Appendix A Proofs

A.1 Proof of Lemma 2

The first equation ky(t) = k1_x(1/t) can be verified directly by plugging in 1 — X and 1/t.
In the sequel, we show the second equation ky(t) € [L(A), U())], which needs a detailed and
careful analysis and discussion. The derivative of k5, denoted by &} (), is

2(A(VE=1)+1)In(A(t — 1) + 1) — 2AV/tIn(?)
(Vi-1)’vi |
We define f1(t) =2 (A (vt —1) 4+ 1) In(A(t — 1) + 1) — 2AV/tIn(¢t). Its derivative f{(t) is
A
VIt - 1)+ 1)
Define fo(t) =2(A—1) (VEt—1) + (A(t — 1) 4+ 1)(log(t) — log(A(t — 1) + 1)). Its derivative

fa(t) is
A-D(VE-1)
t

(200=1) (VE=1) + (At = 1) + 1)(log(t) ~ log(A(t — 1) + 1)) .

+ A(log(t) —log(A(t — 1) +1)).
Its second derivative fJ(¢) is

(1= A=D1+ VEAE-1)+1)
202\t —1)+1) '

First, we assume A € (0,1/2). In this case, we have 152 > 1 and A(t — 1) +1 > 0. Notice
that f3(t) = 2(A — 1) + Vt(A(t — 1) + 1) is a strictly increasing function in ¢. Therefore, if
t> (%)2, we obtain

f(t) > fa ((“AA) ) - AZUAVEAZD

Therefore f}/(t) > 0if t > (52 ) Thus we deduce that f5(t) is increasing in ¢ if ¢ > (2 )‘) ,

which yields
“ A\ A+ (1= Nlog (352) — 1
fé(t)>f§<<l>\ )>: (2X + ( lzig(x) ).

Define g(\) = 2A + (1 — A)log (152) — 1. Its derivative ¢'(A\) = —+ —log (+ — 1) + 2 is
negative if A < 1/2 and positive if A > 1/2. Therefore g(A) > ¢g(1/2) = 0. Thus We obtain
that if ¢ > (12 ) f4(t) > 0, which implies that f,() is increasing in ¢ if ¢ > (152 ) Thus

we have
fot) > fo ((1?) ) _(1-w (4)\+l§g(x_1) 3)

Define g1(A) = 4X + log (§ — 1) — 2. Its derivative g

(t) = (/\_11» + 4 is non-positive, which
1—

!
91
implies that ¢; is decreasing in A. Therefore, if ¢t > ( ) we have

falt) > 529(1/2) =0,

Since A(t—1)+1 > 0, we obtain that f{(¢) < 0 and therefore f;(t) is decreasing if ¢ > (%)2

We have )
filt) < f1 ((F)f‘) ) =0.

Ift > (%)2, since (Vi — 1)3 Vt >0, we deduce that &) (t) < 0.
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If t <1, since f3(t) is strictly increasing in ¢, we have f3(t) < f3(1) = 2A — 1 < 0, which
implies that f4'(¢) < 0. Therefore, we obtain that f4(¢) is strictly decreasing on (0,1). Thus
we have fi(t) > f4(1) = 0, which implies that fo(t) is strictly increasing on (0,1). We
immediately have fo(t) < f2(1) = 0 for V¢ € (0,1), which yields that f{(¢) > 0 and therefore
f1(t) is strictly increasing on (0,1). For Vt € (0,1), it holds that f1(t) < f1(1) = 0. Since

(V- 1)3 V't < 0, we deduce that x)(t) > 0 for t € (0,1).

The interval that remains unexplored is I = (1, (%)2) Since f35(1) =2A —1 < 0 and

f ((%)2) = % > 0, we know that f3(¢) has a real root on this interval.

Notice that f3(¢) can be viewed as a cubic function in v/£. Define fy(x) = 2A+Az3+(1—-\)z—2

and we have f3(t) = fi(v/t). The cubic function f; is strictly monotone if A € (0,1).
Therefore, the real root of f3 on I is unique and we denote it by p(\).

Now we divide the interval I = (1, (%)2> into two subintervals I; = (1,p(\)) and

I, = (p()\), (%)Q) Since f3(t) < 0 on I; and f3(¢) > 0 on Iz, we have f§(t) < 0 on I

and f§/(t) > 0 on I. Therefore, we deduce that fi(t) strictly decreases on Iy and strictly
increases on I5. Note that f5(1) = 0 and

P <(1—>\>2> _A@+A-Nog (52 -1

A 1-A

To see this, we define ga(\) = 2\ + (1 — A)log (352) — 1. Its second derivative is g4 (\) =
ﬁ > 0, which implies that go(\) is strictly convex and g5()\) has a unique root. Observe
that A = 1/2 is a root of g5(A). We deduce that g2(A) > g¢2(1/2) = 0 for A € (0,1/2),

which immediately yields that f ((%)2> > 0. Thus the function f}(¢) has a unique root
(denoted by p1(A)) on I. Therefore, the function f5(t) strictly decreases on Is = (1, p1(X))
and strictly increases on Iy = (pl()\), (%)2) Note that f2(1) =0 and

P <<1—)\)2> _ (=N (Mtlog(B52) —2)

A A

To seezthe above inequality, we define gs(A) = 4\ + log (%) — 2. Tts derivative is g5(\) =
((1)\:21);)/\ < 0, which implies that g3(\) strictly decreases and that g3(A\) > ¢5(1/2) = 0 for

A €(0,1/2). As a result, we deduce that fo ((%)2) > 0. Thus we obtain that the function

f2(t) has a unique root (denoted by pa(A)) on I and that f{(t) is positive on Is = (1, pa(N))

and negative on I = (pz()\), (%)2), which implies that f; strictly increases on I5 and

strictly decreases on Ig. Note that f1(1) = f; ((%)2) = 0. We conclude that f;(¢) > 0 on
I, which implies that ) (t) > 0 on I.

From the above analysis, we see that if A € (0,1/2), the function «/ (¢) has no real root on

(0,00) \ {1, (%)2} Since
. 1-2)°
lim kp(t) =4(1 = AA >0, & (()\> ) =0,

t—1

we deduce that the derivative ) (¢) has a unique root at t = (%)2 if A € (0,1/2). By (77?),
we know that it also holds for A € (1/2,1). Furthermore, we know that the derivative is

e . —2\2 . . . A\ 2 . . .
positive if ¢ < (%) and is negative if ¢ > (%) . Thus the maximum of k) is attained at

t= (%)2 and it is exactly U(A).

Next, we assume A = 1/2. We have
tlog(t) + (¢ + 1)(log(2) — log(t + 1))
KI/Z(t) = 2 .
(Vi-1)
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Its derivative is

(Vt+1)log (H1) — Vilog(t)
Vi-1)’ Vi
Define f5(t) = (vt + 1) log (1) — Vtlog(t). Its derivative is

“I1/2 (t) =

2(VE—1) + (t+ 1)log (L) — (t + 1) log(t)

!
t) =
J5(t) 2V/t(t + 1)
Then we define fg(t) =2 (vt —1) + (t +1)log (551) — (¢t + 1) log(t), whose derivative is
t—1
fet) = \/t — log(2t) + log(t + 1)
and second derivative
) = 5 5

=@rE
If we set f(t) > 0, we get t*/2 +t3/2 < 2, which is equivalent to t < 1. Therefore f{(t) is
positive on (0,1) and negative on (1, 00), which implies that f§(t) < f§(1) =0 for ¢ # 1. We
deduce that fg(t) is strictly decreasing in ¢ and thus has a unique root. Since t =1 is a root
of fe(t), it is the unique root, which implies that fg(¢) and ff(¢) are both positive on (0, 1)
and negative on (1,00). As a result, we deduce that f5(t) < f5(1) =0 for t # 1. Thus we
conclude that “I1/2 (t) is positive on (0, 1) and negative on (1,00). We can verify that ¢t =1

is indeed a root of K} y(t).

So far we have shown for ¢t € (0,1) that the derivative &/ (t) is positive if ¢ < (%)2 and is
negative if t > (%)2 Thus the maximum of x) is attained at ¢t = (%)2 and it is exactly
U(N).
The infimum is

rmn{tl_1>r(r)1+ ka(t), tlggo ka(t)

=min{—2(1 — \)In(1 — A), —2AIn A}.}

Therefore we conclude ky € [L(\), U(N)].

A.2 Proof of Theorem [I]

In addition to Lemma [2| we need the following lemma.

Lemma 6 (Theorem 6 of [31]). Let f and g be two convex functions that satisfy f(1) =0
and g(1) = 0, respectively. The function g(t) > 0 for everyt € (0,1) U (1,00). Let P and
Q be two distributions on a common finite sample space ). Define 51 = inf;cq % and

B2 = infcq % We assume that 51,82 € [0,1). Then we have

Dy(P || Q) < k"Dy(P || Q),

where

) (

K = sup —.
eyt 908

~
S~—"

By Lemmas 2] and [6] we have
LONH?(P,Q) < Dgys(P || Q) < UNH?(P,Q).

Now we show that U(X) < 1. Its derivative U’(A) has a unique root at A = 1/2 on the interval
(0,1) and it is positive if A < 1/2 and negative if A > 1/2. Therefore U(\) < U(1/2) = 1.
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A.3 Proof of Lemma [l

The equation my(1) = 0 can be verified by plugging in ¢ = 1 directly. We compute the
second derivative of my

Pmy A1)
dt2 22+ (1 -\t

2

If A €[0,1] and ¢ € (0,00), we have ddﬁ* > 0, which implies the convexity of my.

The my-divergence equals to

Dy (P Q) = /Q)\ln %dP — (AdP + (1 — A\)dQ) In (AZS +1- A)

while the MIL-divergence equals
dP/dQ 1

A _ _
bass(PlQ) = /QMH VT E TS R SR v e T v
- /Q)\ln%dP— (AP + (1= \)dQ) In ()\jg—i—l—)\) .

Thus we conclude that the m-divergence yields the MIL-divergence with parameter \.

A.4 Proof of Proposition

Let P and @ be two probability measures in P. If P and Q are equal, D¢(P || Q) =
0. Therefore for any hash function h, it holds that h(P) = h(Q), which implies that

Pryon[h(P) = h(Q)] = 1 > p1.

In the sequel, we assume that P and @ are different. Since P and @ are two different
distributions, there exists ¢ € © such that P(i) < Q(i). We show this by contradiction.
Assume that Vi € Q, P(i) > Q(i). Since P and @ are different, there exists iy € Q
such that P(ig) # Q(ig). Since P(i) > Q(z) holds for Vi € Q, we have P(ig) > Q(io).
Therefore Y, ., P(i) > ) ,cq Q(i). However, both P and @ sum to 1, which leads to a
contradiction. Therefore, we obtain the existence of ¢ such that P(i) < Q(i), which yields
Ba = inficq % < 1. Similarly, we have £, £ inf;cq % < 1. Since P(i) and Q(7) are
non-negative for Vi € 2, we have 31, 82 > 0. In sum, we showed that 1,32 € [0,1). By the
definition of By, we know the following interval inclusion

(BQaﬂl_l) g (ﬁO,BO_l)'

Recall that

U= sup @,

BeBoyu(s5Y) 9B
(B

L= inf =7,
Be(Bo,1)u(1,85 ") 9(B)

—_ ~—

By Lemma [6] we obtain the approximation guarantee

L-Dy(P Q) <Df(P [ Q) <U-Dy(P| Q) (6)

There are two cases to consider. In the first case, we assume that D;(P | Q) < L.
By @7 we have Dy(P || Q) < ri. Since H is an (71,72, p1,p2)-sensitive family for g-
divergence, it holds that Prjy[h(P) = h(Q)] > p1. Similarly, if Dy(P || Q) > Urq, we
have Prj oy [h(P) = h(Q)] < p2. Thus, H forms an (Lry, Urs, p1,p2)-sensitive family for
f-divergence on P.
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A.5 Proof of Theorem 2
If D};5(P || Q) <R, by Theorem we have

VP - al, <752

If Dgys(P || Q) = (12%}27 we have

N
VP val, 2o 20 .

By the construction and properties of locality-sensitive hash family for L? distance proposed
in |16} Section 3.2], we know that h,p forms a (Ry, cR1,p1, p2)-sensitive hash family for the

L? distance between two vectors v P and +/Q. Therefore, provided that Dé‘; is(P Q) <R,
which implies H\/ﬁ - \/QH < Ry, we have
2

Pr[has(P) = hap(Q)] > p1.
Similarly, if D(P || Q) > 273} R, we have
Prlhas(P) = has(Q)] < po.

A.6 Proof of Theorem [3]

5(t)
hel(t

1—1¢
Vit +1)%

It is positive when ¢ < 1 and negative when ¢ > 1. Therefore for Vt € (0,00), k(t) < k(1) = 2
and

The derivative of the ratio function x(t) = y 18

K'(t) =

k(t) > min{ lim «(¢), im &(¢)} = 1.

t—0t t—o0

By Lemma [6] we have
H*(P,Q) < A(P || Q) < 2H*(P,Q).

If A(P || Q) < R, we have
PVl = ame .
If D3;s(P || Q) > 2¢2R, we have

7 - v, = vt -

By the construction and properties of locality-sensitive hash family for L? distance proposed
in |16} Section 3.2], we know that h,p forms a (Ry, cR1,p1,p2)-sensitive hash family for the

L? distance between two vectors /P and /Q. Therefore, provided that A(P || Q) < R,
which implies H\/]3 - \/QH2 < Ry, we have

Pr[ha,b(P) = ha,b(Q)] > p1.
Similarly, if A(P || Q) > 2¢2R, we have

Pr[ha,b(P) = ha,b(Q)] < p2.
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A.7 Proof of Lemma 3]

First, we would like to note that k is homogeneous, i.e., for all ¢ > 0, it holds that
k(cz,cy) = ck(x,y). Its kernel signature 35| is
KN 2 k(e? ey = €72 ((e*+1)In(e*+1) —e)) .
First, let us review the definition of a positive definite function.
Definition 4 (|9]). We call a complex-valued function f : R — C is positive definite if

1. it is continuous in the finite region and is bounded on R
2. it is Hermitian, i.e., f(—z) = f(x)
3. it satisfies the following conditions: for any real numbers x1,...,x, € R, the matrix

A= (flwi =) 2

is positive semidefinite.

Next we will show that I is a positive definite function by showing that it is the Fourier
transform of a non-negative function. We have the following Fourier transform and inverse
Fourier transform

i 2 sech(Tw)
K(\) = PwI T d
= [ eIt b,

1 iw 2sech(rw

Then we need the following lemmata.

Lemma 7. If f(x f e~ @lg(t)dt is the Fourier transform of a non-negative function g(t),
then it is positive deﬁmte

Proof of Lemma[l Let x1,...,x, € R be arbitrary real numbers and aq, ..., a, be arbitrary
complex numbers. Let us compute the quadratic form directly

n

Z flx; —xp ajak—/ Z —ilmi—wR)ty jarg(t)dt = / Za e~ il g(t)dt > 0.

Gk=1 G k=1

O

Lemma 8 (Lemma 1 in [35]). A homogeneous kernel is positive definite if, and only if, its
signature KC(\) is a positive definite function.

Since %“(Zw) > 0 holds for Vw € R, we deduce that IC(\) is the Fourier transform of a

non-negative function. Lemma [7]implies that IC(X) is a positive definite function. Therefore
k is a positive definite kernel by Lemma

Let us define the feature map

2 sech(mw)

<I>w(a:) L e—iw In(z) T i

Since k(x,y) is homogeneous, we have

k(z,y) = Vayk(\/z/y,\/y/z) = ayK(In(y/z))

w 2sech(mw)
in(y/@)w 222 AT g — @ Py, (y)dw .
VY /]R e 1+ 4w? w /]R w ()" Py (y)dw
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A.8 Proof of Theorem [4]

Let z denote the merged value. If we define 7(u) = —uIn(u), the mutual information loss is

. _ c.) In p(c, ) c p(c,y) c. ) 1n p(c, 2)
mM”%ﬂ“’”mm®*“y“<m@ plea) o T
p(c, 2)

= UGED) c np(c,y) c,z)In
-3 [pten T plery)] ~ple oy e )]

2 0 0

= n(p(@)) + n(pw) — n(p(2)) = >_ Mp(e, ) + nple,y) = n(p(c, 2))] -

ceC

By the definition of k, we have

k(a,b) =n(a) +n(b) —n(a+b) .
As a result, we re-write mil(x y) as

mil(x,y) = k(p )= > k(p(e, ), plc,y) = Ki(x,y) — Ka(x,y)
ceC

Lemma [3] indicates that k is a positive definite kernel. In light of the techniques for
constructing new kernels presented in [8, Section 6.2], we obtain that that K; and K> are
positive definite kernels.

A.9 Proof of Lemma [4
Recall that k(z,y) = [ Puw (y)dw. We have

et In(z/y) Typ(w) dw

‘k(a:,y) /t @,,,(x)*@,,,(y)dw’ = |/w|>t D, () Py (y)dw

—t

S /
|w[>t

(@) oo ® o 8 .
§2/ p(w)dw§8/ e ™dw = —e” T < 4e”" |
t t m

where (a) is due to | /%) /7| <1 and (b) is due to

2 sech(mw) 4 o
mf2$6€h(ﬂ'w):m§4e wo,

A.10 Proof of Lemma [5]

As the first step, we re-write the integral

AJ J GA _
/ ®1U(z)*q>1‘)(y)dw = Z / elwn(z/y) /asyp(w)dw
—adJ j=—a417G=DA
Then we bound the discretization error
AJ J JA 4
[ ewreaan— Y [T e
—aJ j=—J41/G-DA
J ia ) ,
S Z / etw In(z/y) _ ATy ln(m/y)‘ Js?yp(w)dw
j=—J17G-DA
@ J

AJ (b)
/‘ In(ar/y) 5 Fp(w)dus Jﬂmxwy/ w)dw < 27
G-1HA

]*fJJrl

where (a) is due to

eiwln(r/y) _eiwj In(z/y) < |In(z w— w;|< é In(z ]
) fi 9 Y
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and (b) is due to fAJp w)ydw < [pplw)dw = 2In2 and /zyln(z/y)|<
Va|n(z)[+y/yln(y)|< 2.

Next we re-write the partial Riemann sum by substituting the new index k =1 —j

0 ‘A (1—k)
/] otWi In(z/y) \/7p d,w_Z/ i(1/271€)A1n(I/y)\/@p(w)dw
oo
J kA ‘
= Z/ e~ e frgp(w)dw
=1/ (k=1)A

Therefore the entire Riemann sum can be re-written as

J JA
/ sz In(z/y) \/7P dU} — Z/ ’“,Uj In(z/y) + efiwj ln(w/y))\/@p(w)dw
j=—J+1 (G-1A (G- 1)A
J JA
=2 Z(cos(wj In z) cos(w; Iny) + sin(w; In ) sin(w; Iny))/zy p(w)dw
j=1 G-1A
J J
= <@wajvj ) Ty’w]a] >
j=1 j=1

Appendix B Illustration of Upper and Lower Bound Functions

We illustrate the upper and lower bound functions U()) and L(A) in Fig.
o LA — U
0.8}
0.61
0.4;
0.2}

02 04 06 08 10"

Figure 3: Upper and lower functions U(A) and L(\).

Appendix C Precision vs. Sketch Size

We show the precision vs. the sketch size in Fig. [4

\ K=3 \ ‘ K=3 0-9 ‘ K—‘4
0.9 keal 2% pan \\\ -
—— K= —— K= 0.8 —o— K=5
5 \\\ 50.8 r s S
208 —o— K=51 S —o— K=5 k=] \\ —— K=6
3 \\\7 £0.7 $0.7 <
(] (] ()
&07 AN 506 NN & AN
0.6 N NG 05 -] 06 I
AN \ o R \
25 50 7.5 10.0 125 ’ 25 50 7.5 10.0 125 1.5 20 25 3.0 35 4.0
Speed-up factor Speed-up factor Speed-up factor
(a) Fashion MNIST (b) MNIST (c) CIFAR-10

Figure 4: Precision vs. speed-up factor for different sketch sizes.
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