hi . (7.30)

Noticing that
D(λ∇I)v = λHIv +∇λT v∇I (7.31)

we can write

(∇λT v)∇I + λHIv +

N−1∑
i=0

((∇γi)T v)∇hi + γiHhiv (7.32)

= D(λ∇I)v +

N−1∑
i=0

D(γi∇hi)v = (Dm)v . (7.33)

Finally, we get

−mt = mdiv(v) + (Dv)Tm+ (Dm)v −
N−1∑
i=0

Gσ ? (mT νi)∇hi , (7.34)

which gives the result.

4

7.3 Energy Conservation

To formulate a shooting-based solution we would like to avoid integrating ‖v‖2L over time. We here
show that this quantity is conserved. Hence,

∫ 1

0
‖v‖2L dt = ‖v(0)‖2L, which allows us to write our

shooting equations only with respect to initial conditions subject to the momentum-based evolution
equations of RDMM.

Recall that the energy is preserved by the EPDiff equation since it can alternatively be written as

∂tm+ ad∗vm = 0 , (7.35)

where ad∗ is the adjoint of adv w := dv(w)− dw(v). It implies that

d

dt
〈m,K ? m〉 = −2〈ad∗vm,K ? m〉 = 〈m, adv v〉 = 0 ,

since adv v = 0. In fact, there is more than conservation of the energy, since the momentum is actually
advected along the flow. Now, formula (3.9) can be shortened as ∂tm+ad∗vm =

∑
iGσ?(mT νi)∇hi

and it implies that, denoting the kernel K(wi) to shorten the notations,

d

dt
〈m,K(wi) ? m〉 = −2〈ad∗vm,K(wi) ? m〉+ 2〈

∑
i

Gσ ? (mT νi)∇hi, v〉+ 2〈m,
∑
i

∂twiνi〉

= 2〈
∑
i

Gσ ? (mνi)∇hi, v〉+ 2〈m,
∑
i

(∂twi)νi〉 = 0

since the first term vanishes as for the standard EPDiff equation and the two other terms cancel
each other since ∂twi = −Gσ ? ∇hi · v and v =

∑
iGσi

? (wim). Here we assumed the kernel
to be symmetric in writing this equation but the result holds in general, the equations being simply
modified with the transpose kernel.

7.4 Mathematical properties

In this section, we prove that given (νi)i=0,...,N−1, there exists a solution ϕ(t) solving Equations
(7.7) and (7.8) at least until a time T > 0 which could be less than 1. The notations ‖ · ‖k,∞ or ‖ · ‖Ck

denote the sup norm of Ck maps.
Theorem 3. Let VN−1 ⊂ . . . ⊂ V0 and suppose for every νk ∈ Vk, ‖νk‖Vk

≤ const‖νk‖V1
≤

const‖νk‖2,∞. Given initial weights (hi(t = 0))N−1
i=0 ∈ L2 and time dependent vector fields

νi(t) ∈ Vi, there exists a unique solution ϕ(t) to Equations (3) until time 1.

Proof. The first step consists in proving that there exists a solution locally in time. To this end, the
proof follows a fixed point argument on the space C0([0, 1],DiffC1(Ω)), i.e.the space of continuous
curves in DiffC1(Ω), for the map

T (ϕ) := Fl(v) (7.36)

where v is defined as v[ϕ] :=
∑N−1
i=0 Gσ ? hi(ϕ

−1(t, y))νi(t, ϕ(t, x)). The existence of the flow
associated with v[ϕ] is ensured by standard arguments provided that the Lipschitz constant of v[ϕ]
is bounded. It is the case since Gσ(x, y) ? hi(ϕ

−1(t, y)) has a Lipschitz constant bounded by
supx∈Ω |∂1Gσ(x, y)| since |hi(ϕ−1(t, y))| ≤ 1. This gives ‖v[ϕ]‖1,∞ ≤

∑N−1
i=0 M‖νi‖1,∞ and the

constant M does not depend on ϕ. A similar inequality holds for the sup norm on the derivatives up
to order k provided each space Vi continuously embeds in Ck.

One has the inequality
‖T (ϕ)(t)‖2,∞ ≤ e

∫ t
0
‖v[ϕ]‖2,∞ ds (7.37)

and therefore, ‖T (ϕ)(t)‖2,∞ is bounded a priori by a positive constant which does not depend on ϕ.
Using Gronwall’s lemma (6), one has also

‖T (ϕ)(t)− T (ψ)(t)‖1,∞ ≤
√
t‖v[ϕ]− w[ψ]‖L2([0,t],C1)e

∫ t
0

(1+‖ϕ‖1,∞)‖v‖C2 ds . (7.38)

Moreover, by a change of variable y = ϕ(t, x) we have

Gσ ? hi(ϕ
−1(t, y)) = Gσ(x, ϕ(t, y)) ? (Jac(ϕ(t, y))hi(y)) (7.39)

5

and therefore

‖Gσ ? hi(ϕ−1(t, y))νi −Gσ ? hi(ψ−1(t, y))νi‖C1 ≤M ′‖ϕ− ψ‖C1‖νi‖C1 . (7.40)

Thus, we deduce the inequality

‖v[ϕ]− w[ψ]‖L2([0,t],C1) ≤M sup
s∈[0,t]

‖ψ(s)− ϕ(s)‖C1 , (7.41)

therefore, the map T is a contraction for a time T small enough. Using Equation (7.37), it is easily
seen that this existence can be applied on [T, 2T] and iterating this argument shows existence until
time t = 1.

Theorem 4. The variational problem (7.7) under the constraints of Equations (7.8) has a solution.

Proof. The direct method of calculus of variations can be applied here, see Sect. 7.2. The sum of
squared norms are lower semicontinuous; The penalty term as well as the constraints are weakly
closed for the weak convergence on (νi).

Lemma 5. Let u, v ∈ L2([0, 1], C2) and let ϕ,ψ be their associated flows. The following estimates
hold,

‖ϕ(t)‖C2 ≤ e
∫ t
0
‖v(s)‖C2 ds , (7.42)

and
‖ϕ(t)− ψ(t)‖C1 ≤

√
tM‖u− v‖L2([0,t],C1)e

∫ t
0

(1+‖ϕ‖1,∞)‖v‖C2 ds . (7.43)

where M is a constant that bounds ‖ϕ‖1,∞.

Proof. Use Gronwall’s lemma (6) recalled below on the following inequality coming from the flow
equation

‖ϕ(t)− ψ(t)‖1,∞ ≤
∫ t

0

‖ du ◦ ϕ(t) · dϕ(t)− dw ◦ ψ(t) · dψ(t)‖0,∞ ds (7.44)

≤
∫ t

0

‖u− v‖1,∞‖ϕ‖1,∞+‖v‖2,∞‖ϕ‖1,∞‖ϕ− ψ‖0,∞+‖dv‖1,∞‖ϕ− ψ‖1,∞ ds

(7.45)

≤
∫ t

0

‖u− v‖1,∞‖ϕ‖1,∞ + (1 + ‖ϕ‖1,∞)‖v‖2,∞‖ϕ− ψ‖1,∞ ds . (7.46)

Recall that Gronwall’s lemma is

Lemma 6. Let r be a nonnegative function on R such that

r(t) ≤ c(t) +

∣∣∣∣∫ t

0

α(s)r(s) ds

∣∣∣∣ (7.47)

for given positive functions α and c. Then,

r(t) ≤ c(t) +

∣∣∣∣∫ t

0

α(s)c(s)e|
∫ t
0
α(s) ds| ds

∣∣∣∣ , (7.48)

and if c is a constant, a further simplified formula is

r(t) ≤ ce|
∫ t
0
α(s) ds| . (7.49)

6

Figure 8: Flow chart of LDDMM (left) and our RDMM model (right). LDDMM solves EPDiff and
advects the transformation map, whereas in RDMM a modified EPDiff equation is solved combined
with an advection of the transformation map and the pre-weights for the regularizer. Note that
transformation map ϕ−1 and the pre-weights {hi} are both advected according to the velocity field.
Hence, instead of computing the advection equation, we update {hi(t)} by interpolating the initial
pre-weights {hi(0)} via the current transformation map ϕ−1(t), which is more computationally
efficient and avoids numerical dissipation.

7.5 Initial Pre-weight Regularization

The initial regularization term Reg({hi(0)}) determines the behavior of the initial regularizer. In our
experiments,

Reg({hi(0)}, T) = λOMT(T)OMT ({hi(0)}) + λRange(T)Range({hi(0)}) , (7.50)

where λOMT and λRange are scale factors; T refers to the iteration/epoch. Specifically,

OMT =

∣∣∣∣log
σN−1

σ0

∣∣∣∣−s N−1∑
i=0

wi

∣∣∣∣log
σN−1

σi

∣∣∣∣s (7.51)

where s is the chosen power and

Range = ‖Gσ ? (h(0))− w0‖22 (7.52)

where w0 is the pre-defined initial weight. The range loss penalizes differences between the initial
weight, w(0), from the pre-defined one, w0.

At the beginning of the optimization/training, it is difficult to jointly optimize over the momentum and
the pre-weights. Hence, we constrain the pre-weights by introducing the Range loss that penalizes the
difference between the optimized and pre-defined pre-weights. Besides, as we prefer well-regularized
(i.e., smooth) transformation, we use the OMT loss to penalize weight assignments to Gaussians
with small standard deviations. To solve the original model, the influence of the range penalty needs
to diminish while the influence of the OMT term need to increase during training. In practice, we
introduce epoch-dependent decay factors:

λT =
K

K + eT/K
, λRange := CRangeλT , λOMT = COMT(1− λT), (7.53)

where CRange and COMT are pre-defined constants, K controls the decay rate, and T indicates the
iteration/epoch.

7.6 LDDMM/RDMM Unit

Fig. 8 shows the flow charts for LDDMM and RDMM. Additionally, for RDMM with a pre-defined
regularizer, we define {hi(0)} in the source image space, as foreground and background are easier to
specify there. For RDMM with an optimized/learnt regularizer we define {hi(0)} in the pre-aligned
image space, since the goal is to find the optimal initial conditions that determine the geodesic path
based on the RDMM shooting equations; specifically, we take ϕ−1(0) = id as the input, and the final
output composes the initial map and the transformation map, ϕ−1(1).

7

7.7 Analysis of the OMT term

This section illustrates the behavior of the OMT term to obtain regular solutions. To understand the
behavior of the OMT term, we do some simple analysis. We assume

0 < σ0 < σ1 < · · · < σN−1 (7.54)

where σi are the standard deviations of the Gaussians. In general, we desire

c0 > c1 > · · · > cN−1, (7.55)

where ci are the associated costs of assigning a weight to i-th Gaussian. That is, we assume that it
gets progressively cheaper to assign to Gaussians with larger standard deviation. However, we do not
assume that this is the case in the following derivations. Our OMT penalty term is then of the form

f(w) =

N−1∑
i=0

ciwi = c>w (7.56)

with constraints
N−1∑
i=0

wi − 1 = 1>w − 1 = 0 and wi ≥ 0 . (7.57)

To study this term, assume that we have a given target standard deviation σ̂ that we wish to explain
via a multi-Gaussian. This results in the constraint

N−1∑
i=0

σ2
iwi − σ̂2 = v>w − σ̂2 = 0 . (7.58)

This optimization problem is linear in the multi-Gaussian weights, w, and consequentially constitutes
the following linear program

min
w

f(w) s.t.


1>w − 1 = 0,

v>w − σ̂2 = 0,

wi ≥ 0 .

(7.59)

The Lagrangian of this problem is

L(w, λ, γ1, γ2) = f(w)− λ>w − γ1(1>w − 1)− γ2(v>w − σ̂2) , (7.60)

which results following KKT conditions [24]

c− λ− γ11− γ2v = 0, (7.61)
1>w − 1 = 0, (7.62)
v>w − σ̂2 = 0, (7.63)

w ≥ 0, (7.64)
λ ≥ 0, (7.65)

λiwi = 0, ∀ i . (7.66)

7.7.1 Solution on a simplex edge

Assume a solution candidate for the KKT conditions (Eqs. (7.61)-(7.66)) that only has two zero
weights

wk > 0, wl > 0, wi = 0 ∀i /∈ {k, l}, σk < σl . (7.67)

Then, we know
wk + wl = 1, σ2

kwk + σ2
l wl = σ̂2, λk = λl = 0 . (7.68)

Using Eq. (7.68), we can directly solve for wk and wl and obtain

wk =
σ2
l − σ̂2

σ2
l − σ2

k

, wl =
σ̂2 − σ2

k

σ2
l − σ2

k

. (7.69)

8

Note that these weights are independent of the costs ci4.

Both weights are required to be non-negative, i.e. wk ≥ 0, wl ≥ 0. From this condition, we obtain

wk =
σ2
l − σ̂2

σ2
l − σ2

k

≥ 0 (7.70)

⇔ σ2
l − σ̂2 ≥ 0 (7.71)

⇔ σ̂2 ≤ σ2
l (7.72)

and

wl =
σ̂2 − σ2

k

σ2
l − σ2

k

≥ 0 (7.73)

⇔ σ̂2 − σ2
k ≥ 0 (7.74)

⇔ σ2
k ≤ σ̂2 (7.75)

and finally that the desired variance needs to be between the variances of k and l, i.e., σ2
k ≤ σ̂2 ≤ σ2

l .
Since λk = λl = 0, we further get from Eq. (7.61) that

ck − γ1 − γ2σ
2
k = 0 , (7.76)

cl − γ1 − γ2σ
2
l = 0 , (7.77)

which we can solve for γ1 and γ2 to obtain

γ1 =
ckσ

2
l − clσ2

k

σ2
l − σ2

k

, γ2 =
cl − ck
σ2
l − σ2

k

. (7.78)

For arbitrary i /∈ {l, k} the Lagrangian multipliers are then

λi = −γ1 − γ2σ
2
i + ci, (7.79)

=
σ2
l (ci − ck) + σ2

k(cl − ci) + σ2
i (ck − cl)

σ2
l − σ2

k

, (7.80)

=
ci(σ

2
l − σ2

k) + ck(σ2
i − σ2

l) + cl(σ
2
k − σ2

i)

σ2
l − σ2

k

. (7.81)

Since λi ≥ 0 we get

ci ≥ ck
σ2
l − σ2

i

σ2
l − σ2

k

+ cl
σ2
i − σ2

k

σ2
l − σ2

k

= g(σ2
i). (7.82)

As g(σ2
k) = ck and g(σ2

l) = cl, this is simply a line that passes through the points (σ2
k, ck) and

(σ2
l , cl) and this condition states that for a solution candidate edge (k, l) the costs for all i /∈ {k, l}

are on or above this line. If the costs are defined via a function c = h(σ2), then, if h is a convex
function (and remembering the condition σ2

k ≤ σ̂2 ≤ σ2
l), the optimal solution of this linear program

will be on the edge (k∗, l∗) most tightly bracketing σ̂2, i.e.,

σ2
k∗ ≤ σ̂

2 ≤ σ2
l∗ , s.t. k∗ = max

i
{i : σ2

i ≤ σ̂2}, l∗ = min
i
{i : σ̂2 ≤ σ2

i } . (7.83)

7.7.2 Solution on a simplex vertex

Assume that σ̂2 = σ2
j , i.e., the desired variance coincides with the variances of one of the Gaussians.

Then wj = 1 and wi = 0, ∀i 6= j. Furthermore, we have λj = 0 from which follows

γ1 = cj − γ2σ
2
j . (7.84)

For the remaining N − 1 variables i 6= j, it needs to hold that

ci − λi − γ1 − γ2σ
2
i = 0 . (7.85)

4We will show in the remainder of this section that for costs defined via a convex function, g, c = g(σ2),
this is indeed a solution of the KKT equations. This is consistent with known optimal mass transport theory,
where for convex costs the optimal mass transport in 1D is a monotone rearrangement [12].

9

Substituting Eq. (7.84), we can solve for λi and obtain

λi = ci − cj + γ2(σ2
j − σ2

i) . (7.86)

As all the Lagrangian multipliers, λ, are (by the KKT conditions) required to be non-negative, we
obtain the condition

ci − cj + γ2(σ2
j − σ2

i) ≥ 0 . (7.87)

We can distinguish two conditions

γ2 ≥ cj − ci
σ2
j − σ2

i

, for i < j , (7.88)

γ2 ≤ ck − cj
σ2
k − σ2

j

, for j < k . (7.89)

Hence, it needs to hold that

cj − ci
σ2
j − σ2

i

≤ ck − cj
σ2
k − σ2

j

, ∀i < j < k . (7.90)

Since σ2
i < σ2

j < σ2
k, we can multiply by (σ2

j − σ2
i)(σ2

k − σ2
j) and obtain

(cj − ci)(σ2
k − σ2

j) ≤ (ck − cj)(σ2
j − σ2

i) . (7.91)

Solving for cj , we get

cj ≤ ci
σ2
k − σ2

j

σ2
k − σ2

i

+ ck
σ2
j − σ2

i

σ2
k − σ2

i

. (7.92)

Now, for a vertex j to be a solution, this condition needs to be true for all i < j < k. Graphically, we
can take any two points (σ2

i , ci) and (σ2
k, ck) and draw a line between them. If (σ2

k,k) is below these
lines for all pairs (i, k) such that i < k < j, then there is a vertex solution, otherwise the solution is
on an edge (for non-degenerate ci). This condition is always fulfilled for convex functions c = h(σ2).

7.7.3 Solution on a simplex face

We can also ask if it is possible that a solution is on a face of the simplex. Consider the case of three
non-zero weights wk > 0, wl > 0, wm > 0. In this case, we have

wk + wl + wm = 1 , (7.93)
λk = λl = λm = 0 , (7.94)

σ2
kwk + σ2

l wl + σ2
mwm = σ̂2 . (7.95)

Furthermore, to fulfill the KKT conditions, the following equation system needs to hold (and similarly
for more than three non-zero weights):(

ck
cl
cm

)
=

1 σ2
k

1 σ2
l

1 σ2
m

(γ1

γ2

)
. (7.96)

For more than two non-zero weights this is an overdetermined system. Hence, a solution can only be
on a face if this system has a solution. In that case, this means that

cm = cl
σ2
k − σ2

m

σ2
k − σ2

l

+ ck
σ2
m − σ2

l

σ2
k − σ2

l

. (7.97)

In other words, this is only possible if c = h(σ2) is at least piecewise linear. Specifically, if c = h(σ2)
is a strictly convex function, a solution can only be found on simplex edges or vertices based on the
conditions in the two previous sections.

10

7.7.4 Summary

In summary, to assure that a solution exists either 1) based on the two Gaussians closest to the desired
variance σ̂2 (i.e., a simplex edge) or 2) selecting exactly one of the Gaussians (a simplex vertex), it is
desirable to pick a penalty function based on costs from a strictly convex function c = h(σ2). Based
on our choice for the OMT penalty:

c = h(x) =
1

2r

(
log

σ2
N−1

x

)r
, (7.98)

we get

d2h(x)

dx2
=

r
2r logr−2

(
σ2
N−1

x

)(
log

σ2
N−1

x + r − 1
)

x2
. (7.99)

For 0 < x < σ2
N−1 and r ≥ 1, the second derivative is positive and hence h(x) is strictly convex.

7.8 Experimental settings

For all experiments, we normalize the intensities of each image such that the 0.1th percentile and
the 99.9th percentile are mapped to 0, 1 and clamp values that are smaller to 0 and larger to 1 to
avoid outliers. We also assume that spatial coordinates of images are in [0, 1]d, where d is the spatial
dimension. This makes the interpretation of the standard deviations of the regularizers straightforward.

Non-parametric family For numerical optimization solutions, we use three image scales {0.25, 0.5
and 1.0}. We use L-BGFS as the optimizer. For the deep learning models, we train the multi-
step affine network first and then train the non-parametric network with the affine network
fixed. For all methods, we use a multi-kernel Gaussian regularizer with standard deviations
σi = {0.05, 0.1, 0.15, 0.2, 0.25}. For both vSVF and LDDMM, we use fixed corresponding weights
w2

0 = {0.067, 0.133, 0.2, 0.267, 0.333}, which is also set as the initial value for the range loss in
RDMM.

Baseline methods

For the numerical optimization approaches, we compare with three public registration tools:
NiftyReg [25, 20, 30, 21], SyN [2, 1] and Demons [38, 37]. Besides, we also compare with two recent
deep-learning approaches: VoxelMorph [10] and AVSM (vSVF-net)[33]. For a fair comparison, we
take the same experimental settings as in [33].

Registration with a pre-defined regularizer

For the synthetic registration experiments, we use a multi-kernel Gaussian regularizer with standard
deviations σi = {0.03, 0.06, 0.09, 0.3} with initial pre-weights h2

0 = {0.2, 0.5, 0.3, 0.0} (fixed
during the optimization) for the foreground (the dark blue region) and h2

0 = {0, 0, 0, 1} for the
background (the cyan region). The standard deviation for Gσ, to smooth the pre-weights, is set to
0.02. For each image scale, we compute 60 registration iterations.
For the lung registration we use σi = {0.04, 0.06, 0.08, 0.2} for the multi-Gaussian regularizer with
initial pre-weights h2

0 = {0.1, 0.4, 0.5, 0} for the foreground (i.e.the lung) and h2
0 = {0, 0, 0, 1}

everywhere outside the lung. We set σ in Gσ to 0.05. For each image scale, we compute 60
registration iterations.

Registration with an optimized regularizer

For the synthetic registration experiment, we use σi = {0.02, 0.04, 0.06, 0.08} for the multi-Gaussian
regularizer and the initial pre-weights h2

0 = {0.1, 0.3, 0.3, 0.3}. These initial value are set at the
beginning of the optimization. They are the same for vSVF, LDDMM and RDMM. CRange and
COMT are set to 10 and 0.05 respectively; K is set to 10; σ in Gσ is set to 0.05. For image scale
{0.25, 0.5 and 1.0}, we compute {100, 100 and 400} iterations, respectively.
For the knee MRI registration of the OAI dataset, we use σi = {0.05, 0.1, 0.15, 0.2, 0.25} for the
multi-Gaussian regularizer with the initial pre-weights h2

0 = {0.067, 0.133, 0.2, 0.267, 0.333} for all
non-parametric registration models. CRange and COMT are set to 1 and 0.25 respectively; K is set to
6; σ in Gσ is set to 0.06. For each image scale, we compute 60 registration iterations.

Registration with a learnt regularizer

11

For the deep learning approaches, the settings are the same as for numerical optimization, as described
above. Besides, we include an additional inverse consistency loss, with the scale factor set to 1e-4,
for vSVF, LDDMM and RDMM to regularize the deformation.

12

	Supplementary Material
	Variational Derivation of the Smoothing Kernel
	Optimality Conditions
	Energy Conservation
	Mathematical properties
	Initial Pre-weight Regularization
	LDDMM/RDMM Unit
	Analysis of the OMT term
	Solution on a simplex edge
	Solution on a simplex vertex
	Solution on a simplex face
	Summary

	Experimental settings

