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1 Introduction

In this document, we present detailed network structures and hyper parameters used for training of
each dataset. Our model is based on VAE with multi-modal prior distribution. To achieve distinct
multi-modal for clear clustering in latent space, we restrict the prior distribution with regularization
loss Ly.c4 as [2]; clusters for each category are enforced to be separated from each other within certain
distance, D, x d, where D, is the dimension of the latent variable, and d is a threshold which is
chosen manually. The total loss for our model is then expressed as the following:

Liotar = E(@,X*,AZ) +YLyreg (D, d), (1
where L is the lower bound of VAE, and + is a hyperparameter for balanced training procedure.

In both conventional and GZSL settings, datasets vary in the number of total categories and the
datapoint dimension, and our approach is to place distinct Gaussian distributions corresponding
to classes in the latent space. For this reason, it is necessary to adjust the network structure and
hyperparameters according to the dataset to secure the capacity to compress all the class distributions
into the latent space. Hence we empirically determine proper network structures, and choose d and
. For the encoder, decoder and the prior network we use maximum 3, 4 and 6 blocks respectively,
with slight variations depending on the datasets. To form a unit block for networks, we use leaky-relu
activation function, batch normalization and dropout layers sequentially after a dense layer. For the
last blocks of encoder, decoder and prior network, we omit the activation, batch normalization and
dropout.

For ZSL, we first pre-train our model on seen classes, and perform fine-tunning for both seen and
unseen classes with SGAL strategy. Before fine-tuning, the model is highly-fitted to the seen classes;
we observe that under this condition our model hardly learn the unseen classes, when the ratio of
unseen and seen in one minibatch is equal to the ratio related number of classes, or simply 0.5.
We empirically found that our model achieves the best performance when g, the ratio of unseen, is
between 0.8 and 0.95. Training process is terminated when the maximum classification accuracy
of unseen classes, or maximum harmonic mean is achieved for conventional and GZSL settings
respectively. In order to prevent the network from diverging, we also train our model on only seen
classes with probability p, while SGAL training is iteratively conducted. We specify the parameter
values and network settings for each testbed in Table. |1} For the optimizer, Adam [1] is used for all
cases with learning rate 10~4,
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