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0.1 Proof of equation (8)

Due to ΣXX = XTX we have
ΣXXX

−1 = X†XX−1 = X†,

since XX−1 is the orthogonal projection onto the image of X , which is orthogonal to the kernel of
XT . Then invertibility of ΣXX implies

X−1E = Σ−1XXX
TE = Σ−1XXΣXE .

1 Rewriting Ridge and Lasso in terms of empirical covariance matrices

We first write Ŷ = ŶX̂ + Ŷ⊥ where ŶX̂ and Ŷ⊥ denote the projections of Ŷ onto the image of X̂ and
its orthogonal complement, respectively. Then we can rewrite the empirical error as

‖Ŷ − X̂a′‖2 = ‖ŶX̂− X̂a′‖2 +‖Ŷ⊥‖2 = (a′− Σ̂XX

−1
Σ̂XY )T Σ̂XX(a′− Σ̂XX

−1
Σ̂XY ) +‖Ŷ⊥‖2.

The second term does not depend on a′ and is thus irrelevant for the optimization.

2 On the difficulty of mixing scenarios 1 and 2

Let us consider finite sample issues for scenario 2 in the purely confounded regime a = 0. Then,
Y = Zc and the empirical correlations between X and Y read

Σ̂XY = Σ̂XZc = MT Σ̂ZZc. (1)
Assuming that c is distributed according to an isotropic Gaussian N (0, σ2

cI) for some parameter σc
(to resemble the distribution of Ê in scenario 1), the random vector (1) follows the distribution

N (0, σ2
cM

T Σ̂ZZ

2
M), (2)

if Σ̂ZZ and M are fixed. In the finite sample regime, σ2
cM

T Σ̂ZZ

2
M is not a multiple of Σ̂XX =

MT Σ̂ZZM , because Σ̂ZZ is the identity only in the population limit. Hence, there is no simple
relation between the distribution of Σ̂XY and the matrix Σ̂XX, which has been crucial for our analysis
of scenarios 1 and 2. For high dimensions d and ` and random matrices M , one could possibly derive

statements on the asymptotic relation between MT Σ̂ZZ

2
M and MT Σ̂ZZM regarding spectra and

spectral subspaces using free probability theory [1, 2].

3 Proof of Lemma 1

By definition, The difference between the two losses can be written as:∫
(y − f(x))2[p(y|x)− p(y|do(x))]p(x)dx =

∫
(y − f(x))2p(y|x, z){p(x, z)− p(x)p(z)}dzdx

= E[(Y − f(X))2|x, z]{p(x, z)− p(x)p(z)}dzdx.
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We rewrite the conditional expectation as

E[(Y − f(X))2|x, z] = E[(Y ′ + zc− f(x))2|x, z]

= E[Y ′2|x, z] + (zc)2 + f(x)2 + E[Y ′|x, z]zc−E[Y ′|x, z]f(x)− f(x)zc.

= E[Y ′2|x] + (zc)2 + f(x)2 + g(x)zc− g(x)f(x)− f(x)zc,

where the last step used Y ′ ⊥⊥ Z |X which follows from d-separation in the DAG in Figure 4. Since
the above conditional expectation is integrated over p(x, z)−p(x)p(z), only terms matter that contain
both x and z. We therefore obtain

E[(Y − f(X))2]−Edo(X)[(Y − f(X))2] =

∫
(g(x)− f(x))zc{p(x, z)− p(x)p(z)}dzdx

= (Σ(g−f)(X),Z)c.

4 Proof of Theorem 2

We first need the following result which is basically Lemma 2.2 in [3] together with the remarks
preceding 2.2:

Lemma [Johnson-Linderstrauss type result] Let P be the orthogonal projection onto an n-
dimensional subspace of Rm and v ∈ Rm be randomly drawn from the uniform distribution on the
unit sphere. Then ‖Pv‖2 ≥ βn/m with probability at most en(1−β+ln β)/2.

We are now able to prove Theorem 2. Let cF be the orthogonal projection of c onto the span of
{Σ(g−f)(X)Z |f ∈ F} (whose dimension is at most dcorr +1). Note that the vector Σ(g−f)(X)Z ∈ R`
has the components 〈(g − f)(X), Zj〉 if Zj denotes the components of Z, which are orthonormal in
H. Hence

‖Σ(g−f)(X)Z‖ ≤ b.
Thus the absolute value of the difference of the losses is bounded by

|Σ(g−f)(X)Zc
F | ≤ b

√
V ‖cF‖.

Then the proof follows from

‖cF‖ ≤
√
β
dcorr + 1

`
,

due to the above Lemma.
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