
Supplement: High-Quality Self-Supervised Deep
Image Denoising

Samuli Laine
NVIDIA

Tero Karras
NVIDIA

Jaakko Lehtinen
NVIDIA, Aalto University

Timo Aila
NVIDIA

A Network architecture, training and evaluation details

Table 1 shows the network architecture used in our blind-spot and baseline networks. This is a
slightly modified version of the five-level U-Net [9] architecture that was used by Lehtinen et al. [7].
We add three 1×1 convolution layers at the end in all networks, so that the network depth is the same
in both blind-spot and baseline networks. All convolution layers use leaky ReLU [8] with α = 0.1,
except the very last 1×1 convolution that has linear activation function.

When forming a blind-spot network, we add three additional layers, denoted ROTATE, SHIFT, and
UNROTATE in the table. Layer ROTATE forms four rotated versions (by 0◦, 90◦, 180◦, 270◦) of the
input tensor and stacks them on the minibatch axis. Layer SHIFT pads and shifts every feature map
downwards by one pixel, thereby raising the receptive field of every pixel upwards by one pixel.
This is needed so that when the receptive fields are later combined, the combination excludes the
pixel itself. Finally, layer UNROTATE splits the minibatch axis into four pieces, undoes the rotation
done in layer ROTATE, and stacks the results on the channel axis, restoring the minibatch size to
the original but quadrupling the feature map count. In addition, in blind-spot networks we modify
the convolution layers and downsampling layers to extend their receptive field upwards only, as
explained in Section 2 of the paper.

Training and evaluation All networks were initialized following He et al. [3] and trained using
Adam with default parameters [5], initial learning rate λ = 0.0003, and minibatch size of 4. The
minibatches were composed of random 256×256 crops from the training set. All networks except
those used in impulse noise experiments were trained for 0.5M minibatches, i.e., until 2M training
image crops were shown to the network. For the impulse noise experiments we trained the blind-
spot networks 2× as long and the baseline networks 8× as long in order to reach convergence. In all
training runs, learning rate was ramped down during the last 30% of training using a cosine schedule.

Internally, we use dynamic range of [0, 1] for the image data. The training data was selected to
contain only images whose size was between 256×256 and 512×512 pixels, in order to exclude
images that were too small for obtaining a training crop, or unnecessarily large compared to the test
images. We thus used 44328 training images out of the 50k images in ILSVRC2012 validation set.
To run the test images through our rotation-based architecture, each of them was padded to a square
shape using mirror padding, denoised, and cropped back to original size. To obtain reliable average
PSNRs, we replicated each test set multiple times so that each clean image was corrupted by multiple
different instances of noise and, in cases with variable noise parameters, different amounts of noise.
Specifically, we replicated test sets KODAK, BSD300, and SET14, by 10, 3, and 20 times, yielding
average dataset PSNRs that correspond to averages over 240, 300, and 280 individual denoised
images, respectively. All methods were evaluated with the same corrupted input data.

The training runs were executed on NVIDIA DGX-1 servers using four Tesla V100 GPUs in parallel.
A typical training run took ∼4 hours if using the baseline architecture, and ∼14 hours with the
blind-spot architecture due to the fourfold increase in minibatch size inside the network. While
training we (unnecessarily) computed the mean posterior estimate for every training crop to monitor
convergence, performed frequent test set evaluations, etc., which leaves room for optimizing the
training speed.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Table 1: Network architecture used in our experiments. Layers marked with * are present only in
the blind-spot variants. Layer NIN A has 384 output feature maps in the blind-spot networks and 96
in the baseline networks.

NAME Nout FUNCTION

INPUT 3
* ROTATE 3 Rotate and stack

ENC CONV0 48 Convolution 3× 3
ENC CONV1 48 Convolution 3× 3
POOL1 48 Maxpool 2× 2
ENC CONV2 48 Convolution 3× 3
POOL2 48 Maxpool 2× 2
ENC CONV3 48 Convolution 3× 3
POOL3 48 Maxpool 2× 2
ENC CONV4 48 Convolution 3× 3
POOL4 48 Maxpool 2× 2
ENC CONV5 48 Convolution 3× 3
POOL5 48 Maxpool 2× 2
ENC CONV6 48 Convolution 3× 3
UPSAMPLE5 48 Upsample 2× 2
CONCAT5 96 Concatenate output of POOL4
DEC CONV5A 96 Convolution 3× 3
DEC CONV5B 96 Convolution 3× 3
UPSAMPLE4 96 Upsample 2× 2
CONCAT4 144 Concatenate output of POOL3
DEC CONV4A 96 Convolution 3× 3
DEC CONV4B 96 Convolution 3× 3
UPSAMPLE3 96 Upsample 2× 2
CONCAT3 144 Concatenate output of POOL2
DEC CONV3A 96 Convolution 3× 3
DEC CONV3B 96 Convolution 3× 3
UPSAMPLE2 96 Upsample 2× 2
CONCAT2 144 Concatenate output of POOL1
DEC CONV2A 96 Convolution 3× 3
DEC CONV2B 96 Convolution 3× 3
UPSAMPLE1 96 Upsample 2× 2
CONCAT1 99 Concatenate INPUT
DEC CONV1A 96 Convolution 3× 3
DEC CONV1B 96 Convolution 3× 3

* SHIFT 96 Shift down by one pixel
* UNROTATE 384 Unstack, rotate, combine

NIN A 384/96 Convolution 1× 1
NIN B 96 Convolution 1× 1
NIN C 9 Convolution 1× 1, linear act.

Masking-based training In our training runs with masking-based training (end of Section 4.1),
we examine convergence by maintaining a smoothed network whose weights follow the trained net-
work using an exponential moving average. This is a commonly used technique in semi-supervised
learning (e.g., [10, 1]) and in evaluating Generative Adversarial Networks (e.g., [2, 4]), and removes
the need for a learning rate rampdown — and thus deciding the training length in advance — to mea-
sure the results near a local minimum.

All curves in Figure 3 were generated by evaluating the test set using this exponentially smoothed
network. We verified in separate tests that the results obtained this way were in line with the usual
fixed-length training runs with learning rate rampdown.

2



B Additional result images

Figures 1, 2 and 3 show additional denoising results for Gaussian, Poisson, and impulse noise,
respectively. In these examples the noise model parameters were fixed but unknown for all algo-
rithms. All PSNRs refer to individual images. We recommend zooming in to the images on a
computer screen to better view the differences. The full images are also included as PNG files in the
supplementary material.

In this larger set of images we can discern some characteristic failure modes of our ablated setups.
When the signal covariance Σx is forced to be diagonal (“Our ablated, diag. Σ”), we can see color
artifacts on, e.g., rows 6 and 9 of Figure 1. The diagonal covariance matrix corresponds to having a
univariate, independent distribution for each color channel, and therefore the network cannot express
being, e.g., certain of hue but uncertain of luminance. This may let the color of noise leak through
to the result, as seen in some of the images. With full Σx no such color leaking occurs. The
ablation which discards information in center pixel entirely (“Our ablated, µ only”) produces strong
pixel-scale diamond/checkerboard artifacts, some of which can also be seen in the results of Krull et
al. [6]. In images produced by our full, non-ablated method (“Our”), some slight checkerboarding
may be seen in high-frequency areas, especially with impulse noise (see, e.g., Figure 3, bottom row).
However, in most cases our results are visually indistinguishable from the baseline results.

References

[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent expla-
nations of unlabeled data: Why you should average. In Proc. International Conference on
Learning Representations (ICLR), 2019.

[2] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural
image synthesis. In Proc. International Conference on Learning Representations (ICLR), 2019.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. CoRR, abs/1502.01852, 2015.

[4] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for improved
quality, stability, and variation. Proc. International Conference on Learning Representations
(ICLR), 2018.

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. International
Conference on Learning Representations (ICLR), 2015.

[6] A. Krull, T.-O. Buchholz, and F. Jug. Noise2Void – Learning denoising from single noisy
images. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2129–2137, 2019.

[7] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila.
Noise2Noise: Learning image restoration without clean data. In Proc. International Con-
ference on Machine Learning (ICML), 2018.

[8] A. L. Maas, A. Y. Hannun, and A. Ng. Rectifier nonlinearities improve neural network acoustic
models. In Proc. International Conference on Machine Learning (ICML), 2013.

[9] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical im-
age segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI),
9351:234–241, 2015.

[10] A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. In Proc. Advances in Neural
Information Processing Systems 30 (NIPS), pages 1195–1204. 2017.

3



KODAK-6 20.41 dB 31.17 dB 31.17 dB 30.06 dB 29.04 dB 30.59 dB

KODAK-14 20.42 dB 30.88 dB 30.80 dB 29.89 dB 28.98 dB 30.01 dB

KODAK-4 20.35 dB 33.14 dB 33.09 dB 32.47 dB 31.86 dB 32.66 dB

BSD300-18 20.30 dB 31.98 dB 31.93 dB 30.77 dB 29.43 dB 31.30 dB

BSD300-22 20.58 dB 28.63 dB 28.57 dB 26.95 dB 25.07 dB 28.00 dB

BSD300-28 20.24 dB 26.78 dB 26.78 dB 24.16 dB 21.52 dB 26.37 dB

BSD300-80 20.20 dB 32.75 dB 32.64 dB 31.81 dB 31.05 dB 32.03 dB

SET14-2 20.36 dB 31.60 dB 31.59 dB 31.30 dB 30.69 dB 32.06 dB

SET14-5 20.51 dB 29.44 dB 29.40 dB 28.34 dB 26.92 dB 28.09 dB

Test image Noisy input N2C baseline Our Our ablated, Our ablated, CBM3D
diag. Σ µ only

Figure 1: Additional result images for Gaussian noise, σ = 25.

4



KODAK-23 19.13 dB 34.83 dB 34.63 dB 33.98 dB

KODAK-8 18.63 dB 29.12 dB 29.11 dB 27.25 dB

BSD300-3 21.87 dB 28.57 dB 28.43 dB 23.91 dB

BSD300-7 17.81 dB 29.39 dB 29.26 dB 27.01 dB

BSD300-11 19.91 dB 31.72 dB 31.63 dB 30.01 dB

BSD300-60 18.10 dB 29.62 dB 29.61 dB 27.43 dB

BSD300-19 18.74 dB 29.49 dB 29.37 dB 27.46 dB

BSD300-21 19.33 dB 31.97 dB 31.81 dB 30.24 dB

BSD300-25 19.23 dB 26.75 dB 26.65 dB 23.31 dB

Test image Noisy input N2C baseline Our Our ablated,
µ only

Figure 2: Additional result images for Poisson noise, λ = 30.

5



KODAK-15 10.11 dB 35.13 dB 34.76 dB 32.84 dB

BSD300-4 11.13 dB 34.41 dB 33.72 dB 31.86 dB

BSD300-26 12.08 dB 29.39 dB 28.88 dB 26.45 dB

BSD300-51 10.96 dB 31.36 dB 30.74 dB 28.49 dB

BSD300-56 11.07 dB 33.03 dB 32.64 dB 30.71 dB

BSD300-95 10.31 dB 32.41 dB 31.92 dB 29.61 dB

SET14-1 11.19 dB 23.96 dB 23.98 dB 21.81 dB

KODAK-20 9.30 dB 34.90 dB 34.55 dB 32.13 dB

KODAK-19 12.09 dB 33.62 dB 33.35 dB 31.08 dB

Test image Noisy input N2C baseline Our Our ablated,
µ only

Figure 3: Additional result images for impulse noise, α = 0.5.

6


