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Abstract

It has been observed that residual networks can be viewed as the explicit Euler dis-1

cretization of an Ordinary Differential Equation (ODE). This observation motivated2

the introduction of so-called Neural ODEs, which allow more general discretization3

schemes with adaptive time stepping. Here, we propose ANODEV2, which is an4

extension of this approach that allows evolution of the neural network parameters,5

in a coupled ODE-based formulation. The Neural ODE method introduced earlier6

is in fact a special case of this new framework. We present the formulation of7

ANODEV2, derive optimality conditions, and implement the coupled framework8

in PyTorch. We present empirical results using several different configurations of9

ANODEV2, testing them on multiple models on CIFAR-10. We report results10

showing that this coupled ODE-based framework is indeed trainable, and that11

it achieves higher accuracy, as compared to the baseline models as well as the12

recently-proposed Neural ODE approach.13

1 Introduction14

Residual networks [1, 2] have enabled training of very deep neural networks (DNNs). Recent work15

has shown an interesting connection between residual blocks and ODEs, showing that a residual16

network can be viewed as a discretization to a continuous ODE operator [3, 4, 5, 6, 7, 8]. These17

formulations are commonly called Neural ODEs and here we follow the same convention. Neural18

ODEs provide a general framework that connects discrete DNNs to continuous dynamical systems19

theory as well as discretization and optimal control of ODEs, all subjects with very rich theory.20

A basic Neural ODE formulation and its connection to residual networks (for a single block in a21

network) is the following:22

z1 = z0 + f(z0, θ) ResNet, (1a)

z(1) = z(0) +

∫ 1

0

f(z(t), θ)dt ODE, (1b)

z(1) = z(0) + f(z0, θ) ODE forward Euler. (1c)

Here, z0 is the input to the network and z1 is the output activation; θ is the vector of network weights23

(independent of time); and f(z, θ) is the nonlinear operator defined by this block. (Here we have24

written the ODE dz/dt = f(z, θ) in terms of its solution at t = 1.) We can see that a single-step of25

forward Euler discretization of the ODE is identical to a traditional residual block. Alternatively, we26

could use a different time-stepping scheme or, more interestingly, use more time steps. Once the27

connection to ODEs was identified, several groups have incorporated the Neural ODE structure in28

neural networks and evaluated their performance on several different learning tasks.29

A major challenge with training Neural ODEs is that backpropogating through ODE layers requires30

storage of all the intermediate activations (i.e., z) in time. In principle, the memory footprint of31

ODE layers has a cost of O(Nt) (Nt is the number of time steps to solve the ODE layer), which is32

prohibitive. The recent work of [8] proposed an adjoint based method, with a training strategy that33

required only storage of the activation at the end of the ODE layer. All the intermediate activations34
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were then “re-computed” by solving the ODE layers backwards. However, it has been recently shown35

that such an approach could lead to incorrect gradients, due both to numerical instability and also36

to inconsistencies that relate to optimizing infinite dimensional operators (the so called Discretize-37

Then-Optimize vs. Optimize-Then-Discretize issue) [9]. Moreover importantly, it was observed that38

using other discretization schemes such as RK2 or RK4, or using more time steps does not affect the39

generalization performance of the model (even with DTO approach). In this paper, building on the40

latter approach of [9], we propose ANODEV2 a more general Neural ODE framework that addresses41

this problem. ANODEV2 allows the evolution of both weights and activations by a coupled system42

of ODEs:43

{
z(1) = z(0) +

∫ 1

0
f(z(t), θ(t))dt “parent network”,

θ(t) = θ(0) +
∫ t
0
q(θ(t), p)dt, θ(0) = θ0 “weight network”.

(2)

Here, q(·) is a nonlinear operator (essentially controlling the dynamics of the network parameters in44

time); θ0 and p are the corresponding parameters for the weight network. Our approach allows θ to be45

time dependent: θ(t) is parameterized by the learnable dynamics of dθ/dt = q(θ(t), p). This, in turn,46

is parameterized by θ0 and p. In other words, instead of optimizing for a constant θ, we optimize47

for θ0 and p. During inference, both weights θ(t) and activations z(t) are forward-propagated in48

time by solving Eq. 2. Observe that if we set q = 0 then we recover the Neural ODE approach49

proposed by [8]. Eq. 2 replaces the problem of designing appropriate neural network blocks (f ) with50

the problem of choosing appropriate function (q) in an ODE to model the changes of parameter θ51

(the weight network).52

In summary, our main contributions are the following.53

• We provide a general framework that extends Neural ODEs to system of coupled ODEs54

which, allows coupled evolution of both model parameters and activations. This coupled55

formulation addresses the challenge with Neural ODEs, in that using more time steps or56

different discretization schemes do not affect model’s generalization performance [9].57

• We derive the optimality conditions for how backpropagation should be performed for the58

coupled ODE formulation using the so called Karush–Kuhn–Tucker conditions. In particular,59

we implement the corresponding Discretize-Then-Optimize (DTO) approach, along with a60

checkpointing scheme presented in [9].61

• We test the framework using multiple different residual models on Cifar-10 by considering62

different coupled formulations. In particular, we show examples illustrating how a biologi-63

cally motivated reaction-diffusion-advection ODE could be used to model the evolution of64

the neural network parameters.65

• We have open sourced the implementation of the coupled framework in Pytorch which66

allows general evolution operators (and not just the reaction-diffusion-advection). In fact67

some of the earlier works such as HyperNetworks are special cases of ANODEV2, and can68

be implemented in this framework. The code is available in [10].69

There is a rich literature on neural evolution research [11, 12, 13, 14, 15, 16, 17]. Several similar70

approaches to ours have been taken in the line of evolutionary computing, where an auxiliary “child”71

network is used to generate the parameters for a “parent” network. This approach permits the72

restriction of the effective depth that the activations must go through, since the parent network could73

have smaller weight space than the child network. One example is HyperNEAT [18], which uses74

“Compositional Pattern Producing Networks” (CPRNs) to evolve the model parameters [19, 20].75

A similar approach using “Compressed Weight Search” was proposed in [21]. A follow up work76

extended this approach by utilizing differentiable CPRNs [22]. The authors show that neural network77

parameters could be encoded through a fully connected architecture. Another seminal work in this78

direction is [23, 24], where an auxiliary network learns to produce “context-aware” weights in a79

recurrent NN model. A similar recent approach is taken in Hypernetworks [25]. In this approach,80

the model parameters are evolved through an auxiliary learnable neural network. This approach is a81

special case of the above framework, which could be derived by using a single time step discretization82

of Eq. 2, with a neural network for the evolution operator (denoted by q and introduced in the next83

section). Our framework is a generalization of these evolutionary algorithms, and it provides more84

flexibility for modeling the evolution of the model parameters in time. For instance, we will show85

how biologically motivated diffusion-reaction-advection operators could be used for the evolution86

operator q, with negligible increase in the model parameter size.87
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2 Methodology88

In this section, we discuss the formulation for the coupled ODE-based neural network model described89

above, and we derive the corresponding optimality conditions. For a typical learning problem, the90

goal is to minimize the empirical risk over a set of training examples. Given a loss function `i, where91

i indexes the training sample, we seek to find weights, θ ∈ Rd, such that:92

min
θ

1

N

N∑
i=1

`i(zi(θ)) +R(θ), (3)

where R is a regularization operator and N the number of training samples. The loss function93

depends implicity on θ through the network activation vector zi. This problem is typically solved94

using Stochastic Gradient Descent (SGD) and backpropagation to compute the gradient of zi with95

respect to θ.96

2.1 Neural ODE97

Consider the following notation for a residual block: z1 = z0 + f(z0; θ), where z0 is the input98

activation, f(·) is the NN kernel (e.g., comprising a series of convolutional blocks with non-linear99

or linear activation functions), and z1 is the output activation. As discussed above, an alternative100

view of a residual network is the following continuous-time formulation: dz
dt = f(z(t); θ), with101

z(t = 0) = z0 and z(t = 1) = z1 (we will use both z(t) and zt to denote activation at time t). In the102

ODE-based formulation, this NN has a continuous depth. In this case, we need to solve the following103

constrained optimization problem (Neural ODE):104

min
θ

1

N

N∑
i=1

li(zi(1)) +R(θ) subject to:
dz

dt
= f(z(t), θ), z(0) = z0. (4)

Note that in this formulation the neural network parameters are stale in time. In fact it has been105

observed that using adaptive time stepping or higher order discretization methods such as Runge-106

Kutta does not result in any gains in generalization performance using the above framework [9]. To107

address this, we extend the Neural ODEs by considering a system of coupled ODEs, where the model108

parameters as well as activations evolve in time. In fact, this formulation is slightly more general109

than what we described in the introduction. For this reason, we introduce an auxiliary dynamical110

system for w(t), which we use to define θ. In particular, we propose the following formulation:111

min
p,w0

J (z(1)) =
1

N

N∑
i=1

li(zi(1)) +R(w0, p), (5a)

dz

dt
= f(z(t), θ(t)), z(0) = z0 “Activation ODE”, (5b)

∂w

∂t
= q(w; p), w(0) = w0 “Evolution ODE”, (5c)

θ(t) =

∫ t

0

K(t− τ)w(τ)dτ. (5d)

Note that here θ(t) is a function of time, and it is parameterized by the whole dynamics of w(t)112

and a time convolution kernel K (which in the simplest form could be a Dirac delta function such113

that θ(t) = w(t)). Also, q(w, p) can be a general function, e.g., another neural network, a linear114

operator or even a discretized Partial Differential Equation (PDE) based operator. The latter perhaps115

is useful if we consider the θ(t) as a function θ(u, t), where u parameterizes the signal space (e.g.,116

2D pixel space for images). This formulation allows for rich variations of θ(t), while using a lower117

dimensional parameterization: notice that implicitly we have that θ(t) = θ(w0, p, t). Also, this118

formulation permits novel regularization techniques. Instead of regularizing θ(t), we can regularize119

w0 and p.120

A crucial question is: how should one perform backpropagation for this formulation? It is instructive121

to compute the actual derivatives to illustrate the structure of the problem. To derive the optimality122

conditions for this constrained problem, we need to first form the Lagrangian operator and derive the123

so called Karush–Kuhn–Tucker (KKT) conditions:124
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L = J (z(1)) +

∫ 1

0

α(t) ·
(
dz

dt
− f(z(t), θ(t))

)
dt+

∫ 1

0

β(t) ·
(
∂w

∂t
− q(w; p)

)
dt

+

∫ 1

0

γ(t) ·
(
θ(t)−

∫ t

0

K(t− τ)w(τ)dτ

)
dt.

(6)

Here, α(t), β(t), and γ(t) are the corresponding adjoint variables (Lagrange multiplier vector125

functions) for the constraints in Eq. 5. The solution to the optimization problem of Eq. 5 could be126

found by computing the stationary points of the Lagrangian (KKT conditions), which are the gradient127

of L with respect to z(t), w(t), θ(t), p, w0 and the adjoints α(t), β(t), γ(t). The variations of L with128

respect to the three adjoint functions just result in the ODE constraints in Eq. 5. The remaining129

variations of L are the most interesting and are given below (see Appendix D for additional discussion130

on the derivation):131

∂J (z(1))

∂z1
+ α1 = 0, − ∂α

∂t
−
(
∂f

∂z

)T
α(t) = 0; (∂Lz) (7a)

−
(
∂f

∂θ

)T
α(t) + γ(t) = 0; (∂Lθ) (7b)

−∂β(t)

∂t
−
(
∂q

∂w

)T
β(t)− (1−H(t))

∫ 1

0

KT (τ − t)γ(τ)dτ = 0, β(1) = 0; (∂Lw) (7c)

−β(0) +
∂R

∂w0
= gw0

; (∂Lw0
) (7d)

∂R

∂p
−
∫ 1

0

(
∂q

∂p

)T
β(t)dt = gp; (∂Lp) (7e)

where H(t) is the scalar Heaviside function. To compute the gradients gp and gw0 , we proceed as132

follows. Given w0 and p, we forward propagate w0 to compute w(t) and then θ(t). Then using θ(t)133

we can compute the activations z(t). Then we solve the adjoint equations for α(t), γ(t) and β(t), in134

this order Eq. 7a- 7e. Finally, the gradients of the loss function with respect to p (gp) and w0 (gw0
) are135

given from the last two equations. Notice that if we set q = 0 we will derive the optimality conditions136

for the Neural ODE without any dynamics for the model parameters, which was the model presented137

in [8]. The benefit of this more general framework is that we can encapsulate time dynamics of the138

model parameter without increasing the memory footprint of the model. In fact, this approach only139

requires storing initial condition for the parameters, which is parameterized by w0, along with the140

parameters of the control operator q which are denoted by p. As we show in the results section, the141

latter can have negligible memory footprint, but yet allow rich representation of model parameter142

dynamics.143

PDE-inspired formulation. There are several different models for the q(w, p), the evolution func-144

tion for the weight convolutional network. One possibility is to use a convolutional block (resembling145

a recurrent network). However, this can increase the number of parameters significantly. Inspired by146

Turing’s reaction-diffusion partial differential equation models for pattern formation, we view a con-147

volutional filter as a time-varying pattern (where time here represents the depth of the network) [12].148

To illustrate this, we consider a PDE based model for the control operator q, as follows:149

dw

dt
= σ(τ∆w + υ · ∇w + ρw), (8)

where τ is used to control the diffusion (∆w), υ is used to control the advection (∇w), ρ is used to150

control the reaction (w), and σ is a nonlinear activation (such as sigmoid or tanh). View the weights151

w as a time series signal, starting from the initial signal, w(0), and evolving in time to produce152

w(1). In fact one can show that the above formulation can evolve the parameters to any weights, if153

there exists a diffeomorphic transformation of between the two distributions (i.e. if there exists a154

velocity field υ such w(1) is the solution of Eq. 8, with initial condition w(0) [26]). Although this155

operator is mainly used as an example control block (i.e., ANODEV2 is not limited to this model),156

but diffusion-reaction-advection operator can capture interesting dynamics for model parameters. For157

instance, consider a single Gaussian operator for a convolutional kernel, which is centered in the158
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middle with a unit variance. A diffusion operator can simulate multiple different normal distributions159

with different variance in time. Note that this requires storing only a single diffusion parameter160

(i.e., τ ). Another interesting operator is the advection operator which models species transport. For161

the Gaussian case, this operator could for instance transport the center of the Gaussian to different162

positions other than the center of the convolution. Finally, the reaction operator, could allow growth163

or decay of the intensity of the convolution filters. The full diffusion-reaction-advection operator164

could encapsulate more complex dynamics of the NN parameters in time. An synthetic example is165

shown in Figure 3 in the appendix, and a real example (5× 5 convolutional kernel of AlexNet) is166

shown in Figure 1.167
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Figure 1: Illustration of how different convolutional operators are evolved in time during the coupled
neural ODE solve (through the evolution operator q). The figure corresponds to the first channel
of the first convolution kernel parameters of AlexNet. These filters will be applied to activation in
different time steps (through the f operator in the coupled formulation). As the time step increases,
the kernel turns out to focus on some specific part on the activation map. Similar illustrations for
ResNet-4 and ResNet-10 are shown in Figure 4 and 5 in the appendix.

2.2 Two methods used in this paper168

We use two different coupling configurations of ANODEV2 as described below.169

Configuration One. We use multiple time steps to solve for both z and θ in the network instead of170

just one time step as in the original ResNet. Then the discretized solution of Eq. 10 in appendix will171

be as follows:172

zt0+δt = zt0 + δtf(zt0 ; θt0); θt0+δt = σ
(
F−1

(
exp((−τk2 + ikυ + ρ)δt)F (θt0)

))
. (9)

where δt is the discretization time scale, and F is Fast Fourier Transform (FFT) operator (for derivation173

please see appendix). In this setting, we will alternatively update the value of z and θ according174

to Eq. 9. Hence, the computational cost for an ODE block will be roughly Nt times more expensive175

compared to that for the original residual block (same as in [8]). This network can be viewed as176

applying Nt different residual blocks in the network but with Neural Network weights that evolve in177

time. Note that this configuration does not increase the parameter size of the original network except178

slight overhead of τ, υ and ρ.179

The first configuration is shown in top of Figure 2, where the model parameters and activations are180

solved with the same discretization. This is similar to the Neural ODE framework of [8], except181

that the model parameters are evolved in time for subsequent times, whereas in [8] the same model182

parameters are applied to the activations. The dynamics of the model parameters are illustrated by183

different colors used for the convolution kernels in top of Figure 2. This configuration is equivalent184

to using the Dirac delta function for the K function in Eq. 5d.185

Configurations Two. ANODEV2 supports different coupling configurations between the dynam-186

ics of activations and model parameters. For example, it is possible to not restrict the dynamics of θ187

and z to align in time, which is the second configuration that we consider. Here, we allow model188

parameters to evolve and only apply to activations after a fixed number of time steps. For instance,189

consider the Gaussian example illustrated in Figure 3. In the first configuration, a residual block190
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is created for each of the three time steps. However, in configuration two, we only apply the first191

and last time evolutions of the parameters (i.e. we only use w0 and w1 to apply to activations). This192

configuration allows sufficient time for the model parameters to evolve, and importantly limits the193

depth of the network that activations go through (see the bottom of Figure 2). In this case, the depth194

of the network is increased by a factor of two, instead of Nt as in the first configuration (which195

is the approach used in [8, 9]). Both configurations are supported in ANODEV2 and we present196

preliminary results for both settings.197
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Figure 2: Illustration of different configurations in ANODEV2. The top figure shows configuration
1, where both the activation and weights θ are evolved through a coupled system of ODEs. During
inference, we solve both of these ODEs forward in time. Blue squares in the figure represent activation
with multiple channels; the orange bars represent the convolution kernel. The convolution weights θ
are computed by solving an auxiliary ODE. The bottom figure shows configuration 2, where first the
weights are evolved in time before applying them to the activations.

3 Results198

In this section, we report the results of ANODEV2 for the two configurations discussed in section 2,199

on CIFAR-10 dataset which consists of 60,000 32×32 colour images in 10 classes. The framework is200

developed as a library in Pytorch and uses the checkpointing method proposed in [9], along with the201

discretize-then-optimize formulation of the optimality conditions shown in Eq. 7.202

We test ANODEV2 on AlexNet with residual connection, as well as two different ResNets. Please203

see Appendix B and Appendix A.1 for the details of model architectures and training settings.204

We consider the two coupling configurations between the evolution of the activations and model205

parameters as discussed next.206

3.1 Configuration One207

We first start with the configuration one, which is the same as the setting used in [8, 9]. The model208

parameters and activations are evolved in time and for each time step when a new residual block is209

applied to the input activation, as shown in Figure 2 (top). The results shown in Table 1. All the210

experiments were repeated five times, and we report both the min/max accuracy as well as the average211

of these five runs.212
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Note that the coupled ODE based approach outperforms the baseline in all of the three statistical213

properties above (i.e. min/max/average accuracy). For example, on ResNet-10 the coupled ODE214

network achieves 89.04% average test accuracy as compared to 88.10% of baseline, which is 0.94%215

better. Meanwhile, a noticeable observation is that the minimum performance of the coupled ODE216

based network is comparable or even better than the maximum performance of baseline. The coupled217

ODE based AlexNet has 88.59% minimum accuracy which is 1.44% higher than the best performance218

of baseline out of five runs. Hence, the generalization performances of the coupled ODE based219

network are consistently better than those of the baseline. It is important to note that the model220

parameter size of the coupled ODE approach in ANODEV2 is the same as that of the baseline.221

This is because the size of the control parameters p is negligible. A comparison discussion is shown222

in section 4.1.223

Table 1: Results for using Nt = 5 time steps to solve z and θ in neural network with configuration 1.
We tested on AlexNet, ResNet-4, and ResNet-10. We get 1.75%, 1.16% and 0.94% improvement over
the baseline respectively. Note that the model size of the ANODEV2 and baseline is comparable.

AlexNet ResNet-4 ResNet-10

Min / Max Avg Min / Max Avg Min / Max Avg

Baseline 86.84% / 87.15% 87.03% 76.47% / 77.35% 76.95% 87.79% / 88.52% 88.10%
ANODEV2 88.59% / 88.96% 88.78% 77.27% / 78.58% 78.11% 88.67% / 89.39% 89.04%
Imp. 1.75% / 1.81% 1.75% 0.80% / 1.23% 1.16% 0.88% / 0.87% 0.94%

The dynamics of how the NN parameters are evolved in time is illustrated in Figure 1, where we224

extract the first 5×5 convolution of AlexNet and show how it evolves in time. Here, Time represents225

how long θ evolves in time, i.e., Time = 0 shows the result of θ(t = 0) and Time = 1 shows226

the result of θ(t = 1). It can be clearly seen that the coupled ODE based method encapsulates227

more complex dynamics of θ in time. Similar illustrations for ResNet-4 and ResNet-10 are shown228

in Figure 4 and 5 in the appendix.229

3.2 Configuration Two230

Here, we test the second configuration where the evolution of the parameters and the activations231

could have different time steps. This means the parameter is only applied after a certain number of232

time steps of evolution but not at every time step which was the case in the first configuration. This233

effectively reduces the depth of the network and the computational cost, and allows sufficient time234

for the neurons to be evolved, instead of naively applying them at each time step. An illustration for235

this configuration is shown in Figure 2 (bottom). The results on AlexNet, ResNet4 and ResNet10 are236

shown in Table 2, where we again report the min/max and average accuracy over five runs. As in237

the previous setting (configuration 1), the coupled ODE based network performs better in all cases.238

The minimum performance of the coupled ODE based network still is comparable or even better239

than the maximum performance of the baseline. Although the overall performance of this setting is240

slightly worse than the previous configuration, the computational cost is much less, due to the smaller241

effective depth of the network that the activations go through.242

Table 2: Results for using Nt = 2 time steps to solve z in neural network and Nt = 10 to solve θ in
the ODE block (configuration 2). ANODEV2 achieves 1.23%, 0.78% and 0.83% improvement over
the baseline respectively. Note that the model size is comparable to baseline Table 1.

AlexNet ResNet-4 ResNet-10

Min / Max Avg Min / Max Avg Min / Max Avg

Baseline 86.84% / 87.15% 87.03% 76.47% / 77.35% 76.95% 87.79% / 88.52% 88.10%
ANODEV2 88.1% / 88.33% 88.26% 77.23% / 78.28% 77.73% 88.65% / 89.19% 88.93%
Imp. 1.26% / 1.18% 1.23% 0.76% / 0.93% 0.78% 0.86% / 0.67% 0.83%

4 Ablation Study243

Here we perform an ablation study in which we remove the evolution of the model parameters, and244

instead fix them to stale values in time (which is the configuration used in [8, 9]), and test with a245

case where the model parameters are indeed evolved in time which corresponds to results of Table 2.246

Precisely we use two time steps for activation ODE ( Eq. 5b) and ten time steps for the evolution of247
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the model parameters( Eq. 5c). In this setting both the FLOPS and model sizes are the same, allowing248

us to test the efficacy of evolving model parameters. The results are shown in Table 4. As one can

Table 3: Parameter comparison for two ANODEV2 configurations, the network used in section 4,
and the baseline network. The parameter size of ANODEV2 is comparable with others.

AlexNet ResNet-4 ResNet-10

Baseline 1756.68K 7.71K 44.19K
ANODEV2 config. 1 1757.51K 8.23K 45.77K
ANODEV2 config. 2 1757.13K 7.99K 45.05K
Neural ODE [8, 9] 1757.13K 7.96K 44.95K

249
see, there is indeed benefit in allowing the model parameter to evolve in time, which is rather obvious250

since it gives more flexibility to the neural network to evolve the model parameters. To allow for a251

fair comparison, the Neural ODE results are derived using the DTO approach with checkpointing252

presented in [9]. Had we used the approach used in [8], the results would have been significantly253

worse for the Neural ODE approach as shown in [9]. Also note that evolving model parameters254

has a negligible computational cost, since we can actually use analytical solutions for solving the255

reaction-diffusion-advection which is discussed in Appendix A.1.256

Table 4: Results for the ablation study of ANODEV2.

AlexNet ResNet-4 ResNet-10

Min / Max Avg Min / Max Avg Min / Max Avg

Baseline 86.84% / 87.15% 87.03% 76.47% / 77.35% 76.95% 87.79% / 88.52% 88.10%
Neural ODE [8, 9] 87.86% / 88.14% 88.02% 76.92% / 77.45% 77.30% 88.48% / 88.75% 88.60%
ANODEV2 88.1% / 88.33% 88.26% 77.23% / 78.28% 77.73% 88.65% / 89.19% 88.93%

4.1 Parameter Size Comparison257

In this section, we provide the parameter sizes of the two configurations tested above and the model258

used in ablation study in section 4. It can be clearly seen that the model sizes of both configurations259

are roughly the same as those of the baseline models. In fact, configuration 1 grows the parameter260

sizes of AlexNet, ResNet-4, and ResNet-10 by only 0.5% to 6.7% as compared to those of baseline261

models. In the second configuration, the parameter size increases from 0.2% to 3.6% compared to262

baseline model (note that we even count the additional batch norm parameters for fair comparison).263

Comparing with the ablation network used in section 4, in which we apply the same model parameters264

for multiple time steps, ANODEV2 configuration 2 has basically the same number of parameters.265

Table 3 summarizes all the results.266

5 Conclusions267

The connection between residual networks and ODEs has been recently found in several works.268

Here, we propose ANODEV2, which is a more general extension of this approach by introducing269

a coupled ODE based framework, motivated by the works in neural evolution. The framework270

allows dynamical evolution of both the residual parameters as well as the activations in a coupled271

formulation. This gives more flexibility to the neural network to adjust the parameters to achieve272

better generalization performance. We derived the optimality conditions for this coupled formulation273

and presented preliminary experiments using two different configurations, and showed that we can274

indeed train such models using our differential framework. The results on three Neural Networks275

(AlexNet, ResNet-4, and ResNet-10) all showed accuracy gains across five different trials. In fact276

the worst accuracy of the coupled ODE formulation was better than the best performance of the277

baseline. This is achieved with negligible change in the model parameter size. To the best of the278

our knowledge, this is the first coupled ODE formulation that allows for the evolution of the model279

parameters in time along with the activations. We are working on extending the framework for other280

learning tasks. The source code will be released as open source software to the public.281
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A RDA Simulation339

In this section, we provide the details for the reaction-diffusion-advection solver and an exemplary340

simulation shown in Figure 3. For illustration of the idea, we set the initial distribution of θ to be341

a unit Gaussian centered in the middle. In the first row, we show how this single modal Gaussian342

changes in time when only diffusion operator is used in the control operator. As shown in the figure,343

the diffusion operator allows the parameters to evolve from a Gaussian with unit variance, to Gaussian344

filters with higher variance. A similar illustration is shown in the second row with advection operator.345

Notice how the advection operator allows modeling of different filters centered at different locations346

with the same variance (since advection operator does not diffuse filters but transports them). The347

third row shows the simulation when we only use an exponential growth operator for the reaction348

part. Notice how this operator could allow the kernel to increase/decrease its intensities at different349

pixels in time. Finally in the last row, we show an example where we use all three operators together.350

Diffusion, Time = 0.00 Diffusion, Time = 0.33 Diffusion, Time = 0.67

Advection, Time = 0.00 Advection, Time = 0.33 Advection, Time = 0.67

Reaction, Time = 0.00 Reaction, Time = 0.33 Reaction, Time = 0.67

RDA, Time = 0.00 RDA, Time = 0.33 RDA, Time = 0.67
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Figure 3: Illustration of how different convolution maps could be encoded through the parameter
PDE solver. Here we show an exemplary convolution at time t = 0 (left image), as well as its
evolution through time, when we apply the reaction-diffusion-advection (RDA) PDE for the model
parameters. Note that with this PDE based encoding, we only need to store the initial condition for
the parameters (i.e., t = 0). The rest of the model parameters could be computed using this initial
condition.

A.1 Numerical Method351

We set K to be a Dirac delta function, and use the above reaction-diffusion-advection function for352

q(w, p). We have353 {
dz
dt = f(z; θ),
dw
dt = σ(τ∆w + υ · ∇w + ρw).

(10)
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Here, we discuss how can we solve the ODE system Eq. 10. For the evolution of z, we follow [9] and354

use forward Euler method to solve z. For example, if we set time step, Nt to be 2, then355

z1/2 = z0 +
1

2
f(z0; θ0); z1 = z1/2 +

1

2
f(z1/2; θ1/2).

It is not hard to see that if Nt = 1, then the output is the same as the original ResNet. For the356

evolution of θ without non-linearity, i.e. σ is the identical map, there exists an analytic solution can357

in the frequency domain. Applying Fast Fourier Transform (FFT) from Eq. 8 we will get:358

F (w)t = F (τ∆w + υ · ∇w + ρw), (11)
where F (·) denotes FFT operator. Since the diffusion, advection, and reaction coefficients are359

constant, we can find the analytical solution in the frequency domain. That is:360

wt0+δt = F−1
(

exp(−δtτk2 + ikδtυ + δtρ)F (wt0)
)
, (12)

where F−1 is inverse FFT. Note that due to the existence of this analytical solution the computational361

cost of solving the evolution for θ becomes negligible which is an important benefit of this approach.362

When non-linearity is applied, we use an approximation to solve Eq. 8,363

wt0+δt = σ
(
F−1

(
exp(−δtτk2 + ikδtυ + δtρ)F (wt0)

))
. (13)

This means we first apply FFT and its inverse to solve the linear system then apply the non-linear364

function σ. Here, δt means the time scale to compute θ. Also, in this paper we set the non-linearity365

function σ to be tanh. However, other non-linearities could also be used. For configuration 1, we366

use Nt = 5. And for configuration 2, we use Nt = 2 to solve z and Nt = 10 to solve θ. In this367

configuration, the FLOPS will be only 2× of the original baseline network. Upon this condition, the368

process can be formulated as,369

z1/2 = z0 +
1

2
f(z0; θ0); z1 = z1/2 +

1

2
f(z1/2; θ1);

where θ1 is generated with δt = 1/10.370

B Model Configuration371

In this section, we provide the architecture we used for the tests in section 3. The AlexNet, ResNet-4372

and ResNet-10 we are using are described in following sections.373

B.1 AlexNet374

We used a 2-layer convolution with residual connection added to the second convolution. Thus, we375

can transform the second convolution into an ODE. Table 5 explains detailed structure layer by layer.376

For simplicity, we omit the batch normalization and ReLU layer added after each convolution.377

Training details. We train AlexNet for 120 epochs with initial learning rate 0.1. The learning rate378

decays by a factor of 10 at epoch 40, 80 and 100. Data augmentation is implemented. Also, the batch379

size used for training is 256. Note that the setting is the same for all experiments, i.e. baseline, Neural380

ODE, and ANODEV2.381

B.2 ResNet-4 and ResNet-10382

Here, we provide the architecture of ResNet-4 and ResNet-10 used section 3. We also omit the batch383

normalization and ReLU for simplicity. Detailed structure are provided in Table 6.384

Training details. We train ResNet-4/10 for 350 epochs with initial learning rate 0.1. The learning385

rate decays by a factor of 10 at epoch 150, and 300. Data augmentation is implemented. Also, the386

batch size used for training is 256. Note that the setting is the same for all experiments, i.e. baseline,387

Neural ODE, and ANODEV2.388

C Convolution kernel Evolution Example389

In this section, we show some examples of how the model parameters θ are evolved in time. Results390

for ResNet-4 and ResNet-10 are shown in Figure 4 and Figure 5 respectively.391
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Table 5: Summary of the architecture used in AlexNet. This is a 2-convolution network with residual
connection added to the second convolution, followed by three fully connected layer.

Name output size Channel In / Out Kernel Size Residual

conv1 32×32 3 / 64 5×5 No
max pool 16×16 64 / 64 - -

conv2 16×16 64 / 64 5×5 Yes
max pool 8×8 64 / 64 - -

Name input size output size

fc1 4096 384
fc2 384 192
fc3 192 10

Table 6: Summary of the architecture used in ResNet-4 and ResNet-10. ResNet-10 is a ResNet family
that has 2 layers with 2 residual blocks in each layer. ResNet-4 has only 1 layer with only 1 residual
block inside.

Name output size Channel In / Out Kernel Size Residual Blocks(ResNet-4 / ResNet-10)

conv1 32×32 3 / 16 3×3 No 1 / 1

layer1_1 32×32 16 / 16
[ 3×3 ]

Yes 1 / 13×3

layer1_2 32×32 16 / 16
[ 3×3 ]

Yes 0 / 13×3

layer2_1 16×16 16 / 32
[ 3×3 ]

Yes 0 / 13×3

layer2_2 16×16 32 / 32
[ 3×3 ]

Yes 0 / 13×3

Name Kernel Size Stride Output Size (ResNet-4/ResNet-10)

max pool 8×8 8 4×4 / 2×2

Name input size (ResNet-4/ResNet-10) output size

fc 256 / 128 10
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Figure 4: Illustration of how different convolution operators are evolved in time during the neural
ODE solve. This is one channel of the first convolution in first layer in ResNet-4. Similar pattern can
be observed as Figure 1.
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Figure 5: Illustration of how different convolution operators are evolved in time during the neural
ODE solve. This is one channel of the first convolution in first layer in ResNet-10. Similar pattern
can be observed as Figure 1.

D Derivation of Optimality Conditions392

Here we present detailed derivation of the optimality conditions corresponding to Eq. 5. We need393

to find the so called KKT conditions, which can be found by finding stationary points of the394

corresponding Lagrangian, defined as:395

L = J (z1) +

∫ 1

0

α(t) ·
(
dz

dt
− f(z(t), θ(t))

)
dt+

∫ 1

0

β(t) ·
(
∂w

∂t
− q(w, p)

)
dt

+

∫ 1

0

γ(t) ·
(
θ(t)−

∫ t

0

K(t− τ)w(τ)dτ

)
dt+ α0 · (z0 − z(0)) + β0 · (w0 − w(0)).

(14)

In order to derive the optimality conditions, we first take variations with respect to α(t), β(t), and396

γ(t). This basically results in the “Activation ODE”, the “Evolution ODE”, and the relation between397

θ(t) andw(t), shown in Eq. 5. Taking variations with respect to z(t) will result in a backward-in-time398

ODE for the α(t), which is continuous equivalent to backpropagation. Taking variations with respect399

to θ will result in an algebraic relation between α(t) and γ(t); taking variations with respect to400

w(t) will be split in two parts. Variations with respect to w(t) for t > 0; and with respect to w(0)401

which is in fact one of our unknown parameters. The split is done by first integrating by parts the402 ∫ 1

0
β(t)dw(t)/dt term to expose a term that reads β(1)w(1) − β(0)w0, and then taking variations403

with respect to w0. Finally, we also need to take variations with respect to the vector p. One small404

technical detail is that to take the variations of the
∫ 1

0
γ(t) ·

∫ t
0
K(t− τ)w(τ)dτdt with respect to w405

can be done easily by converting it
∫ 1

0
γ(t) ·

∫ 1

0
(1−H(t))K(t− τ)w(τ)dτ dt. The details are given406

below.407

In order to satisfy the first optimality condition on z we have:408

(
∂L
∂z

)T ẑ = 0,
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where this equality must hold for any variation ẑ in space and time. We have:409

(
∂L
∂z

)T ẑ =

(
∂J (z1)

∂z1

)T
ẑ1 +

∫ 1

0

(
−∂α
∂t
− ∂f(z, θ)

∂z

T

α

)T
ẑdt+ (αT1 ẑ1 − αT0 ẑ0) + αT0 ẑ0

= (
∂J (z1)

∂z1
)T ẑ1 + αT1 ẑ1 +

∫ 1

0

(
−∂α
∂t
− ∂f(z, θ)

∂z

T

α

)T
ẑdt = 0.

(15)

Imposing this condition holds for all variation ẑ will result in the first adjoint equation as follows:410

∂J (z(1))

∂z1
+ α1 = 0, − ∂α

∂t
−
(∂f
∂z

)T
α = 0. (16)

For θ, the following equation needs to be satisfied:411

(
∂L
∂θ

)T θ̂ = 0.

We have412

(
∂L
∂θ

)T θ̂ =

∫ 1

0

(
−∂f(z, θ)

∂θ

)T
αT θ̂dt+

∫ 1

0

γT θ̂dt. (17)

This further implies:413

− (
∂f(z, θ)

∂θ
)Tα+ γ = 0. (18)

Finally, the inversion equation on w could be found by performing variation on w:414

(
∂L
∂w

)T ŵ = 0.

We have415

(
∂L
∂w

)T ŵ =

∫ 1

0

−(
∂β

∂t
− ∂q(w; p)

∂w

T

β)T ŵdt

+ βT1 ŵ1 +

∫ 1

0

(1−H(t))

∫ t

0

−(KT (t− τ)γ)T dτŵdt

=

∫ 1

0

−(
∂β

∂t
− ∂q(w; p)

∂w

T

β)T ŵdt

+ βT1 ŵ1 +

∫ 1

0

(1−H(t))

∫ t

0

−(KT (t− τ)γ)T dτŵdt,

(19)

where H(t) is the scalar Heaviside function. Imposing this condition holds for all variation ŵ will416

result in the inversion equation as follows,417

− ∂β

∂t
− (

∂q(w; p)

∂w
)Tβ + (1−H(t))

∫ t

0

−KT (t− τ)γdτ, β1 = 0. (20)

The gradient of L with respect to w0 can be computed as,418

gw0
=

∂L
∂w0

=
∂R(w0, p)

∂w0
− β0. (21)

Finally, the gradient of L with respect to p can be computed as,419

gp =
∂L
∂p

=
∂R(w0, p)

∂p
−
∫ 1

0

(
∂q(w, p)

∂p
)Tβ(t)dt. (22)

Note that if optimality conditions are achieved with respect to w0 and p, then420

gw0
= 0, gp = 0. (23)
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