
Appendices
Let fX be the marginal distribution for X .

For the purpose of clarity in the appendices, let us replace the notation of the parametrization
ν(m; k1, k2) of the upper boundary ∂D+

k1,k2
by ν+(m; k1, k2). This is useful to disambiguate with

the parametrization ν−(m; k1, k2) of the lower boundary ∂D−k1,k2 , which is useful in linear-fractional
elicitation.

A ShrinkInterval-1 and ShrinkInterval-2 Subroutines
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Figure 4: (Left): Formal description of the subroutine ShrinkInterval-1. (Right): Visual intuition
of the subroutine ShrinkInterval-1; in search of the maximizer of a quasiconcave metric ψ, the
subroutine shrinks the current interval to half based on oracle responses to the four queries.

Subroutine ShrinkInterval-2
Input: Oracle responses for Ω(cc, ca),Ω(cd, cc),

Ω(ce, cd),Ω(cb, ce), j ∈ [q].
If (ca � cc) Set θbj = θdj .
elseif (ca ≺ cc � cd) Set θbj = θdj .
elseif (cc ≺ cd � ce) Set θaj = θcj , θbj = θej .
elseif (cd ≺ ce � cb) Set θaj = θdj .
else Set θaj = θdj .
Output: [θaj , θ

b
j ].

Figure 5: Formal description of the subroutine ShrinkInterval-2. ShrinkInterval-2 is same as
ShrinkInterval-1 except that it applies to the parameter θj and works with responses to off-diagonal
confusions based queries.

Notice that both ShrinkInterval sub-routines work with responses to four queries, and based on
the responses divides the interval into two. Since the metric dealt in Algorithm 1 is concave and
unimodal (see Lemma 2 and Remark 1), four queries are required to shrink the interval into by half
in every iteration. Since we use the enclosed sphere for LPM elicitation, we can shrink the interval
into half based on just two queries in Algorithm 2, i.e. by querying Ω(cd, cc) and Ω(ce, cd), due to
strong convexity of the sphere (see proof of Theorem 2). However, we show use of four queries in
Algorithm 2 just to make the algorithms consistent for the readers to understand.

B Proofs of Section 3 and Some Extended Definitions

Proof of Proposition 1. The following are the properties of D.

• Convex: Let us take two classifiers h1, h2 ∈ H which achieve the diagonal confusions
d(h1),d(h2) ∈ D. We need to check whether there exists a classifier, which achieves the
off-diagonal confusion λd(h1) + (1− λ)d(h2). Consider a classifier h, which with probability λ
predicts what classifier h1 predicts and with probability 1− λ predicts what classifier h2 predicts.
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Then the first component

d1(h) = P(Y = 1, h = 1)

= P(Y = 1, h = h1|h = h1)P(h = h1) + P(Y = 1, h = h2|h = h2)P(h = h2)

= λd1(h1) + (1− λ)d1(h2).

Similarly, this hold true for di(h) for i ∈ [k]. Hence, C is convex.

• Bounded: Since Di = P [Y = i, h = i] ≤ ζi for all i ∈ [K], D ⊆ [0, ζ1]× · · · × [0, ζk].

• Strictly convex and closed: Since C is convex, its boundary is intersection of half spaces. Further-
more, any linear functional is maximized at the boundary of a convex set [2]. Suppose we are
given a diagonal linear functional (DLPM) a. The BO classifier ha for that function is given by
Proposition 4 (whose proof is discussed later). Let the value achieved by the corresponding BO
diagonal confusion d is α. That is,

α =

k∑
i=1

aidi =

k∑
i=1

∫
X
aiηi(x)1[ha(x) = i|X = x]dfX .

Now, if we want to construct another classifier which achieves the same value α, there has to
be some weight shift from one class to another class without changing the maximum value α.
However, note that P[aiηi(X) = ajηj(X)] = 0 for all i, j ∈ [k] due to Assumption 1. Hence,
there is a unique maximizer of this linear functional on the boundary. Therefore, the space is
strictly convex. One characterization of the boundary of the space ∂D can be given by BO diagonal-
confusions corresponding to any linear functional a. These diagonal confusions are achieved by
the corresponding BO classifiers. Therefore, these diagonal confusions are always achievable, and
the space is closed as well.

• vi are always achieved: It is easy to see that any trivial classifier which predicts only class i ∈ [k],
will achieve the diagonal confusion defined by vi.

• vi are the only vertices: Certainly, a vertex exists if (and only if) some point is supported by more
than k tangent hyperplanes in k dimensional space. This means that the vertex is optimal for more
than k linear metric (linear functional). Clearly, all the metrics with slope a such that ai > aj > 0
and al = 0 ∀ l ∈ [k], l 6= i, j support vi. So, there are at least k supporting hyperplanes at these
points, which make them the vertices. Now, we show that these are the only vertices.

Suppose there is a point other than vi’s which is supported by two hyperplanes given by the slopes
a1 and a2. From Proposition 4 (discussed later), we can get Bayes optimal classifiers ha

1

and ha
2

,
which achieve the same diagonal confusions. This means that∫

x:
η1(x)

ηj(x)
≥tj ,j∈{2,··· ,K}

η1(x)dfX =

∫
x:
η1(x)

ηj(x)
≥t′j ,j∈{2,··· ,K}

η1(x)dfX , (4)

i.e., the first component d1 should be equal for the two classifiers, where tj , t′j’s are dependent on
a1 and a2. Since, these classifiers are different at least for one j, tj 6= t′j . This will mean that there

are multiple values of η1(x)
ηj(x) which are not attained. This contradict with our Assumption 1 that g1j

is strictly decreasing. By strict convexity, there are no supporting hyperplane tangent at multiple
points. Hence, vi are the only vertices of the set D.

Since we take classifiers which predict only classes k1 and k2, the values of any diagonal confusion
d ∈ Dk1,k2 evaluate to zero at indices except k1, k2. Therefore, the properties of the space Dk1,k2
can be proved on similar lines to Proposition 2 of Hiranandani et al. [7].

Proof of Proposition 3. The following are the properties of the space C.

• Convex The space is convex follows from first point of Proposition 1.
• Bounded: Cij = P[Y = i, h = j] ≤ P[Y = i] = ζi for i, j ∈ [k]. When confusion matrices

written in row major form excluding the diagonal terms, then it is easy to see that C ⊆ [0, ζ1](k−1)×
[0, ζ2](k−1) × · · · × [0, ζk](k−1).
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Table 4: Bayes Optimal (BO), Inverse Bayes Optimal (IBO), Restricted Bayes Optimal (RBO), and
Restricted Inverse Bayes Optimal (RIBO) entities.

Name Definition Name Definition

BO classifier h argmaxh∈H φ(c(h)) RBO classifier hk1,k2 argmaxh∈Hk1,k2
ψ(d(h))

BO utility τ
over a subset S ⊆ C maxc∈S⊆C φ(c) RBO utility τk1,k2 maxd∈Dk1,k2 ψ(d)

BO confusion c
over a subset S ⊆ C

argmax
c∈S⊆C

φ(c) RBO confusion dk1,k2
argmax
d∈Dk1,k2

ψ(d)

IBO classifier h argminh∈H φ(c(h)) RIBO classifier hk1,k2 argminh∈Hk1,k2
ψ(d(h))

IBO utility τ
over a subset S ⊆ C minc∈S⊆C φ(c) RIBO utility τ k1,k2 mind∈Dk1,k2 ψ(d)

IBO confusion c
over a subset S ⊆ C

argmin
c∈S⊆C

φ(c) RIBO confusion dk1,k2
argmin
d∈Dk1,k2

ψ(d)

• ui’s and o are always achieved: The classifier which always predicts class i, will achieve the
confusion matrix ui. Thus, ui ∈ C ∀ i ∈ [q]. Furthermore, a classifier which predicts similar to
one of the trivial classifiers with probability 1/k will achieve the confusions o (the centroid).

• ui’s are vertices: Any supporting hyperplane with slope a1i < a1j < 0 and a1l = 0 for
l ∈ [k], l 6= i, j will be supported by u1 (corresponding to BO classifier which predict class 1).
Thus, u1 is supported by at least q hyperplanes. Thus, it becomes a vertex of the convex set.
Similar is the case with other ui’s.

In addition to the entities defined in Table 1, we define some more entities such as the Inverse Bayes
Optimal (IBO) and Restricted Inverse Bayes Optimal (RIBO) classifiers, diagonal confusions, utility
in Table 4. The six definitions on the left can be analogously described diagonal metrics and diagonal
confusions. The six definitions on the right are of interest for the diagonal case. These are useful in
the elicitation of linear-fractional metrics and extend certain results provided in the main paper.

Proposition 2 can be considered as a corollary of the following more general Proposition.
Proposition 4. Let ψ ∈ ϕDLPM , parametrized by a, then

h(x) = argmax
i∈[k]

aiηi(x), and h(x) = argmin
i∈[k]

aiηi(x) (5)

are the BO and IBO classifiers w.r.t ψ, respectively.

Proof. Let

ψ =
∑
i

aidi =
∑
i

∫
X
aiηi(x)1[h(x) = i].

From this mathematical form, it is easy to see that the metric achieves its maximum when a class that
maximizes the expected utility conditioned on the instance is predicted. That is, the metric achieves
its maximum when a classifier deterministically predicts class i when i = argmaxj∈[k] ajηj(x).
This is the form of the classifier written in the proposition. Similarly, this metric is minimized when
when a classifier minimizes the expected utility conditioned on the instance, by predicting class
i = argminj∈[k] ajηj(x).

Proof of Proposition 2. Recall that classifiers which predict only class k1 and k2 will achieve diago-
nal confusions, which have zeros at every other index except k1, k2. Therefore,

ψ =
∑
i

aidi = ak1dk1 + ak2dk2

=

∫
X
ak1ηk1(x)1[h(x) = k1] +

∫
X
ak2ηk2(x)1[h(x) = k2].
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Again, using the idea used in the previous proof, the metric achieves its maximum when a class that
maximizes the expected utility conditioned on the instance is predicted. Therefore,

hk1,k2(x) =

{
k1, if ak1ηk1(x) ≥ ak2ηk2(x)
k2, o.w.

}
is the RBO classifier (restricted to classes k1, k2) with respect to ψ. Furthermore, the RIBO classifier
is given by hk1,k2(x) = k21[hk1,k2(x) = k1] + k11[hk1,k2(x) = k2]. RIBO classifier does exactly
the opposite of RBO, i.e., it predicts class k1, wherever RBO predicts class k2 on the instance space
X and vice-versa.

Proof of Lemma 1. Suppose the origin is at o and the constrained set is the sphere Sλ with radius λ
centered at o. We want to maximize 〈a, c〉 such that c ∈ Sλ. Since a linear metric over a convex set
is maximized at the boundary [2], it is easy to see that ci = λai will maximize this metric. Moving
the reference point to the original origin i.e. 0q gives us the required answer.

For linear-fractional elicitation, we need to parametrize the lower boundary ∂D−k1,k2 and upper
boundary of the sphere ∂S+

λ as well. These parametrizations are defined below.
Definition 8. The RBO diagonal confusions for DLPMs parametrized by a with ak1 , ak2 < 0 form
the lower boundary of Dk1,k2 , denoted by ∂D−k1,k2 .

Parametrization of ∂D−k1,k2 . We denote this parametrization by a function ν−(m; k1, k2). Take a
parameter −1 ≤ m ≤ 0. Create a DLPM ψ by setting ak1 = m, ak2 = −1 −m, and ai = 0 for
i 6= k1, k2 ∈ [k]. RBO diagonal confusions of such DLPMs lie on the lower boundary ∂D−k1,k2 . As
we vary m, we move on the lower boundary ∂D−k1,k2 .

Definition 9. The optimal off-diagonal confusions over the sphere Sλ for LPMs parametrized by a
with ai ≥ 0 ∀ i ∈ [k] form the upper boundary of Sλ, denoted by ∂S+

λ .

Parametrization of ∂S+
λ . The parametrization of the upper boundary ∂S+

λ is same as that of
the lower boundary ∂S−λ (Section 3.2) except that now all the angles are in the first quadrant i.e.
{θi ∈ [0, π/2]}q−1

i=1 , so to satisfy the condition ai ≥ 0 ∀ i ∈ [k].

C Proofs of Section 4

We write Lemma 2 in the following more general form.
Lemma 3. Let ψ : D → R (ξ : D → R) be a quasiconcave (quasiconvex) function, which is
monotone increasing in all {di}ki=1. For k1, k2 ∈ [k], let ρ+ : [0, 1] → ∂D+

k1,k2
(ρ− : [0, 1] →

∂D−k1,k2) be a continuous, bijective, parametrization of the upper (lower) boundary. Then the
composition ψ ◦ ρ+ : [0, 1] → R (ξ ◦ ρ− : [0, 1] → R) is quasiconcave (quasiconvex) and thus
unimodal on the interval [0, 1].

Proof. A function is quasiconcave iff super-level sets are convex. We already know from Proposition 1
Dk1,k2 is convex. Moreover, any vector of diagonal confusions has zeros at every index except at
indices k1, k2. Let ψ : D → R be a quasiconcave metric, which implies that its super-level sets
LDr (ψ) = {d ∈ D : ψ(d) ≥ r} are convex. Now, consider the super-level sets of ψ restricted
to the diagonal confusions in Dk1,k2 i.e. LDk1,k2r (ψ) = {d ∈ Dk1,k2 : ψ(d) ≥ r}. Take any
d1,d2 ∈ LDk1,k2r (ψ). Since d1,d2 ∈ D as well, they belong to the set LDr (ψ), which is convex.
Hence, for t ∈ [0, 1], td1 + (1 − t)d2 ∈ LDr (ψ), which implies that ψ(td1 + (1 − t)d2) ≥ r.
Furthermore, td1 + (1 − t)d2 ∈ Dk1,k2 , because Dk1,k2 is convex. By the above two arguments,
we have that td1 + (1− t)d2 ∈ LDk1,k2r (ψ). This implies that LDk1,k2r (ψ) is convex, and hence ψ
restricted to Dk1,k2 is quasiconcave. The proof analogously follows for quasiconvex metric ξ.

Now, it remains to show that ψ ◦ρ+ : [0, 1]→ R (ψ ◦ρ− : [0, 1]→ R) is quasiconcave (quasiconvex).
This can be proved by readily extending the proof of Lemma 1 of Hiranandani et al. [7] to the diagonal
multiclass case. For the sake of completeness, we also provide the proof here.
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We will prove the result for ψ ◦ ρ+ on ∂D+
k1,k2

, and the argument for ξ ◦ ρ− on ∂D−k1,k2 is essentially
the same. For simplicity, we drop the + symbols in the notation. It is given that ψ is quasiconcave.
Let S be some superlevel set of ψ. We first want to show that for any r < s < t, if ρ(r) ∈ S and
ρ(t) ∈ S, then ρ(s) ∈ S. Since ρ is a continuous bijection, due to the geometry of Dk1,k2 , we
must have — wlog — dk1(ρ(r)) < dk1(ρ(s)) < dk1(ρ(t)), and dk2(ρ(r)) > dk2(ρ(s)) > dk2(ρ(t))
(otherwise swap r and t). Since the set Dk1,k2 is strictly convex and the image of ρ is ∂Dk1,k2 , then
ρ(s) must dominate (component-wise) a point in the convex combination of ρ(r) and ρ(t). Say that
point is z. Since ψ is monotone increasing, then x ∈ S =⇒ y ∈ S for all y ≥ x component-wise.
Therefore, ψ(ρ(s)) ≥ ψ(z). Since, S is convex, z ∈ S and, due to the argument above, ρ(s) ∈ S.

This implies that ρ−1(∂Dk1,k2 ∩ S) is an interval, and is therefore convex. Thus, the superlevel sets
of ψ ◦ ρ are convex, so it is quasiconcave, as desired. This implies unimodaltiy as a function over the
real line since a function which has more than one local maximum can not be quasiconcave (consider
the super-level set for some value slightly less than the lowest of the two peaks).

D Proofs of Section 5

Proof of Theorem 1. In Hiranandani et al. [7], it is shown that for binary classification, the inner loop
of Algorithm 1 will estimate the value of m̂ for the Bayes-optimal binary classifier corresponding to
a linear metric a∗ = (m∗, 1−m∗) ∈ R2, such that |m̂−m∗| < ε+

√
εΩ after O(log 1

ε ) iterations.
Now, in the multiclass case, this allows us to argue that, for any 1 ≤ i < j ≤ k, we can estimate a
value mij such that a∗i /a

∗
j = (1−mij)/mij .

For the required guarantees, wlog, we assumed throughout the algorithm that a1 ≥ ak/2 for all k.
This is because, if a1 does not satisy this condition, then we can always choose an index z ∈ [k]
which does satisfy this from the following procedure:

Set z ← 1
for t = 2, 3, · · · , k do

Compute an estimate m̂tz of mtz .
if m̂tz <

1
2 then z ← t else do nothing

Output: z.
Let ε = ε +

√
εΩ. Now, if m̂tz <

1
2 , then a∗t ≥ a∗z · ( 1

2 − ε)/(
1
2 + ε) = 1−2ε

1+2ε . It can be shown
that this ratio is at least 1 − 4ε. Therefore, if z is the final coordinate output, we must have that
az ≥ (1−4ε)kat for all t. But (1−4ε)k ≈ e−4kε, and so for ε sufficiently small, we have az ≥ at/2
for all t as desired. Now that we have our assumption, we may proceed to show that the algorithm is
correct. We wish to show that ‖â/|âz| − a/|az|‖∞ < O(ε). We have∣∣∣∣ âtâz − at

az

∣∣∣∣ =

∣∣∣∣1− m̂t

m̂t
− 1−mt

mt

∣∣∣∣ =

∣∣∣∣ 1

m̂t
− 1

mt

∣∣∣∣
≤ 1

mt − ε
− 1

mt
≤ 1

mt

(
1

1− 2ε
− 1

)
≤ 2 · 2ε/(1− 2ε) ≤ 5ε

for ε < 0.1. This gives us the deisred bound.

Proof of Theorem 2. Consider the geometry shown in the Figure 6 (left). This shows a function
f [−1, 1]q → R which follow the trajectory of a unit semicircle (semisphere). Let x be a q-dimensional
vector, then this function is given by:

f(x) = 1−

√√√√1−
q∑
i

x2
i (6)

Intuitively, this function evaluates the distance of the points lying on the surface of the semisphere.
The point x∗ (the origin) is the unique minimizer of this function. Let us restrict the domain of this
function to the pointsQ = [xa,xb], where xa > −1 (component-wise) and xb < 1 (component-wise).
Then it is easy to see that the derivative of this function:

∇f =

(
x1√

1−
∑q
i x

2
i

, . . . ,
xq√

1−
∑q
i x

2
i

)
(7)
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f(x)
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o

Figure 6: (Left): A function for the semicircle with unit radius. (Right): Visual intuition for the
distance between the boundary points and tangent place at the optimal off-diagonal confusions.

is continuously differentiable on a compact domain Q. Thus,∇f is Lipschitz with some Lipschitz
parameter L i.e.:

‖∇f(y)−∇f(x)‖2 ≤ L‖y − x‖2 (8)

which makes the function f to be L-smooth. In addition, we observe that:

f(x) = 1−

√√√√1−
q∑
i

x2
i ≥

1

2

q∑
i

x2
i .

This implies that there exists a paraboloid always below the function f , which by definition, makes
the function f a strongly convex function (say with strong convexity parameter τ ). Thus, this function
satisfies all the requirements i.e smoothness, strong convexity, and has unique minimizer, to inherit the
guarantees from Derivative Free Optimization [9]. Notice that if we apply the coordinate-wise binary
search Algorithm 2, where the inner loop is run for log(1/ε) queries, to minimize this function using
pairwise comparison queries (i.e. the oracle responds with the point that evaluate to lesser value of f
out of the two), then by Theorem 5 of [9] one can guarantee that after 4L

τ log( f(x0)−f(x∗)
ε22qL2/τ )q log(1/ε)

queries to the oracle, we can get an estimate of the minimizer xT such that f(xT ) − f(x∗) <
4qL2ε2/τ . Notice that for this function f(x0)− f(x∗) = f(x0)− 0 = f(x0) ≤ 1.

Now, for simplicity assume λ = 1. As we discussed, LPM elicitation problem, where queries are
asked on a sphere Sλ has a dual form, where we use a (q − 1) dimensional bijective parametrization
based on θ to denote the points on the surface of the sphere. Notice that this parametrization is
a function of sin and cos and hence it is Lipschitz as well. Due to monotonicity condition, we
assume that the points lie on one orthant of the sphere. Now, suppose the true oracle’s metric
is denoted by a∗, where a∗i = Πi−1

j=1 sin θj cos θi for i ∈ [q − 1] and a∗q = Πq−1
j=1 sin θj . Let us

denote this parametrization of LPMs by Υ, i.e. a∗ = Υ(θ∗). This hyperplane is tangent to the
unit sphere on a particular point whose coordinates are Υ(θ∗) itself. Since the metric is linear, by
posing pairwise comparisons to the oracle, we ask which off-diagonal confusion is closer to the
hyperplane. So, to reach the tangent point on the boundary of the sphere by pairwise comparisons,
we are actually decreasing a distance-like function f∗(c) shown in Figure 6 (right). This function can
be represented as f∗(θ) = 1− 〈Υ(θ∗),Υ(θ)〉 where Υ(θ∗) are fixed coefficients and θ changes in
our algorithm. This is equivalent to the f function discussed above. Thus using the above guarantees,
after z1 log(z2/(qε

2))(q − 1) log(1/ε) queries to the oracle, where z1, z2 are constants independent
on ε and q, we have:

f∗(θ)− f∗(θ∗) = f∗(θ)− 0

= 1− 〈Υ(θ∗),Υ(θ))〉
≤ z3qε

2,

where z3 is a constant depending on curvature of the above function f . This implies that:

‖a∗ − â‖22 = ‖a∗‖22 + ‖â‖22 − 2〈a∗, â〉
= 2(1− 〈a∗, â〉)
≤ 2z3qε

2.
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Algorithm 3 Approximating the λ Radius
1: Input: The center o of the feasible region of classifiers.
2: for j = 1, 2, · · · , q do
3: Let ej be the standard basis vector for the j-th dimension.
4: Compute the maximum `j such that o+ `jej is feasible by solving (OP1).
5: Let CONV be the convex hull of {o± `jej}qj=1.
6: Compute the radius r of the largest ball which can fit inside of CONV , centered at o.
7: Output: λ = r.

Using the inequality proved before we have that ‖a∗ − â‖2 ≤ O(
√
qε). Therefore, in O

(
T log 1

ε

)
,

we can achieve a point O(
√
qε) close to the minimizer, where the number of iterations T ≥

z1 log(z2/(qε
2))(q − 1). The term z1 log(z2/(qε

2)) can be considered as the number of cycles,
but due to the curvature of the sphere, we find that it is not a dominating factor in the query com-
plexity. For example, when working with a sphere and ε = 10−2, two cycles (i.e. T = 2(q − 1) in
Algorithm 2) suffices in practice. Thus, updating each θj twice in cycles is sufficient for obtaining
the required metric.

It remains to show that, whenever the queried angle is at least
√

3εΩ/λ from the optimal angle,
then the oracle gives a correct response. To see this, restrict attention to the hyperplane in which
the current angle is moving, say j, for the binary-search phase of the loop. Let θ∗j be the optimal
angle. Observe that for any θj such that λ cos(θj − θ∗j ) ≥ λ− εΩ, the oracle may return a false value.
This is because the performance metric is a 1-Lipschitz linear map, and the optimal value on the
sphere of radius λ is λ. However, cos(x) ≤ 1 − x2/3, and so for |θj − θ∗j | ≥

√
3εΩ/λ, we have

λ cos(θj − θ∗j ) ≤ λ−λ(3εΩ/λ)/3 = λ− εΩ. Therefore, so long as |θj − θ∗j | ≥
√

3εΩ/λ, the oracle
provides a correct answer, and the binary search proceeds in the correct direction.

D.1 Finding the Sphere Sλ

Now, we discuss how a sufficiently large sphere Sλ with radius λ may be found. Consider the
following optimization problem, which is a special case of OP2 in [14]. This problem corresponds to
feasiblity check problem for a given off-diagonal confusion c0 for small δ ∈ R.

min
c∈C

0 s.t. ‖c− c0‖2 ≤ δ (OP1)

If a solution to the above problem exists, then Algorithm 1 of [14] returns it. Basically, the approach
in [14] will try to construct a classifier whose off-diagonal confusions are δ-close to the given
off-diagonal confusion c0. Hence, checking the feasibility.

Algorithm 3 computes a value of λ ≥ r̃/k, where r̃ is the radius of the largest ball contained in the
set C. Notice that this algorithm is run offline and does not impact query complexity. Notice that the
approach in [14] is consistent, thus we should get a good estimate of the sphere, provided we have
sufficient samples.
Lemma 4. Let r̃ be the radius of the largest ball centered at o which fits in the feasible space of
classifiers. Then Algorithm 3 returns a radius λ ≥ r̃/k.

Proof. Let `j be as computed in the algorithm, and let ` := minj `j . We must have ` ≥ r̃.
Furthermore, the region CONV contains the convex hull of {o± `ej}qj=1. But this region contains
a ball of radius `/

√
q = `/

√
k2 − k ≥ `/k ≥ r̃/k, and so λ ≥ r̃/k.

E Extensions

We emphasize that the goal of ME is not simply to choose between default or popularly used metrics
but to elicit novel metrics which best match the oracle preferences. As the family of human evaluation
metrics is believed to be large and since we already have created strategies for linear metrics, we can
now certainly aim at efficient elicitation for flexible metric families. Therefore, in this section, we
discuss a variety of extensions to other family of metrics.
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E.1 Diagonal Linear Fractional Performance Metric (DLFPM) Elicitation

We start by first defining the diagonal linear fractional performance metric.
Definition 10. Diagonal Linear-Fractional Performance Metric (DLFPM): We denote this family by
ϕDLFPM . Given a,b ∈ Rk and b0 ∈ R, the metric is defined as:

ψ(d) =
〈a,d〉

〈b,d〉+ b0
. (9)

For any ψ ∈ ϕDLFPM , we assume that {ai}ki=1, {bi}ki=1 are not all zero simultaneously and wlog,
we take ψ(d) ∈ [0, 1] and monotonically increasing in all {di}ki=1. We also make the following
regularity assumption.
Assumption 3. Let ψ ∈ ϕDLFPM parametrized by a and b (Definition 1). We assume that ai ≥ 0
and ai ≥ bi for all i ∈ [k]. In addition, b0 =

∑
i(ai − bi)ζi and

∑
i ai = 1.

Equivalent to fixing ‖a‖1 = 1, ai ≥ 0 for the diagonal linear case (Section 2.2), the conditions in
Assumption 3 are sufficient conditions for DLFPMs to be bounded and monotonically increasing in
diagonal elements of the confusion matrices. This is detailed in the following proposition.
Proposition 5. The conditions in Assumption 3 are sufficient for ψ ∈ ϕDLFPM to be bounded in
[0, 1] and simultaneously monotonically increasing in {di}ki=1.

Proof. We can add a large positive constant if for any d ∈ D, ψ(d) < 0. The metric would remain
linear fractional. So, it is sufficient to assume ψ(d) ≥ 0. Furthermore, boundedness and scale
invariance of ψ implies ψ(d) ∈ [0, 1], without compromising the linear-fractional form. Now, we
look at the sufficient conditions for monotonicity in {di}ki=1 and the numerator and denominator to
be positive. Consider the derivative:

∂ψ

∂d1
=

a1∑
i bidi + b0

−
b1(
∑
i aidi)

(
∑
i bidi + b0)2

≥ 0

Assuming denominator is positive, we have the numerator to be positive and

a1 ≥ b1
∑
i aidi∑

i bidi + b0
=⇒ a1 ≥ b1 sup

d∈D

∑
i aidi∑

i bidi + b0
=⇒ ai ≥ biτ

The above condition is necessary. Since τ ∈ [0, 1], by considering all the three cases bi = 0, bi >
0, bi < 0, the following are the sufficient conditions for monotonicity: a1 ≥ b1 and a1 ≥ 0. Similarly,
this is true for all ai’s and bi’s i.e. ai ≥ bi, ai ≥ 0 ∀ i ∈ [k] for monotonically increasing DLFPMs.
Furthermore, as we assumed that ψ ∈ [0, 1] i.e.∑

i aidi∑
i bidi + b0

≤ 1 =⇒
∑
i

(ai − bi)di ≤ b0

So, it is sufficient to take b0 =
∑
i(ai − bi)ζi to make the metric bounded in [0, 1] and denominator

positive. In addition, we can divide the numerator and denominator by
∑
i ai without changing the

metric ψ. Therefore, we take
∑
i ai = 1 during the elicitation task.

We consider b0 =
∑
i(ai − bi)ζi, instead of the derived condition b0 ≥

∑
i(ai − bi)ζi, which

is sufficient to guarantee a unique metric bounded in [0, 1] for elicitation purposes (instead of
one of the equivalent alternatives). Note that most existing linear-fractional metrics satisfy these
conditions [7, 13, 14].

Now, suppose that the oracle’s metric is ψ∗ ∈ ϕDLFPM . Let τ∗ and τ ∗ be the maximum and
minimum value of ψ∗, respectively. Due to strict convexity of D, we have a hyperplane

`
∗
f :=

k∑
i=1

(a∗i − τ∗b∗i )d∗i = τ∗b0
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touching the set D only at BO diagonal confusions d
∗

on the upper boundary of D, denoted by ∂D+.
Similarly, we have a hyperplane

` ∗f :=

k∑
i=1

(a∗i − τ ∗b∗i )d
∗
i = τ ∗b0 (10)

which touches the set D only at d∗ (IBO diagonal confusions) on the lower boundary, denoted by
∂D−. See Figure 2(c) for the visual intuition, where assume that the underlying space is D instead of
the sphere Sλ.

Since LFPM is quasiconcave, Algorithm 1 returns a slope of the hyperplane, say s. Using that slope,
we can compute the Bayes Optimal diagonal confusions d

∗
using Proposition 4, which gives us the

hyperplane `
∗

:= 〈s,d〉 = 〈s,d∗〉. This is equivalent to `
∗
f up to a constant multiple; therefore, the

true metric is the solution to the following non-linear system of equations (SoE):

a∗i − τ∗b∗i = αsi ∀ i ∈ [k], τ∗b∗0 = α〈s,d∗〉 (11)

where α ≥ 0, because LHS and si’s are non-negative. If we somehow know the true a∗, then by
using the following Proposition we can elicit the DLFPM upto a constant multiple, i.e. we can get
ψ̂ ≈ αψ∗, which is sufficient for the elicitation task.
Proposition 6. Knowing a∗ i.e. using â = a∗ solves the SoEs (11) as:

b̂i = (âi − si)
Λ1

Λ2
, (12)

where Λ1 =
∑
i âiζi, Λ2 = 〈s,d∗〉+

∑
i(âi − si)ζi, and b̂0 is as defined in Assumption 3.

Proof. We continue from Equation (11), where we saw that α ≥ 0. Additionally, we ignore the case
when α = 0, since this would imply a constant ψ∗. Next, we may divide the above equations by
α > 0 on both sides so that all the coefficients a∗ and a∗ are factored by α. This does not change the
metric ψ∗; thus, the SoE becomes:

a′i − τ∗b′i = si ∀ i ∈ [k], τ∗b′0 = 〈s,d∗〉. (13)

Notice that none of the conditions in Assumption 3 are changed except
∑
i ai = 1. However, we may

still use this condition to learn a constant α times the true metric, which does not harm the elicitation
problem. From the last equation, we have that τ = 〈s,d∗〉/b′0. Putting this into rest of the equations
gives us:

a′i − si
〈s,d∗〉

=
b′i
b′0
.

By replacing b′i in the rest of equations further gives us the solution mentioned in the proposition.

Now the question is how do we get the true a∗. To our rescue, we also know that a DLFPM is
quasiconvex. Thus, by minimizing the metric (again by using restricted classifiers) using Algorithm 4
(described next), we can get a similar hyperplane on the lower boundary ∂D−. Algorithm 4 is
described below.

Algorithm 4. Minimizing diagonal quasiconvex metrics: This algorithm is same as Algorithm 1
with only two changes. First, we start with m ∈ [−1, 0], because the optimum will lie on the lower
boundary ∂D−. Second, we check for d ≺ d′ whenever Algorithm 1 checks for d � d′, and
vice-versa. Here, we output the counterpart, i.e., slope s .

Once we get the slope s , we can obtain the inverse Bayes diagonal confusion d∗ using Proposition 4.
This will result in a supporting hyperplane ` ∗ := 〈s ,d〉 = 〈s ,d∗〉. This hyperplane is tangent to
the lower boundary ∂D−, and equivalent to ` ∗f up to a constant multiple; thus, the true metric is also
the solution of the following SoE:

a∗i − τ ∗b∗i = γ s i ∀ i ∈ [k], τ ∗b∗0 = γ〈s ,d∗〉
where γ ≤ 0 since LHS is positive, but s i’s are negative. Again, we may assume γ < 0. By dividing
the above equations by −γ on both sides, all the coefficients are factored by −γ. This does not
change ψ∗; thus, the system of equations becomes the following:

a′′i − τ ∗b′′i = s i, ∀ i ∈ [k], τ ∗b′′0 = 〈s ,d∗〉. (14)
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Algorithm 5 DLFPM: Grid Search for Best Pairwise Ratios

1: Input: n′, δ.
2: for j = 2, · · · , k do
3: Initialize: σopt =∞, a′j = 0.
4: Sample d1, ...,dn

′
on ∂D1,j (BO or IBO diagonal confusions for random n′ DLPMs).

5: for (a′j = 0; a′j ≤ 1; a′j = a′j + δ) do
6: Compute ψ′, ψ′′ using Proposition 6.

7: Compute array r = [ ψ
′(d1)

ψ′′(d1) , ...,
ψ′(dn

′
)

ψ′′(dn′ )
]. Set σ = std(r).

8: if (σ < σopt) Set σopt = σ and a′j,opt = a′j .

9: Set a′j =
a′j,opt

1−a′j,opt
.

10: a′1 = 1.
11: Output: a′ =

(
a′1
‖a′‖1

, · · · , a′k
‖a′‖1

)
.

Now, if we know a′ in (13), then by using Proposition 6, we may solve the system (13) and obtain
a metric, say ψ′. System (14) can be solved analogously, provided we know a′′ in (14), to get a
metric, say ψ′′. Notice that when when we have the true ratio i.e a∗i /a

∗
j = a′i/a

′
j = a′′i /a

′′
j for

i, j ∈ [k], then ψ∗ = ψ′/α = −ψ′′/γ. This means that when the true ratios are known, then ψ′, ψ′′
are constant multiples of each other. So, we look for the ratios where the solution to the two systems
are just pointwise constant multiple of one another. This is the same idea used in the binary case [7].
However, we have to search for the entire grid [0, 1]k instead of [0, 1] as is in the binary case. This is
a computationally challenging task.

Notice that we can randomly sample diagonal confusions on the boundary ∂D. This is done by
first randomly generating DLPMs and then computing their BO or IBO diagonal confusions using
Proposition 4. After obtaining `

∗
and ` ∗, we run the grid seacrh based Algorithm 5 to find the

estimates of the true ai’s. Although the grid-search based algorithm is independent of oracle queries,
it is computationally efficient. It runs for (k − 1) rounds, where in each round it matches the solution
of the two SoE’s as closely as possible on a number of samples from the boundary ∂D1,k and figures
out the ratio of aj/a1 for j 6= 1 ∈ [k]. Thanks to the property

∑
i ai = 1 and access to the restricted

diagonal confusions, we are saved from searching the entire grid [0, 1]k to merely (k − 1) times
grid-search on [0, 1].

E.2 LFPM Elicitation

We start by defining the linear-fractional performance metric in off-diagonal confusions.

Definition 11. Linear-Fractional Performance Metric (LFPM): We denote this family by ϕLFPM .
Given constants a,b ∈ Rq and b0 ∈ R, the metric is defined as

φ(c) =
〈a, c〉

〈b, c〉+ b0
. (15)

For any φ ∈ ϕLFPM (Definition 11), we assume that {ai}qi=1, {bi}
q
i=1 are not all zero simultaneously.

Furthermore, wlog, we may take φ(c) ∈ [−1, 0] ∀ c ∈ C and monotonically decreasing in all {ci}qi=1.
Similar to the diagonal case, we also make the following regularity assumption.

Assumption 4. Let φ ∈ ϕLFPM (Definition 11). We assume that ai ≤ 0 and ai ≤ −bi for all i ∈ [q].
In addition, b0 =

∑
i−(ai + bi)ζi, and

∑
i ai = −1.

Equivalent to fixing ‖a‖1 = 1, ai ≥ 0 for the diagonal linear case (Section 2.2), the conditions in
Assumption 4 are sufficient conditions for LFPMs to be bounded and monotonically decreasing in
off-diagonal elements of the confusion matrices. This is detailed in the following proposition.

Proposition 7. Assumption 4 is sufficient for φ ∈ ϕLFPM to be bounded in [−1, 0] and simultane-
ously monotonically decreasing in {ci}qi=1.
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Proof. Recall that our metric φ is monotonically decreasing in ci’s. As LFPMs are transitional and
scale invariant, wlog, we can assume that φ ∈ [−1, 0]. Taking the derivative in c1 gives us:

∂φ

∂c1
=

a1∑
i biai + b0

−
b1(
∑
i aici)

(
∑
i bici + b0)2

≤ 0

Assuming denominator is positive, we have the numerator to be negative and

a1 ≤ b1
∑
i aici∑

i bici + b0
=⇒ ≤ b1φ(c) =⇒ b1τ

The above condition is necessary. Since τ ∈ [−1, 0], by considering all the cases i.e. bi = 0, bi >
0, bi < 0 the following are the sufficient condition for monotonicity decreasing LFPMs: a1 ≤ −b1
and a1 ≤ 0. Similarly, this is true for ai ≤ −bi, ai ≤ 0 ∀ i ∈ [q] for monotonically decreasing
LFPMs. Furthermore, as we assumed that φ ∈ [−1, 0] i.e.∑

i aici∑
i bici + b0

≥ −1 =⇒
∑
i

−(ai + bi)ci ≤ b0

Again, so it is sufficient to take b0 =
∑
i−(ai + bi)ζi to make the metric bounded in [−1, 0] and

denominator positive. In addition, we can divide the numerator and denominator by
∑
i |ai| without

changing the metric φ. This gives us the condition
∑
i ai = −1.

We consider b0 =
∑
i−(ai + bi)ζi, instead of the derived condition b0 ≥

∑
i−(ai + bi)ζi, which

is sufficient to guarantee a unique metric bounded in [−1, 0] for elicitation purposes (instead of
one of the equivalent alternatives). Note that most existing linear-fractional metrics satisfy these
conditions [7, 13, 14].

Now, suppose that the oracle’s metric is φ∗ ∈ ϕLFPM . Let τ∗ and τ ∗ be the maximum and minimum
value of φ∗, respectively. Due to strict convexity of Sλ, we have a hyperplane

`
∗
f :=

q∑
i=1

(a∗i − τ∗b∗i )c̄∗i = τ∗b0

touching the set Sλ only at BO confusions c∗ (over the sphere Sλ) on the lower boundary ∂S−λ .
Similarly, we have a hyperplane

` ∗f :=

q∑
i=1

(a∗i − τ ∗b∗i )c∗i = τ ∗b0 (16)

which touches the set Sλ only at inverse Bayes Optimal confusions c∗ (over the sphere Sλ) on the
upper boundary ∂S+

λ . See Figure 2(c) for the visual intuition.

Here, we use strict convexity of Sλ and follow the same arguments as in DLFPM to get a hyerplane
`
∗

:= 〈s, c〉 = 〈s, c∗〉 after using Algortihm 2. Here, c∗ is the optimal best (BO) off-diagonal
confusion on the sphere. The only difference is that the BO confusions lie on the lower boundary
∂S−λ (monotonically decreasing). The SoE we get is:

a∗i − τ∗b∗i = αsi ∀ i ∈ [q], τ∗b∗0 = α〈s, c∗〉 (17)

where α ≥ 0. Similar to DLFPMs, by knowing a∗, we can elicit the LFPM upto a constant multiple.

Proposition 8. Knowing a∗ i.e. using â = a∗ solves the SoEs (17) as:

b̂i = (âi − si)
Λ′1
Λ′2
, (18)

where Λ′1 = −
∑
i âiζi, Λ′2 = 〈s, c∗〉+

∑
i(âi − si)ζi, and b̂0 is as defined in Assumption 4.

Proof. We start from (17), where we saw α ≥ 0. Additionally, we ignore the case when α = 0, since
this would imply a constant φ∗. Next, we may divide the above equations by α > 0 on both sides
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so that all the coefficients a∗i ’s and b∗i ’s are factored by α. This does not change φ∗; thus, the SoE
becomes:

a′i − τ∗b′i = si, ∀ i ∈ [q], τ∗b′0 = 〈s, c∗〉. (19)

Notice that none of the conditions in Assumption 4 are changed except
∑
i ai = −1. However, we

may still use this condition to learn a constant α times the true metric, which does not harm the
elicitation problem. Similar to DLFPMs, if we somehow know the true a′i’s, we can elicit the LFPM
upto a constant multiple. From the last equation, we have that τ = 〈s, c∗〉/b′0. Putting this into rest
of the equations gives us:

a′i − si
〈s, c∗〉

=
b′i
b0
.

By replacing bi in the rest of equations further gives us the solution (given ai’s) mentioned in the
proposition.

Now again the question is how do we get the true a∗. To our rescue, we also know that an LFPM
is quasiconvex. Thus, by minimizing the metric using Algorithm 6 (described next), we can get a
similar hyperplane ` ∗ := 〈s , c〉 = 〈s , c∗〉 tangent to the upper boundary ∂S+

λ .

Algorithm 6. Minimizing quasiconvex metrics of off-diagonal confusions: This algorithm is same as
Algorithm 2 with only two changes. First, we start with θ ∈ [0, π/2]q , because the optimum will lie
on the upper boundary ∂S+

λ . Second, we check for c ≺ c′ whenever Algorithm 2 checks for c � c′,
and vice versa. Here, we output the counterpart, i.e., slope s .

Thus, a similar SoE (17) whose solution looks like Proposition 8 is obtained. After obtaining `
∗

and ` ∗, we run grid-search Algorithm 7 to find the estimates of the true ai’s. The algebra related
to LFPM elicitation is same as the DLFPM case. However, this time we need to search in [0, 1]q−1

grid. Again, we have easy access to off-diagonal confusions on the sphere ∂Sλ corresponding to BO
or IBO off-diagonal confusions for different LPMs (Lemma 1); therefore, we can use the following
algorithm, which is analogous to Algorithm 5.

Algorithm 7. LFPM: grid-search for pairwise ratios: This is same as Algorithm 5 except the
following two changes. First, the second line of Algorithm 5 will have a for loop running from 2 to
q − 1. Second, in line 4, samples will be generated from the surface of the sphere ∂Sλ as discussed
above, instead of ∂D1,k.

E.3 Monotonic Metrics of diagonal confusions

Recall that the space D is strictly convex. Suppose that the oracle’s metric is ψ∗, which is just
monotonic increasing in {di}ki=1. Let a∗ be the slope of the supporting hyperplane at the optimal
diagonal confusions d∗. Then we may use Algorithm 1 which will return a linear metric â by using
pairwise comparisons. Notice that, we may then compute an estimate of the BO diagonal confusions
d̂ using Proposition 4 corresponding to the output â of the algorithm. Since the space D is strictly
convex, 〈â,d〉 = 〈â, d̂〉 becomes the estimate of the unique supporting hyperplane at d̂.

The first order approximation of ψ∗ at d̂ can be given by:

ψ∗(d) = ψ∗(d̂) + 〈â,d− d̂〉.

Since performance metrics are not affected by scale and additive biases, then the first order approx-
imation given by 〈â,d〉 suffices for the elicitation task. Notice that this maybe of high practical
importance to practitioners, since this is an estimate of the weighted accuracy at the estimate of the
optimal diagonal confusions.

F Extended Experiments

In this section, we empirically validate the theory and investigate the sensitivity due to finite sample
estimates. For the ease of judgments, we show results corresponding to k = 3, 4 classes.2

2The datasets can be downloaded from: www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
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Table 5: DLPM elicitation at ε = 0.01 for synthetic data. #Q denotes the number of queries. Since
the digits are rounded to two decimal places, ‖a∗‖1 or ‖â‖1 might not be exactly equal to one.

Classes K = 3 Classes K = 4

ψ∗ = a∗ ψ̂ = â #Q ψ∗ = a∗ ψ̂ = â #Q
(0.21, 0.59, 0.20) (0.21, 0.60, 0.20) 56 (0.13, 0.37, 0.12, 0.38) (0.13, 0.37, 0.12, 0.38) 84
(0.44, 0.26, 0.31) (0.44, 0.26, 0.31) 56 (0.21, 0.26, 0.31, 0.22) (0.21, 0.26, 0.31, 0.22) 84
(0.46, 0.33, 0.22) (0.46, 0.33, 0.22) 56 (0.23, 0.17, 0.11, 0.48) (0.23, 0.17, 0.11, 0.48) 84
(0.23, 0.15, 0.62) (0.23, 0.15, 0.62) 56 (0.25, 0.13, 0.45, 0.18) (0.25, 0.12, 0.45, 0.18) 84
(0.31, 0.15, 0.54) (0.3, 0.15, 0.54) 56 (0.22, 0.17, 0.31, 0.29) (0.22, 0.17, 0.31, 0.29) 84
(0.29, 0.40, 0.31) (0.29, 0.40, 0.31) 56 (0.38, 0.21, 0.22, 0.20) (0.38, 0.21, 0.21, 0.20) 84
(0.35, 0.32, 0.33) (0.35, 0.33, 0.33) 56 (0.22, 0.13, 0.14, 0.52) (0.22, 0.13, 0.14, 0.52) 84
(0.33, 0.35, 0.32) (0.33, 0.35, 0.31) 56 (0.58, 0.17, 0.08, 0.18) (0.58, 0.17, 0.08, 0.18) 84
(0.45, 0.27, 0.29) (0.45, 0.26, 0.29) 56 (0.32, 0.35, 0.06, 0.27) (0.32, 0.35, 0.06, 0.27) 84
(0.44, 0.44, 0.13) (0.45, 0.43, 0.13) 56 (0.05, 0.24, 0.29, 0.42) (0.05, 0.24, 0.29, 0.42) 84

Table 6: LPM elicitation at ε = 0.01 for synthetic data. #Q denotes the number of queries. Since the
digits are rounded to two decimal places, ‖a∗‖2 or ‖â‖2 might not be exactly equal to one.

Classes φ∗ = a∗ φ̂ = â #Q
3 (-0.37, -0.89, -0.09, -0.23, -0.04, -0.03) (-0.37, -0.89, -0.09, -0.23, -0.04, -0.03) 320
3 (-0.80, -0.55, -0.18, -0.08, -0.14, -0.05) (-0.80, -0.55, -0.18, -0.08, -0.14, -0.05) 320
3 (-0.19, -0.88, -0.28, -0.10, -0.08, -0.30) (-0.19, -0.88, -0.28, -0.10, -0.08, -0.30) 320
3 (-0.44, -0.55, -0.33, -0.51, -0.23, -0.28) (-0.44, -0.55, -0.33, -0.51, -0.23, -0.28) 320
3 (-0.79, -0.27, -0.25, -0.21, -0.38, -0.23) (-0.79, -0.27, -0.25, -0.21, -0.38, -0.23) 320

4 (-0.90, -0.28 -0.10, -0.31, -0.04, -0.05, (-0.90, -0.28, -0.10, -0.31, -0.04, -0.05, 704-0.03, -0.04, -0.02, -0.01, -0.01, -0.01) -0.03, -0.04, -0.02, -0.01, -0.01, -0.01)

4 (-0.54, -0.10, -0.62, -0.52, -0.03, -0.07, (-0.55, -0.11, -0.62, -0.51, -0.03, -0.07, 704-0.11, -0.07, -0.14, -0.03, -0.03, -0.04) -0.11, -0.07, -0.14, -0.03, -0.03, -0.04)

4 (-0.56, -0.07, -0.79, -0.05, -0.16, -0.16, (-0.56, -0.07, -0.79, -0.05, -0.16, -0.17, 704-0.04, -0.02, -0.03, -0.00, -0.01, -0.01) -0.04, -0.02, -0.03, -0.00, -0.01, -0.01)

4 (-0.60, -0.79, -0.09, -0.01, -0.01, -0.02, (-0.60, -0.79, -0.09, -0.01, -0.01, -0.02, 704-0.02, -0.01, -0.01, -0.01, -0.00, -0.00) -0.02, -0.01, -0.01, -0.01, -0.00, -0.00)

4 (-0.45, -0.38, -0.42, -0.19, -0.21, -0.63, (-0.46, -0.38, -0.41, -0.19, -0.20, -0.62, 704-0.09, -0.00, -0.00, -0.00, -0.01, -0.01) -0.09, -0.00, -0.00, -0.00, -0.01, -0.01)

F.1 DLPM and LPM Elicitation on Simulated Data (Extended)

We show an extended set of results for the experimental setting discussed in Section 6.1. Table 5
and Table 6 show elicitation results on the simulated data for DLPMs and LPMs, respectively.
We verify that our algorithms elicit the true metrics even for ε = 0.01, and as expected, require
4(k − 1)

⌈
log(1/ε)

⌉
and 4T

⌈
log(π/2ε)

⌉
queries for DLPM and LPM elicitation, respectively, where

d·e is the ceil function and T = 2(q − 1).

F.2 Effect of Sphere Size on LPM Elicitation

For real-world datasets, Algorithm 2 is agnostic to the error from η̂i’s as long as we get a sphere
inside the feasible region of sufficient size. With the following experiment, we show that we incur
errors in elicitation when the radius λ is of the order of εΩ. Recall that, when we are working in a
simulated setting, a good proxy for εΩ is the practical computation error.

Here, we work with k = 4 classes. We took λ = 2.500 × 10−12 and performed elicitation by
considering three spheres of size 1/2λ, 3/4λ, and λ. We randomly selected hundered DLPMs i.e.
a∗’s. We then used Algorithm 2 with ε = 0.01 to recover the estimates â’s. In Table 7, we report
the proportion of the number of times ‖a∗ − â‖∞ ≤ ω for different values of ω. We see improved
elicitation when we work with λ and incur more errors when the sphere’s radius is less than that.
In particular, if we take the radius of the order (a little) higher than 10−12 then we perform perfect
elicitation. Needless to say, when working with real oracle (users), the magnitude of the oracle’s
feedback noise εΩ and the size of the sphere will play a role in elicitation performance as suggested
in Theorem 2.
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Table 7: LPM elicitation on sphere with varying (small) radius and ε = 0.01. For randomly chosen
hundred a∗, we show the fraction of times our estimates â obtained with 4 × 2(q − 1)

⌈
log(1/ε)

⌉
queries satisfy ‖a∗ − â‖∞ ≤ ω. Notice that we incur error only when the radius is of the order of
practical computation error, which can be attributed to εΩ in the simulated setting.

λ
ω 0.02 0.04 0.06 0.08 0.10

1.250× 10−12 0.03 0.38 0.74 0.92 0.94
1.875× 10−12 0.09 0.49 0.77 0.94 0.98
2.500× 10−12 0.12 0.73 0.93 0.97 0.99

Table 8: DLFPM Elicitation for synthetic distribution for k = 3 classes (Appendix F.3) with ε = 0.01.
(a∗,b∗, b∗0) denote the true DLFPM. (â, b̂, b̂0) denote the elicited LFPM. α and σ denote the mean
and the standard deviation in the ratio of the elicited to the true metric (evaluated on the confusions
in ∂D used in Algorithm 5), respectively. We empirically verify that the elicited metric is constant
multiple (α) of the true metric.

True Metric Results on Synthetic Distribution (Appendix F.3)
(a∗1, a

∗
2, a
∗
3), (b∗1, b

∗
2, b
∗
3), b∗0 (â1, â2, â3), (b̂1, b̂2, b̂3), b̂0 α σ

(0.21, 0.59, 0.20), (0.11, -0.22, -0.27), 0.41 (0.25, 0.58, 0.18), (0.20, -0.03, -0.17), 0.29 1.23 0.03
(0.45, 0.27, 0.29), (0.39, 0.22, -0.76), 0.43 (0.46, 0.34, 0.20), (0.42, 0.30, -0.73), 0.38 1.03 0.04
(0.08, 0.42, 0.50), (0.07, -0.63, 0.20), 0.37 (0.16, 0.38, 0.47), (0.17, -0.41, 0.23), 0.27 1.22 0.05

F.3 DLFPM and LFPM Elicitation

Now, we validate elicitation for DLFPMs for classes k = 3 and k = 4 using the routine discussed in
Appendix E.1. We use the same distribution setting of Section 6.1 for both the classes. We define
a true metric ψ∗ by {a∗,b∗, b∗0}. Then, we run Algorithm 1 with ε = 0.01 to find the hyperplane `
and maximizer on ∂D+, Algorithm 4 with ε = 0.01 to find the hyperplane ` and minimizer on ∂D−,
and Algorithm 5 with n′ = 1000 (1000 diagonal confusions on ∂D+ obtained by varying parameter
m) and δ = 0.01. This gives us the elicited metric ψ̂, which we represent by {â, b̂, b̂0}. In Table 8
and Table 9, we present the elicitation results for DLFPMs for classes k = 3 and k = 4, respectively.
We also present the mean (α) and the standard deviation (σ) of the ratio of the elicited metric ψ̂ to the
true metric ψ∗ over the set of diagonal confusions used in Algorithm 5(column 3 and 4 of Table 8
and Table 9). For a better judgment, we show function evaluations of the true metric and the elicited
metric in Figure 7. The true and the elicited metric are plotted together after vectorizing the set of
diagonal confusions in a certain order based on their parametrizations. As expected, we see that the
elicited metric is a constant multiple of the true metric.

Now, we validate elicitation for LFPMs for classes k = 3 and k = 4 using the routine discussed in
Appendix E.2. We define a true metric φ∗ by {a∗,b∗, b∗0}. Then, we run Algorithm 2 with ε = 0.01
to find the hyperplane ` and maximizer on ∂S−λ , Algorithm 6 with ε = 0.01 to find the hyperplane
` and minimizer on ∂S+

λ , and Algorithm 7 with n′ = 1000 (1000 off-diagonal confusions on ∂S−λ
obtained by varying parameter θ) and δ = 0.01. This gives us the elicited metric φ̂, which we
represent by {â, b̂, b̂0}. In Table 10, we present the elicitation results for LFPMs for classes k = 3.
We also present the mean (α) and the standard deviation (σ) of the ratio of the elicited metric φ̂ to
the true metric φ∗ over the set of off-diagonal confusions used in Algorithm 7 (column 3 and 4 of
Table 10). For a better judgment, we show function evaluations of the true metric and the elicited
metric evaluated on selected off-diagonal confusions in the top row of Figure 8. Due to many terms
in the LFPM for k = 4, we skip providing true metric and the elicited metric and only mention the
α and σ of the true and elicited metric similar to Table 10. We obtained α = 0.79, 0.72, 0.72 and
σ = 0.007, 0.007, 0.006 for the three metrics plotted in the bottom row of Figure 8. The true and the
elicited metric are plotted together after vectorizing the set of confusions in a certain order based on
their parametrizations. As expected, we again see that the elicited metric is a constant multiple of the
true metric for both k = 3 and k = 4.
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Table 9: DLFPM Elicitation for synthetic distribution for k = 4 classes (Appendix F.3) with ε = 0.01.
(a∗,b∗, b∗0) denote the true DLFPM. (â, b̂, b̂0) denote the elicited LFPM. α and σ denote the mean
and the standard deviation in the ratio of the elicited to the true metric (evaluated on the diagonal
confusions in ∂D used in Algorithm 5), respectively. We empirically verify that the elicited metric is
constant multiple (α) of the true metric.

True Metric Results on Synthetic Distribution (Appendix F.3)

(a∗1, a
∗
2, a
∗
3, a
∗
4),

(b∗1, b
∗
2, b
∗
3, b
∗
4), b∗0

(â1, â2, â3, â4),

(b̂1, b̂2, b̂3, b̂4), b̂0
α σ

(0.32, 0.35, 0.06, 0.27),
(-1, -0.3, -0.32, 0.25), 0.6

(0.2, 0.29, 0.19, 0.32),
(-0.4, -0.01, 0.08, 0.33), 0.26 1.58 0.12

(0.31, 0.22, 0.27, 0.2),
(-0.17, -0.01, 0.18, 0.09), 0.25

(0.2, 0.3, 0.26, 0.24),
(-0.38, 0.07, 0.16, 0.14), 0.28 0.95 0.04

(0.22, 0.16, 0.41, 0.21),
(-0.22, -0.43, -0.18, 0.14), 0.33

(0.19, 0.2, 0.35, 0.26),
(-0.09, -0.12, -0.03, 0.24), 0.19 1.38 0.06

Table 10: LFPM Elicitation (Appendix F.3) for k = 3 classes with ε = 0.01. (a∗,b∗, b∗0) denote the
true LFPM. Notice that there are thirteen terms to elicit in LFPM. (â, b̂, b̂0) denote the elicited LFPM.
α and σ denote the mean and the standard deviation in the ratio of the elicited to the true metric
(evaluated on the diagonal confusions in ∂D used in Algorithm 7), respectively. We empirically
verify that the elicited metric is constant multiple (α) of the true metric.

True Metric Results on Synthetic Distribution (Appendix F.3)

(a∗1, a
∗
2, a
∗
3, a
∗
4, a
∗
5, a
∗
6),

(b∗1, b
∗
2, b
∗
3, b
∗
4, b
∗
5, b
∗
6), b∗0

(â1, â2, â3, â4, â5, â6),

(b̂1, b̂2, b̂3, b̂4, b̂5, b̂6), b̂0
α σ

(-0.16, -0.05, -0.29, -0.21, -0.17, -0.12),
(-0.76, 0.02, -0.88, 0.09, -0.23, -0.38), 2.36

(-0.11, -0.08, -0.15, -0.17, -0.24, -0.25),
(-0.66, 0.07, -0.86, 0.04, -0.04, -0.09), 1.89 1.11 0.01

(-0.17, -0.19, -0.09, -0.18, -0.16, -0.2),
(-0.3, -0.74, -0.54, -0.37, -0.89, -0.14), 2.99

(-0.05, -0.08, -0.11, -0.16, -0.31, -0.31),
(-0.46, -0.82, -0.43, -0.34, -0.48, 0.09), 2.58 1.08 0.01

(-0.3, -0.08, -0.1, -0.12, -0.21, -0.18),
(-0.24, -0.52, -0.45, 0, -0.41, -0.94), 2.67

(-0.06, -0.08, -0.11, -0.15, -0.27, -0.33),
(-0.59, -0.45, -0.37, 0.07, -0.24, -0.57), 2.36 1.07 0.01

(a) Table 8, Line 1 (b) Table 8, Line 2 (c) Table 8, Line 3

(d) Table 9, Line 1 (e) Table 9, Line 2 (f) Table 9, Line 3

Figure 7: True and elicited DLFPMs for synthetic distribution from Table 8. The solid green curve
and the dashed blue curve are the true and the elicited metric, respectively. We plot the metrics on a
vectorized set of diagonal confusions i.e. confusion matrices are sorted by their parametrizations (m)
in a particular way. We see that the elicited DLFPMs are constant multiple of the true metrics for
both k = 3 and k = 4.
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(a) Table 10, Line 1 (b) Table 10, Line 2 (c) Table 10, Line 3

(d) LFP Metric 1, k = 4 (e) LFP Metric 2, k = 4 (f) LFP Metric 3, k = 4

Figure 8: True and elicited LFPMs. The plots in the top row correspond to the metrics in Table 3 for
k = 3. The bottom row corresponds to metrics for k = 4 (due to many terms, we only provide the
plots for k = 4). The solid green curve and the dashed blue curve are the true and the elicited metric,
respectively. We plot the metrics on a vectorized set of off-diagonal confusions i.e. confusions are
sorted by their parametrizations (θ) in a particular way. We see that the elicited LFPMs are constant
multiple of the true metrics for both k = 3 and k = 4.
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