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A Algorithm

In Algorithm [2, we also apply Ouroboros to Adam, an adaptive variant of SGD. We update first
moment vectors and second moment vectors using gradients computed by the Ouroboros algorithm

so that the updates in modules can be parallelized.

Algorithm 2 Ouroboros + Adam

Require:
Initial weights w® = [wg 1), ..., wg g ;
Initial word embedding V0 = V?;
Stepsize: 7v; Small constant € = 10~8;
Exponential decay: 51 = 0.9, 82 = 0.999 ;
1,; moment vector: mg(k) =0,Vk, m{ = 0;
2,,4 moment vector: vg.(k) =0,Vk, v}, = 0;
1: fort=0,1,2,..., 7T —1do
2 for k =1,..., K in parallel do
3: Compute delayed gradient g,C for module k following .
4: Compute mixed gradient g¢, for embedding layer following @)
5 Update biased first moment estimate:

tgﬁ) = B1-mggy + (1= B1) - gi;

mitt =B -mb +(1—B1) - gt
6: Update biased second moment estimate:

t+1 =fy- U G(k) +(1-57)- (912)2;
f“ = B2l + (1= B2) - (gh)%

7: Compute bias-correct first moment estimate:
N t+1 ot t+1
Mgy = Mg/ (1= B )3
NS RS | t+1 .
my " =my /(L= 57 )
8: Compute bias-correct second moment estimate:

i1t t+1
Og(w) = Vgiry/ (L = F2);

g+l — L) _ t+1 .
oy =uy/( 5 )
9: Update weights and embedding layer following Adam:
t+1
tJrl t Mg (k) .
Yoy = Yoy =77 T e
S (e’
. — v .
7 v < At+1+6) ’
10:  end for

11: end for

12: Output w®, V;* and V;® randomly from {w!}_ ', {V} -} and {V1} 2}

B Proof

Proof to Lemma
Proof: Let w = [V, w], it is satisfied that:

Z Vigw (@) + Vv, (@) + Vv, (@)

According to Assumption [T} the following inequality holds that:
f(wt+1) < f(’lj}t) + Vf(’lz)f)T (QI]t+1 ~t) H ~t+1

11

.,t”2
9"

(18)

19)



302 From the update rule in Algorithm[I} we take expectation on both sides and obtain: small

E [f(lbtJrl)]
F@@") =%V f(w (Ejvwg W' ¢ va(t )+ 3 1 (@ )

IN

+Vf0ﬁ)—Vf@ﬂ>—ki?E

Z vfg(k)vxi(t—K+k) (wt7K+k)

1 2
+§va=xi<t—x+1> (wt KH) + Vszlm ( ) )+ V(')

=ﬂ®—@—W)WfIEL”

2

K
Z Vom0 serny (@)
k=

1 1 2
+§va’wi<t—1<+1> (wt_K+1) + ’vaJi(f«) (wt) - Vf(u?t)

2

— (e — L3) V f(w (ngk) i K+’€)+ Vf (@'~ K+1)+ va( B =~ Vf(w

Lr; ~t %05 t wt
= f@@") - <% — ;) [V £(ah)]|; + 7 —"E ) vag(k)

t))

Q1

L 1 2
+% H2va7:v7:<t_K+1) (wt KH)"’ VfV%(t)( ) V fv (@)

2

Q2

— (w — L?) Vf(w (ngk) ik K+k)+ Vf (@'~ K+1)+ va( B = Vi@

(20)

)

Qs

303 where the equalities follow from the unbiased gradient E [V f,., (w)] = V f(w) and [V fg ) (w)]; =
s 0, Vj ¢ G(k). Because of ||z + y||3 < 2[|z||3 + 2||y/|3, we have the upper bound of Q; as follows:

Q1
L’Yt i )

vam) wireny @) vaw) vagw) A +ZVfg(k>

k=1 = k=1
2

IA

Ly} E vag(m i repm (@) vagm —REE

k=1

Q4
K K

HLAE D Vg (@) =V o (@)
=1 k=1

Qs
305 Similarly, we get the upper bound of )5 as follows:

L~? L
Q: < ZLE|VH ) - )2+ |V o () — V)

fﬂi(f K+k)(

< Yigjvp.

i(t—K+k) (

wt7K+1) V fy (i t— K+1 || +L7t E||Vf ot K+1) va(,wt

K+k)

I

Qs Q7
2

L
P9 ()~ O 1)

12

(22)
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Because of zy < 1||z[|3 + %[y[|3, we have:

) 2
vt — L

Tt *LVQ ¢
— V@, + ==

K
> Vg (@) vag

k=1

Qs

IN

2

Lv
T [V (@) = V@) (23)
According to Assumptlon@ we can bound Q)4 as follows:
K 2
Qs = ZEHWg(k),m_m)WFKM)—Vfgw)(wt*m’“)HQ
k=1
K 2
< E:IEvag(k),gci(t,mk)(UNJFKHC)H2
k=1
< KM, (24)

where the first equality follows from the definition of V fg () (w) so that [V fg ) (w)]; = 0, Vj ¢
G(k) and the last inequality is from Assumptlonl 2l Similarly, we can also bound Qg as follows:

Qe < M. (25)
We can get the upper bound of Q5:

Q = ZHVfg @K~V f ()

K
< IV — v
k=1
2
K t—1
< 1.2 Z Z (wj+1 _ u~)j)
k=1 ||j=max{0,t—K+k}
K t—1 K ‘
= szyilax{o»t—lf-*-l}KZ Z vag(’“)vﬂf(j—zwk) (@JiKJrk)
k=1 j=max{0,t—K+k} " k=1
2
TV IV ki (mj7K+k) +Vivag (@)
’Ymdx ~—
< {Ot Ee Z Z k)@ (j—rc4k) (wj K+k)
k=1 j=max{0,t—K+k}
2
+vav$<j—1<+k> (wj_K+k) + VfVJu‘) (u?j)
< LyoK3(K +4)M, (26)

where the second inequality is from Assumption|[I, the fourth mequahty follows from that Ly <1
and the last inequality follows from ||z1 + ... + 2|3 < r(||z1]13 + ... + ||z+]13), AssumptlonE and
0 1= maxy 7“““’771[(“} Similarly, we can bound Q:

Q7 < LyoK?*(K+4)M. 27)
Integrating the upper bound of Q1 to Q7 in (2I)), we have:

E[f(@"*h)] - f@") < -3 | VF@")| + LMk, (28)

where we let My = (K + 3 )M+J(— + K3) (K +4)M.

13
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Proof to Theorem ]

Proof: When +, is constant and v; = =, we have 0 = 1. Because of the definition of My and taking
total expectation of (I5) in Lemma[l] we obtain:

E[f(w™)] = f(w') < —%E [V £(w")]|2 + 7 LM (29)

Summing (29) from ¢ = 0 to T' — 1, we have:

T—-1
E[f@)] - f(®) < -2 3 E[viw)];
t=0

+T7?LMk. (30)
Supposing w* is the optimal solution for f(w), it holds that f(w*) — f(w®) < E [f(wT)] — f(w?).
Rearranging inequality and dividing both sides by %, we complete the proof.
O
Proof to Theorem
Proof: {~} is a diminishing sequence and ; = {7, such that 0 < K and My = (K + )M +

(KTS + K*)(K + 4) M. Taking total expectation of (E) in LemmaEand summing it from ¢ = 0 to
T — 1, we obtain:

T-1

YE ||V f(wh)]
t=0

E[f(wh)] - f(w®) < -

N

+ Y 2LMyg. (31)
t

Suppose w* is the optimal solution for f(w); therefore f(w*) — f(w?) < E [f(w™)] — f(w?).
Rearranging inequality (3T) and dividing both sides by T, we complete the proof.

!
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