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0.1 Proof of equation (8)
Due to ¥xx = XX we have
Yxx X '=XTxx! = XxT,

since X X ~! is the orthogonal projection onto the image of X, which is orthogonal to the kernel of
XT'. Then invertibility of ¥xx implies

X'E =34 XTE = 2353 OxE.
1 Rewriting Ridge and Lasso in terms of empirical covariance matrices

We first write Y = fo + Y| where YX and Y, denote the projections of Y onto the image of X and
its orthogonal complement, respectively. Then we can rewrite the empirical error as

N ~ N ~ N e — e ~
[V —Xa'||* = [[Yg —Xa'|*+[[VL|* = (@' —Exx  Zxv) Zxx(a’—Sxx Sxv)+ YLl

The second term does not depend on a’ and is thus irrelevant for the optimization.

2 On the difficulty of mixing scenarios 1 and 2
Let us consider finite sample issues for scenario 2 in the purely confounded regime a = 0. Then,
Y = Zc and the empirical correlations between X and Y read

Sxy = Sxze = M"Szzc. (1)
Assuming that c is distributed according to an isotropic Gaussian N (0, 02I) for some parameter o
(to resemble the distribution of E in scenario 1), the random vector (T)) follows the distribution

— 2
N(0,62MT %57 M), )

— — 2 —
if ¥zz and M are fixed. In the finite sample regime, O‘?MTZZZ M is not a multiple of Yxx =
M7TY.z7zM, because Yzz is the identity only in the population limit. Hence, there is no simple

relation between the distribution of ¥xy and the matrix Xxx, which has been crucial for our analysis
of scenarios 1 and 2. For high dimensions d and ¢ and random matrices M, one could possibly derive

— 2 ——
statements on the asymptotic relation between M7 Yzz M and M T Y7z M regarding spectra and
spectral subspaces using free probability theory [1} 2.

3 Proof of Lemma 1

By definition, The difference between the two losses can be written as:
/ (y — f(x))?[p(yx) — p(yldo(x))]p(x)dx = / (y — f(x))*p(ylx, 2){p(x, 2) — p(x)p(2) }dzdx

= E[(Y - f(X))’|x, 2){p(x,2) — p(x)p(2) }dzdx.
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We rewrite the conditional expectation as
E[(Y — f(X))*|x,2] = E[(Y" + zc — f(x))’|x, 2]
= E[Y"?|x,2] + (zc)* + f(x)? + E[Y'|x, z]zc — E[Y'|x,2]f(x) — f(x)zc.
= E[Y?[x] + (z¢)* + f(x)* + g(x)zc — g(x) f(x) — f(x)ze,

where the last step used Y/ L Z |X which follows from d-separation in the DAG in Figure 4. Since
the above conditional expectation is integrated over p(x, z) — p(x)p(z), only terms matter that contain
both x and z. We therefore obtain

E[(Y — f(X))?] — Egox) (Y — f(X))?] = /(Q(X) — f(x))ze{p(x,z) — p(x)p(z) }dzdx
= (E-nx).z)e.

4 Proof of Theorem 2

We first need the following result which is basically Lemma 2.2 in [3]] together with the remarks
preceding 2.2:

Lemma [Johnson-Linderstrauss type result] Let P be the orthogonal projection onto an n-
dimensional subspace of R™ and v € R™ be randomly drawn from the uniform distribution on the
unit sphere. Then || Pv||?> > Bn/m with probability at most "' =5+10.8)/2,

We are now able to prove Theorem 2. Let ¢’ be the orthogonal projection of ¢ onto the span of
{E—pnx)z |f € F} (whose dimension is at most dcor 4 1). Note that the vector ¥, sy(x)z € R?

has the components ((g — f)(X), Z;) if Z; denotes the components of Z, which are orthonormal in
‘H. Hence

IE—pxzll <.
Thus the absolute value of the difference of the losses is bounded by

S-nxze” | <0VV|IT.

deorr + 1
o7 < /e s,

Then the proof follows from

due to the above Lemma.
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