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1 Supplementary Material1

1.1 Supervised Experiments Details2

1.1.1 Datasets Description3

The following datasets were used in the experiments we reported in the main body of the paper.4

• Molecule property prediction on QM9 [5]: which consists of about 134k drug-like molecules5

made up of Hydrogen (H), Carbon (C), Oxygen (O), Nitrogen (N), and Flourine (F) atoms6

containing up to 9 heavy (non Hydrogen) atoms.7

• Semi-supervised document classification on citation networks: A node of a network repre-8

sents a document associated with a bag-of-words feature. Nodes are connected based on the9

citation links. Given a portion of nodes labeled with subject categories, e.g., science, history,10

the task is to predict the categories for unlabeled nodes within the same network. We use11

two citation networks from [7] - Cora and Pubmed. We try this with two settings - one with12

the author provided dataset splits into train/test/validation and the other with 1%/49%/50%13

train/test/validation splits.14

• Inductive Learning on Protein-Protein Interaction (PPI) Dataset: PPI consists of graphs15

corresponding to different human tissues [9]. The dataset contains 20 graphs for training,16

2 for validation and 2 for testing. Testing graphs remain completely unobserved during17

training. To construct the graphs, we used the preprocessed data provided by [2] and [6].18

1.1.2 Hyperparameter Tuning and Other Details19

The following list describes major hyperparameter settings and some other implementation details20

for our model.21

• L2 parameter regularization: In all models, for all runs, we applied a L2-regularization on22

the weights with a coefficient of 0.001.23

• Number of message passing steps: We performed a search for the number of message24

passing steps over the following set - [1, 2, 4, 5, 10, 20] on Cora and Pubmed. We found that25

4 works the best for GNN and GRevNet, and stuck to that for experiments on all datasets.26

For Neumann RBP, we tried 100 and 200 message passing steps, of which 100 worked27

better.28

• Selection of the test model: We selected the test model by storing the model with the best29

performance in terms of accuracy/Micro F1 score/Mean Squared error (for QM9) on a30

held-out validation dataset.31

• Batch Normalization: It is observed that as the number of message passing steps increases32

beyond a limit (in our case it was 20), the GNN/GRevNet model starts to perform worse,33
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COMMUNITY-SMALL EGO-SMALL

MODEL DEGREE CLUSTER ORBIT DEGREE CLUSTER ORBIT

GRAPHVAE 0.35 0.98 0.54 0.13 0.17 0.05
DEEPGMG 0.22 0.95 0.4 0.04 0.10 0.02

GRAPHRNN 0.08 ± 0.06 0.12± 0.07 0.04 ±0.04 0.09± 0.10 0.22±0.16 0.003±0.004
GNF 0.20 ± 0.07 0.20±0.07 0.11± 0.07 0.03 ± 0.03 0.10 ± 0.05 0.001 ± 0.0009

GRAPHRNN(1024) 0.03 ± 0.02 0.01± 0.0007 0.01 ±0.009 0.04± 0.02 0.05±0.02 0.06±0.05
GNF(1024) 0.12 ± 0.006 0.15±0.004 0.02± 0.003 0.01 ± 0.003 0.03 ± 0.004 0.0008 ± 0.0002

Table 1: Graph generation results showing MMD for various graph statistics between the test set and
generated graphs. GRAPHVAE and DEEPGMG are reproduced directly from the GraphRNN paper.
The second set of results (GRAPHRNN, GNF) are from running the GraphRNN evaluation script
with node distribution matching turned on. We trained 5 separate models of each type and did 3 runs
per models, then took the average over the 15 runs. The third set of results (GRAPHRNN (1024),
GNF (1024)) are from evaluating on the test set and 1024 generated graphs. Again we trained 5
separate models of each type and evaluated the MMD over 5 separate runs, 1 run per model.

and often it is hard to optimize the whole system well – in an end-to-end manner. Likely, the34

whole model ends up at a bad optimum and is unable to recover from it. Similar observations35

were made by [4]. In order to tackle this problem, we applied batch norm at each of the36

layers during message passing. This helps with training up to about 40 steps. In the results37

with, 4 and 10 steps of message passing, we don’t use Batch Normalization.38

• Optimization: We used Adam Optimizer [3] for optimizing GNNs and GRevNets. We chose39

a fixed learning rate of 1e-4. Changing the learning rate to 1e-3, sometimes doesn’t work40

and training is unstable. We applied gradient clipping, allowing a maximum gradient norm41

of 4.0 in all cases. For QM9, we chose a learning rate of 1e-3, as the authors specify in the42

MPNN paper [1]. For Neumann RBP, we found that Adam doesn’t work well. So, we chose43

the settings specified by the author, that is SGD with Momentum of 0.9 and a learning rate44

of 1e-3.45

• Architecture Design: For the message generation step of the message passing phase, we46

use an MLP over the node features. For the update step during message passing, we use47

a GRU-like update to update the node features. The final classifier/regressor on top of the48

graph net module was an MLP with 2 layers.49

1.2 Unsupervised Experiment Details50

1.2.1 Results with Error Bars51

In Table 1, we show the results with error bars for GraphRNN and GNF. GraphVAE and DeepGMG52

are reported directly from [8].53

1.2.2 More Graph Samples54

In Figures 1 and 2 we show the full set of samples on the EGO-SMALL and COMMUNITY-SMALL55

datasets.56

1.3 Computing Infrastructure57

For all experiments in this section, we trained on a single GPU, either a Tesla P100 or Titan Xp.58

1.3.1 Structured Density Estimation59

We train a GNF with 12 message passing steps. We apply batch norm to the input at the beginning60

of each step, and then we use the same module for F1, F2, G1, and G2. The module consists of a61

dot-product multi-head self-attention layer followed by an MLP with 5 layers, latent dimension of62

256, and ReLu non-linearities. We use 8 attention heads.63

For RealNVP, we use an analogous architecture, with 12 coupling layers, batch norm at the beginning64

of each step followed by an MLP of 5 layers with latent dimension 256 and ReLu non-linearities.65
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(a) Training data (b) GNF samples (c) GRAPHRNN samples

Figure 1: Left, training data graphs from EGO-SMALL. Middle, generated graphs from GNF. Right,
generated graphs from GRAPHRNN. Samples were picked at random.

(a) Training data (b) GNF samples (c) GRAPHRNN samples

Figure 2: Left, training data graphs from COMMUNITY-SMALL. Middle, generated graphs from GNF.
Right, generated graphs from GRAPHRNN. Samples were picked at random.

We train both models for 15k steps using the Adam optimizer with a learning rate of 1e-04.66

1.3.2 Graph Autoencoder67

We found that EGO-SMALL and COMMUNITY-SMALL needed differing capacities for the node68

embedding. We used an embedding size of 14 for EGO-SMALL and 30 for COMMUNITY-SMALL. We69

used 10 message passing steps. Each step uses the same architecture, a batch norm layer, followed by70

multi-head dot-product self-attention, and then an MLP with 3 layers, a latent dimension of 2048,71
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and ReLu non-linearities. We used 8 attention heads. We shared weights between message passing72

steps. For both datasets we trained for 100k steps using the Adam Optimizer and a learning rate of73

1e-04. We use an exponential learning rate decay of 0.99 every 1000 steps.74

1.3.3 GNF for Graph Generation75

We use the same embedding sizes as the graph autoencoder, 14 for EGO-SMALL and 30 for76

COMMUNITY-SMALL. We used 12 message passing steps. For each message passing step we77

used the same architecture for each F1, F2, G1 and G2. We have a batch norm layer followed by a78

multi-head dot-product self-attention module, then an MLP with 3 layers, a latent dimension of 2048,79

and ReLu non-linearities. We used 8 attention heads. We did not share weights between message80

passing steps. For both datasets we train for 100k steps using the Adam Optimizer and a learning rate81

of 1e-04 for EGO-SMALL and 1e-05 for COMMUNITY-SMALL. We use an exponential learning rate82

decay of 0.99 every 1000 steps.83
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