
Appendix A Proofs

A.1 Proof of Lemma 2

The first equation κλ(t) = κ1−λ(1/t) can be verified directly by plugging in 1− λ and 1/t.
In the sequel, we show the second equation κλ(t) ∈ [L(λ), U(λ)], which needs a detailed and
careful analysis and discussion. The derivative of κλ, denoted by κ′λ(t), is
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If t < 1, since f3(t) is strictly increasing in t, we have f3(t) < f3(1) = 2λ − 1 < 0, which
implies that f ′′2 (t) < 0. Therefore, we obtain that f ′2(t) is strictly decreasing on (0, 1). Thus
we have f ′2(t) > f ′2(1) = 0, which implies that f2(t) is strictly increasing on (0, 1). We
immediately have f2(t) < f2(1) = 0 for ∀t ∈ (0, 1), which yields that f ′1(t) > 0 and therefore
f1(t) is strictly increasing on (0, 1). For ∀t ∈ (0, 1), it holds that f1(t) < f1(1) = 0. Since(√
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)3√
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and f ′′2 (t) > 0 on I2. Therefore, we deduce that f ′2(t) strictly decreases on I1 and strictly
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1
λ2−λ3 > 0, which implies that g2(λ) is strictly convex and g′2(λ) has a unique root. Observe
that λ = 1/2 is a root of g′2(λ). We deduce that g2(λ) > g2(1/2) = 0 for λ ∈ (0, 1/2),
which immediately yields that f ′2
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)2 if λ ∈ (0, 1/2). By (??),
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If we set f ′′6 (t) > 0, we get t1/2 + t3/2 < 2, which is equivalent to t < 1. Therefore f ′′6 (t) is
positive on (0, 1) and negative on (1,∞), which implies that f ′6(t) < f ′6(1) = 0 for t 6= 1. We
deduce that f6(t) is strictly decreasing in t and thus has a unique root. Since t = 1 is a root
of f6(t), it is the unique root, which implies that f6(t) and f ′5(t) are both positive on (0, 1)
and negative on (1,∞). As a result, we deduce that f5(t) < f5(1) = 0 for t 6= 1. Thus we
conclude that κ′1/2(t) is positive on (0, 1) and negative on (1,∞). We can verify that t = 1
is indeed a root of κ′1/2(t).

So far we have shown for t ∈ (0, 1) that the derivative κ′λ(t) is positive if t <
( 1−λ

λ

)2 and is
negative if t >

( 1−λ
λ

)2. Thus the maximum of κλ is attained at t =
( 1−λ

λ

)2 and it is exactly
U(λ).
The infimum is

min{ lim
t→0+

κλ(t), lim
t→∞

κλ(t)

= min{−2(1− λ) ln(1− λ),−2λ lnλ}.}

Therefore we conclude κλ ∈ [L(λ), U(λ)].

A.2 Proof of Theorem 1

In addition to Lemma 2, we need the following lemma.
Lemma 6 (Theorem 6 of [31]). Let f and g be two convex functions that satisfy f(1) = 0
and g(1) = 0, respectively. The function g(t) > 0 for every t ∈ (0, 1) ∪ (1,∞). Let P and
Q be two distributions on a common finite sample space Ω. Define β1 = infi∈Ω

Q(i)
P (i) and

β2 = infi∈Ω
P (i)
Q(i) . We assume that β1, β2 ∈ [0, 1). Then we have

Df (P ‖ Q) ≤ κ∗Dg(P ‖ Q),

where

κ∗ = sup
β∈(β2,1)∪(1,β−1

1 )

f(β)
g(β) .

By Lemmas 2 and 6, we have

L(λ)H2(P,Q) ≤ Dλ
GJS(P ‖ Q) ≤ U(λ)H2(P,Q).

Now we show that U(λ) ≤ 1. Its derivative U ′(λ) has a unique root at λ = 1/2 on the interval
(0, 1) and it is positive if λ < 1/2 and negative if λ > 1/2. Therefore U(λ) ≤ U(1/2) = 1.
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A.3 Proof of Lemma 1

The equation mλ(1) = 0 can be verified by plugging in t = 1 directly. We compute the
second derivative of mλ

d2mλ

dt2
= λ(1− λ)
t2λ+ (1− λ)t .

If λ ∈ [0, 1] and t ∈ (0,∞), we have d2mλ
dt2 ≥ 0, which implies the convexity of mλ.

The mλ-divergence equals to

Dmλ(P ‖ Q) =
∫

Ω
λ ln dP

dQ
dP − (λdP + (1− λ)dQ) ln

(
λ
dP

dQ
+ 1− λ

)
while the MIL-divergence equals

Dλ
GJS(P ‖ Q) =

∫
Ω
λ ln dP/dQ

λdP/dQ+ (1− λ)dP + (1− λ) ln 1
λdP/dQ+ (1− λ)dQ

=
∫

Ω
λ ln dP

dQ
dP − (λdP + (1− λ)dQ) ln

(
λ
dP

dQ
+ 1− λ

)
.

Thus we conclude that the mλ-divergence yields the MIL-divergence with parameter λ.

A.4 Proof of Proposition 1

Let P and Q be two probability measures in P. If P and Q are equal, Df (P ‖ Q) =
0. Therefore for any hash function h, it holds that h(P ) = h(Q), which implies that
Prh∼H[h(P ) = h(Q)] = 1 ≥ p1.
In the sequel, we assume that P and Q are different. Since P and Q are two different
distributions, there exists i ∈ Ω such that P (i) < Q(i). We show this by contradiction.
Assume that ∀i ∈ Ω, P (i) ≥ Q(i). Since P and Q are different, there exists i0 ∈ Ω
such that P (i0) 6= Q(i0). Since P (i) ≥ Q(i) holds for ∀i ∈ Ω, we have P (i0) > Q(i0).
Therefore

∑
i∈Ω P (i) >

∑
i∈ΩQ(i). However, both P and Q sum to 1, which leads to a

contradiction. Therefore, we obtain the existence of i such that P (i) < Q(i), which yields
β2 , infi∈Ω

P (i)
Q(i) < 1. Similarly, we have β1 , infi∈Ω

Q(i)
P (i) < 1. Since P (i) and Q(i) are

non-negative for ∀i ∈ Ω, we have β1, β2 ≥ 0. In sum, we showed that β1, β2 ∈ [0, 1). By the
definition of β0, we know the following interval inclusion

(β2, β
−1
1 ) ⊆ (β0, β

−1
0 ).

Recall that

U = sup
β∈(β0,1)∪(1,β−1

0 )

f(β)
g(β) ,

L = inf
β∈(β0,1)∪(1,β−1

0 )

f(β)
g(β) .

By Lemma 6, we obtain the approximation guarantee

L ·Dg(P ‖ Q) ≤ Df (P ‖ Q) ≤ U ·Dg(P ‖ Q) (6)

There are two cases to consider. In the first case, we assume that Df (P ‖ Q) ≤ Lr1.
By (6), we have Dg(P ‖ Q) ≤ r1. Since H is an (r1, r2, p1, p2)-sensitive family for g-
divergence, it holds that Prh∼H[h(P ) = h(Q)] ≥ p1. Similarly, if Dg(P ‖ Q) > Ur2, we
have Prh∼H[h(P ) = h(Q)] ≤ p2. Thus, H forms an (Lr1, Ur2, p1, p2)-sensitive family for
f -divergence on P.
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A.5 Proof of Theorem 2

If Dλ
GJS(P ‖ Q) ≤ R, by Theorem 1, we have

∥∥∥√P −√Q∥∥∥
2
≤

√
2R
L(λ) , R1.

If Dλ
GJS(P ‖ Q) ≥ c2 U(λ)

L(λ)R, we have

∥∥∥√P −√Q∥∥∥
2
≥ c

√
2R
L(λ) = cR1.

By the construction and properties of locality-sensitive hash family for L2 distance proposed
in [16, Section 3.2], we know that ha,b forms a (R1, cR1, p1, p2)-sensitive hash family for the
L2 distance between two vectors

√
P and

√
Q. Therefore, provided that Dλ

GJS(P ‖ Q) ≤ R,
which implies

∥∥∥√P −√Q∥∥∥
2
≤ R1, we have

Pr[ha,b(P ) = ha,b(Q)] ≥ p1.

Similarly, if Dλ
GJS(P ‖ Q) ≥ c2 U(λ)

L(λ)R, we have

Pr[ha,b(P ) = ha,b(Q)] ≤ p2.

A.6 Proof of Theorem 3

The derivative of the ratio function κ(t) = δ(t)
hel(t) is

κ′(t) = 1− t√
t(t+ 1)2

.

It is positive when t < 1 and negative when t > 1. Therefore for ∀t ∈ (0,∞), κ(t) ≤ κ(1) = 2
and

κ(t) ≥ min{ lim
t→0+

κ(t), lim
t→∞

κ(t)} = 1.

By Lemma 6, we have
H2(P,Q) ≤ ∆(P ‖ Q) ≤ 2H2(P,Q).

If ∆(P ‖ Q) ≤ R, we have ∥∥∥√P −√Q∥∥∥
2
≤
√

2R , R1.

If Dλ
GJS(P ‖ Q) ≥ 2c2R, we have∥∥∥√P −√Q∥∥∥

2
≥
√

2Rc = cR1.

By the construction and properties of locality-sensitive hash family for L2 distance proposed
in [16, Section 3.2], we know that ha,b forms a (R1, cR1, p1, p2)-sensitive hash family for the
L2 distance between two vectors

√
P and

√
Q. Therefore, provided that ∆(P ‖ Q) ≤ R,

which implies
∥∥∥√P −√Q∥∥∥

2
≤ R1, we have

Pr[ha,b(P ) = ha,b(Q)] ≥ p1.

Similarly, if ∆(P ‖ Q) ≥ 2c2R, we have

Pr[ha,b(P ) = ha,b(Q)] ≤ p2.
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A.7 Proof of Lemma 3

First, we would like to note that k is homogeneous, i.e., for all c ≥ 0, it holds that
k(cx, cy) = ck(x, y). Its kernel signature [35] is

K(λ) , k(eλ/2, e−λ/2) = e−
λ
2
((
eλ + 1

)
ln
(
eλ + 1

)
− eλλ

)
.

First, let us review the definition of a positive definite function.
Definition 4 ([9]). We call a complex-valued function f : R→ C is positive definite if

1. it is continuous in the finite region and is bounded on R
2. it is Hermitian, i.e., f(−x) = f(x)
3. it satisfies the following conditions: for any real numbers x1, . . . , xn ∈ R, the matrix

A = (f(xi − xj))ni,j=1

is positive semidefinite.

Next we will show that K is a positive definite function by showing that it is the Fourier
transform of a non-negative function. We have the following Fourier transform and inverse
Fourier transform

K(λ) =
∫
R
e−iλw

2 sech(πw)
1 + 4w2 dw ,

κ(w) , 1
2π

∫
R
K(λ)eiλwdλ = 2 sech(πw)

1 + 4w2 .

Then we need the following lemmata.
Lemma 7. If f(x) =

∫
R e
−ixtg(t)dt is the Fourier transform of a non-negative function g(t),

then it is positive definite.

Proof of Lemma 7. Let x1, . . . , xn ∈ R be arbitrary real numbers and a1, . . . , an be arbitrary
complex numbers. Let us compute the quadratic form directly

n∑
j,k=1

f(xj − xk)ajak =
∫
R

n∑
j,k=1

e−i(xj−xk)tajakg(t)dt =
∫
R

∣∣∣∣∣∣
n∑
j=1

aje
−ixjt

∣∣∣∣∣∣
2

g(t)dt ≥ 0 .

Lemma 8 (Lemma 1 in [35]). A homogeneous kernel is positive definite if, and only if, its
signature K(λ) is a positive definite function.

Since 2 sech(πw)
1+4w2 ≥ 0 holds for ∀w ∈ R, we deduce that K(λ) is the Fourier transform of a

non-negative function. Lemma 7 implies that K(λ) is a positive definite function. Therefore
k is a positive definite kernel by Lemma 8.
Let us define the feature map

Φw(x) , e−iw ln(x)
√
x

2 sech(πw)
1 + 4w2 .

Since k(x, y) is homogeneous, we have

k(x, y) = √xyk(
√
x/y,

√
y/x) = √xyK(ln(y/x))

= √xy
∫
R
e−i ln(y/x)w 2 sech(πw)

1 + 4w2 dw =
∫
R

Φw(x)∗Φw(y)dw .
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A.8 Proof of Theorem 4

Let z denote the merged value. If we define η(u) , −u ln(u), the mutual information loss is

mil(x,y) =
∑
c∈C

[
p(c, x) ln p(c, x)

p(c)p(x) + p(c, y) ln p(c, y)
p(c)p(y) − p(c, z) ln p(c, z)

p(c)p(z)

]
=
∑
c∈C

[
p(c, x) ln p(c, x)

p(x) + p(c, y) ln p(c, y)
p(y) − p(c, z) ln p(c, z)

p(z)

]
= η(p(x)) + η(p(y))− η(p(z))−

∑
c∈C

[η(p(c, x)) + η(p(c, y))− η(p(c, z))] .

By the definition of k, we have
k(a, b) = η(a) + η(b)− η(a+ b) .

As a result, we re-write mil(x,y) as

mil(x,y) = k(p(x), p(y))−
∑
c∈C

k(p(c, x), p(c, y)) = K1(x,y)−K2(x,y) .

Lemma 3 indicates that k is a positive definite kernel. In light of the techniques for
constructing new kernels presented in [8, Section 6.2], we obtain that that K1 and K2 are
positive definite kernels.

A.9 Proof of Lemma 4

Recall that k(x, y) =
∫
R Φw(x)∗Φw(y)dw. We have∣∣∣∣k(x, y)−

∫ t

−t
Φw(x)∗Φw(y)dw

∣∣∣∣ =

∣∣∣∣∣
∫
|w|>t

Φw(x)∗Φw(y)dw

∣∣∣∣∣ ≤
∫
|w|>t

∣∣∣eiw ln(x/y)√xyρ(w)
∣∣∣ dw

(a)
≤2

∫ ∞
t

ρ(w)dw
(b)
≤ 8

∫ ∞
t

e−πwdw = 8
π
e−πt ≤ 4e−t ,

where (a) is due to
∣∣eiw ln(x/y)√xy

∣∣ ≤ 1 and (b) is due to
2 sech(πw)

1 + 4w2 ≤ 2 sech(πw) = 4
eπw + e−πw

≤ 4e−πw .

A.10 Proof of Lemma 5

As the first step, we re-write the integral∫ ∆J

−∆J
Φw(x)∗Φw(y)dw =

J∑
j=−J+1

∫ j∆

(j−1)∆
eiw ln(x/y)√xyρ(w)dw .

Then we bound the discretization error∣∣∣∣∣∣
∫ ∆J

−∆J
Φw(x)∗Φw(y)dw −

J∑
j=−J+1

∫ j∆

(j−1)∆
eiwj ln(x/y)√xyρ(w)dw

∣∣∣∣∣∣
≤

J∑
j=−J+1

∫ j∆

(j−1)∆

∣∣∣eiw ln(x/y) − eiwj ln(x/y)
∣∣∣√xyρ(w)dw

(a)
≤

J∑
j=−J+1

∫ j∆

(j−1)∆
|ln(x/y)|∆2

√
xyρ(w)dw = ∆

2
√
xy|ln(x/y)|

∫ ∆J

−∆J
ρ(w)dw

(b)
≤ 2∆ ,

where (a) is due to∣∣∣eiw ln(x/y) − eiwj ln(x/y)
∣∣∣ ≤ |ln(x/y)||w − wj |≤

∆
2 |ln(x/y)| .
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and (b) is due to
∫∆J
−∆J ρ(w)dw ≤

∫
R ρ(w)dw = 2 ln 2 and √

xy|ln(x/y)|≤√
x|ln(x)|+√y|ln(y)|≤ 4

e .
Next we re-write the partial Riemann sum by substituting the new index k = 1− j

0∑
j=−J+1

∫ j∆

(j−1)∆
eiwj ln(x/y)√xyρ(w)dw =

J∑
k=1

∫ (1−k)∆

−k∆
ei(1/2−k)∆ ln(x/y)√xyρ(w)dw

=
J∑
k=1

∫ k∆

(k−1)∆
e−iwk ln(x/y)√xyρ(w)dw .

Therefore the entire Riemann sum can be re-written as
J∑

j=−J+1

∫ j∆

(j−1)∆
eiwj ln(x/y)√xyρ(w)dw =

J∑
j=1

∫ j∆

(j−1)∆
(eiwj ln(x/y) + e−iwj ln(x/y))√xyρ(w)dw

= 2
J∑
j=1

(cos(wj ln x) cos(wj ln y) + sin(wj ln x) sin(wj ln y))√xy
∫ j∆

(j−1)∆
ρ(w)dw

=
〈

J⊕
j=1

τ(x,wj , j),
J⊕
j=1

τ(y, wj , j)
〉

.

Appendix B Illustration of Upper and Lower Bound Functions

We illustrate the upper and lower bound functions U(λ) and L(λ) in Fig. 3.

0.2 0.4 0.6 0.8 1.0
λ

0.2

0.4

0.6

0.8

1.0

L(λ) U(λ)

Figure 3: Upper and lower functions U(λ) and L(λ).

Appendix C Precision vs. Sketch Size

We show the precision vs. the sketch size in Fig. 4.

(a) Fashion MNIST (b) MNIST (c) CIFAR-10

Figure 4: Precision vs. speed-up factor for different sketch sizes.
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