
Supplementary material: Pose Symmetric Network for Human405

Pose Regression406

A Code and Test Cases407

In the supplemental materials, we have included Pytorch implementation of the proposed layers. Each408

layer also comes with unit-tests validating the chirality-equivaraince. Please read the README.md409

for directory structures, usage and required dependencies. There is also a Jupyter notebook and it’s410

HTML output visualizing the concepts introduced in the paper.411

B Additional Description for Equivariant Layers412

B.1 Equivariant fully connected layers413

Recall, we achieve equivariance through parameter sharing and odd symmetry.414

A fully connected layer performs the mapping y = fFC(x;W, b) := Wx + b. Recall, we achieve415

equivariance through parameter sharing and odd symmetry:416
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Here, we prove that the design is chiral-equivariant. Through multiplying out the matrices, we can418

show WT (x) + b = T (Wx+ b), as follows:419

Proof:420

x = [xln xlp xrn xrp xcn xcp]
T then T (x) = [�xrn xrp �xln xlp �xcn xcp]

T
421

With linear algebra,
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observe that WT (x) + b = T (Wx+ b), which proves the claim. ⇤422

B.2 Equivariant 1D convolution layers423

1D convolution layers [48, 24]. Pose symmetric 1D convolution layers can be based on fully
connected layers. A 1D convolution is a fully connected layer with shared parameters across the time
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dimension, i.e., at each time step the computation is the sum of fully connected layers over a window:

yt =
X

⌧

W⌧xt�⌧ + b =
X

⌧

fFC(xt�⌧ ;W⌧ , b).

Consequently, we enforce equivariance at each time step by employing the symmetry pattern of fully
connected layers at each time slice.
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for all ⌧ . The bias of a 1D convolution is identical to that of a fully connected layer, i.e., the same424

bias is added for each time step. Hence the same parameter sharing is used.425

B.3 Equivariant LSTM and GRU layers426

LSTM and GRU modules which satisfy chirality can be obtained from fully connected layers.427

However, naïvely setting all matrix multiplies within an LSTM to satisfy the equivariance property428

will not lead to an equivariant LSTM because gates are elementwise multiplied with the cell state. If429

both gate and cell preserve the negation then the product will not. Therefore, we change the weight430

sharing scheme for the gates. We set Dout
n for the gates to be the empty set, i.e., the gates will be431

invariant to negation at the input, T in
neg, but still equivariant to the switch operation, T in

swi. With this432

setup, the product of the gates and the cell’s output will preserve the sign, as the gates are invariant to433

negation and passed through a Sigmoid to be within the range of (0, 1). GRU modules are modified434

in the same manner.435

More formally, the computation in an LSTM module are as follows:436

it = �(W iixt + bii +W hih(t�1) + bhi) (Input Gate)
ot = �(W ioxt + bio +W hoh(t�1) + bho) (Output Gate)
ft = �(W ifxt + bif +W hfh(t�1) + bhf) (Forget Gate)
gt = tanh(W igxt + big +W hgh(t�1) + bhg) (Cell State)
ct = ft · c(t�1) + it · gt
ht = ot · tanh(ct) (Recurrent State)

,437

where � denotes an element-wise sigmoid non-linearity.438

Observe that the LSTM operations consist of fully connected layers. For the cell state’s parameters,439

e.g., W ig,W hg, big, bhg, we follow the weight sharing scheme discussed for fully connected layers.440

Due the to multiplication in the cell state, we redesigned the parameter sharing for the input, output441

and forget gate, to be invariant to T in
neg, by setting Dout

n to be the empty set: no negation is needed442

for all dimension. This results in the following parameter sharing scheme for the parameters443

W ii, bii,W hi, bhi,W io, bio,W ho, bho,W if, bif,W hf, bhf:444
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This LSTM is chirality equivariant, as the computation of the cell state is equivariant. Other446

computations are linear combinations of chirality equivariant operations, which remains equivariant.447

We note that the chirality equivariant GRU module is modified by following the same sharing scheme448

for the gates.449

B.4 Equivariant batch-norm layers450

A batch normalization layer performs an element-wise standardization, followed by an element-wise
affine layer (with learnable parameters � and �):

y = fBN(x) := � · x� µp
�2 + ✏

+ �.
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Walk Jog Box Avg.
App. S1 S2 S3 S1 S2 S3 S1 S2 S3 -
Pavllo [36] 17.6 12.5 37.6 28.1 19.1 19.2 29.5 44.0 43.1 33.3
Pavllo [36] (‡) 17.5 12.3 37.4 27.7 19.0 19.0 27.7 43.4 42.5 33.0
Ours 18.9 12.3 38.1 28.5 18.1 18.2 27.1 40.9 40.2 32.2

Table A1: Results on HumanEva-I for multi-action (MA) models reported in Protocol 1 (MPJPE), lower the
better. ‡ indicates test time augmentation.

Equivariance for �, and � is obtained by following the principle applied to fully connected layers:451

we achieve equivariance via parameter sharing and odd symmetry:452

� =
⇥
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⇤T and � =
⇥
[�ln �lp] [��ln �lp] [0 �cp]

⇤T .453

Equivariance for µ, and � is obtained by computing the mean and standard deviation on the “aug-454

mented batch” and by keeping track of its running average. Formally, given a batch B of data,455

µ = 1
2|B|

P
x2B x+ T in(x), � =

qP
x2B(x�µ)2+(T in(x)�µ)2

2|B| .456

B.5 Dropout.457

At test time, dropout scales the input by p, where p is the dropout probability. The equivariance
property is satisfied because of the associativity property of a scalar multiplication. The input and
output dimension and symmetry of a dropout layer are identical. Therefore, T out and T in are
identical. From the definition:

T out(p · x) = T in(p · x) = T in
negT

in
swi(p · x) = p · (T in

negT
in
swix) = p · (T in(x)) 8x 2 R|Jin||Din|.

Hence, a dropout layer naturally satisfies the equivariance property. At training-time, we do not458

enforce equivariance for the dropped units, i.e., we do not jointly drop symmetric units as we found459

this to prevent overfitting. This is likely application dependent.460

C Additional Results461

C.1 3D pose estimation462

In Tab. A1, we report the HumanEva-I for multi-action models evaluated on Protocol 1 (MPJPE).463

Our approach have benefits the most from the Boxing action while maintaing the performance on464

other actions. We also provide qualitative evaluation in Fig. A1 and Fig. A2. We observe that our465

model successfully estimates 3D poses from 2D key-points. We have also attached animations in the466

supplemental.467

C.2 Skeleton based action recognition468

In Fig. A3, we show the visualization of the input skeleton sequences computed by OpenPose [2] and469

the predicted action class by our chiral invariant skeleton based action recognition model.470

D Implementation Details471

D.1 3D pose estimation472

Implementation details. Our model follows the temporal convolutional architecture proposed473

by Pavllo et al. [36], and replaced all layers with their chiral versions; code for the layers are attached474

in the supplemental as well. We also changed ReLU to tanh to achieve chiral equivariance. For the475

temporal models, we follow their 4 blocks design which has the receptive field of 243. For the single476

frame model, we follow their 3 blocks design. These models all contains 1020 hidden dimensions so477

it is a factor the number of joints, 17, this is slightly smaller than the 1024 used in [36]. We also use478

their data processing and batching stragety as described in Section 5 and Appendix A.5 of [36]. For479
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Figure A1: Qualitative visualization of 2D to 3D pose estimation for the action “Walking" on HumanEva-I
dataset.

training the model, we utilized the Adam optimizer with beta1=0.9 and beta2=0.9999. We decay the480

batch-normalizations’ momentum as suggested in [36]. Other details follows the publicly available481

implementation by Pavllo et al. [36]. We enforced chiral equivariance by choosing the |Dout
n | to be 1

3482

of the hidden dimension. The |Din
n | for the input layer is 17 and the |Dn|out for the output layer is483

17, as one for each joint.484

D.2 2D pose forecasting485

Implementation details. The non-chiral equivariant baseline is a seq2seq model consisting of an486

encoder and decoder, which are stacked-LSTMs with hidden size of 1040 and 2 stacked layers. We487

trained using teacher forcing with the Adam optimizer. The batch-size is 256, and we trained for 30488

epochs. Dropout is applied to the LSTMs’ hidden layer with drop probability of 0.5. Following prior489

works, we use max norm gradient clipping of 5, a learning rate of 0.005 with a decay of 0.95 every 2490

epochs. The data processing and evaluation setting follows [5]. Other details follows the publicly491

available implementation by Chiu et al. [5]. We enforced chiral equivariance by choosing the |Dout
n |492

to be 1
2 of the hidden dimension, as the output is two dimensional per joint.493
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Figure A2: Qualitative visualization of 2D to 3D pose estimation for the action “Boxing" on HumanEva-I
dataset.

D.3 Skeleton-based action recognition494

Implementation details. The non-chiral version of the model, Ours-Conv, follows Temporal-495

Conv [21] while we modified the model to have not only temporal convolution but also spatial496

convolution. There are ten spatial-temporal convolution blocks and each block we first perform497

spatial convolution and then temporal convolution. The temporal convolution considers the intra-498

frame information while the spatial convolution considers the inter-frame information. For the499

recognition task, we need chiral invariance, i.e., a chiral pair should be classified as the same action500

class. To this end, we use a chiral invariance layer where we let both Jout
r , Jout

l as well as Dout
n501

to be empty sets, which means there are no left and right joints but only center joints and there is502

no dimension that will be negated in the output of the layer after applying the chirality transform.503

Note that the chiral transformation exchange the left and right joints and negate the dimension in the504

index set Dout
n . Given Jout

r , Jout
l and Dout

n are all empty, it’s obvious that the output will be chiral505

invariance. For the chiral invariance model, Ours-Conv-Chiral, we replace the all the non-symmetric506

layers before the chiral invariance layer with their corresponding chiral equivariance version. All the507

layers after the chiral invariance layer remains the same as in the Ours-Conv model. Similar to [21],508

there are in total 10 convolution blocks in Ours-Conv and we put the chiral invariance layer at the509

fourth layer. Also, we gradually reduce the ratio of the dimension to be negated (|Dout
n |/|Dout|) from510
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Push up

Clean and jerk

Juggling balls

Playing piano

Jogging

Figure A3: Visualization of the input skeleton sequences and the corresponding predicted action classes of our
method on the Kinetics-400 dataset [20].

1
3 to 1

6 at the first layer, from 1
6 to 1

12 at the second layer and from 1
12 to 0 at the third layer. We use511

the SGD optimizer with a momentum of 0.9 as in [51] with a batch size of 256. We train the model512

for 90 epochs.513
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