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Abstract

We propose RUDDER, a novel reinforcement learning approach for delayed re-
wards in finite Markov decision processes (MDPs). In MDPs the )-values are
equal to the expected immediate reward plus the expected future rewards. The
latter are related to bias problems in temporal difference (TD) learning and to
high variance problems in Monte Carlo (MC) learning. Both problems are even
more severe when rewards are delayed. RUDDER aims at making the expected
future rewards zero, which simplifies (-value estimation to computing the mean
of the immediate reward. We propose the following two new concepts to push
the expected future rewards toward zero. (i) Reward redistribution that leads to
return-equivalent decision processes with the same optimal policies and, when
optimal, zero expected future rewards. (ii) Return decomposition via contribution
analysis which transforms the reinforcement learning task into a regression task
at which deep learning excels. On artificial tasks with delayed rewards, RUD-
DER is significantly faster than MC and exponentially faster than Monte Carlo
Tree Search (MCTS), TD()), and reward shaping approaches. At Atari games,
RUDDER on top of a Proximal Policy Optimization (PPO) baseline improves the
scores, which is most prominent at games with delayed rewards. Source code is
available at https://github.com/ml-jku/rudder and demonstration videos
athttps://goo.gl/EQerZV.

1 Introduction

Assigning credit for a received reward to past actions is central to reinforcement learning [47]. A
great challenge is to learn long-term credit assignment for delayed rewards [23, 20, 18, 33]. Delayed
rewards are often episodic or sparse and common in real-world problems [30, 25]. For Markov
decision processes (MDPs), the (Q-value is equal to the expected immediate reward plus the expected
future reward. For ()-value estimation, the expected future reward leads to biases in temporal
difference (TD) and high variance in Monte Carlo (MC) learning. For delayed rewards, TD requires
exponentially many updates to correct the bias, where the number of updates is exponential in the
number of delay steps. For MC learning, the number of states affected by a delayed reward can
grow exponentially with the number of delay steps. (Both statements are proved after Supplements
theorems S8 and S10.) An MC estimate of the expected future reward has to average over all possible
future trajectories, if rewards, state transitions, or policies are probabilistic. Delayed rewards make an
MC estimate much harder.
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The main goal of our approach is to construct an MDP that has expected future rewards equal to
zero. If this goal is achieved, ()-value estimation simplifies to computing the mean of the immediate
rewards. To push the expected future rewards to zero, we require two new concepts. The first new
concept is reward redistribution to create return-equivalent MDPs, which are characterized by
having the same optimal policies. An optimal reward redistribution should transform a delayed reward
MDP into a return-equivalent MDP with zero expected future rewards. However, expected future
rewards equal to zero are in general not possible for MDPs. Therefore, we introduce sequence-Markov
decision processes (SDPs), for which reward distributions need not to be Markov. We construct
a reward redistribution that leads to a return-equivalent SDP with a second-order Markov reward
distribution and expected future rewards that are equal to zero. For these return-equivalent SDPs, Q-
value estimation simplifies to computing the mean. Nevertheless, the ()-values or advantage functions
can be used for learning optimal policies. The second new concept is return decomposition and its
realization via contribution analysis. This concept serves to efficiently construct a proper reward
redistribution, as described in the next section. Return decomposition transforms a reinforcement
learning task into a regression task, where the sequence-wide return must be predicted from the
whole state-action sequence. The regression task identifies which state-action pairs contribute to the
return prediction and, therefore, receive a redistributed reward. Learning the regression model uses
only completed episodes as training set, therefore avoids problems with unknown future state-action
trajectories. Even for sub-optimal reward redistributions, we obtain an enormous speed-up of ()-value
learning if relevant reward-causing state-action pairs are identified. We propose RUDDER (RetUrn
Decomposition for DElayed Rewards) for learning with reward redistributions that are obtained via
return decomposition.

To get an intuition for our approach, assume you repair pocket watches and then sell them. For a
particular brand of watch you have to decide whether repairing pays off. The sales price is known, but
you have unknown costs, i.e. negative rewards, caused by repair and delivery. The advantage function
is the sales price minus the expected immediate repair costs minus the expected future delivery costs.
Therefore, you want to know whether the advantage function is positive. — Why is zeroing the
expected future costs beneficial? — If the average delivery costs are known, then they can be added
to the repair costs resulting in zero future costs. Now you can use your repairing experiences, and
you just have to average over the repair costs to know whether repairing pays off. — Why is return
decomposition so efficient? — Because of pattern recognition. For zero future costs, you have to
estimate the expected brand-related delivery costs, which are e.g. packing costs. These brand-related
costs are superimposed by brand-independent general delivery costs for shipment (e.g. time spent for
delivery). Assume that general delivery costs are indicated by patterns, e.g. weather conditions, which
delay delivery. Using a training set of completed deliveries, supervised learning can identify these
patterns and attribute costs to them. This is return decomposition. In this way, only brand-related
delivery costs remain and, therefore, can be estimated more efficiently than by MC.

Related Work. Our new learning algorithm is gradually changing the reward redistribution during
learning, which is known as shaping [44, 47]. In contrast to RUDDER, potential-based shaping like
reward shaping [27], look-ahead advice, and look-back advice [50] use a fixed reward redistribution.
Moreover, since these methods keep the original reward, the resulting reward redistribution is not
optimal, as described in the next section, and learning can still be exponentially slow. A monotonic
positive reward transformation [28] changes the reward distribution but is not assured to keep
optimal policies. Sibling Rivalry [48] overcomes local optima of distance-to-goal-based reward
shaping by changing the original reward, while still finding an optimal policy for the original reward.
Disentangled rewards [15] keep optimal policies but are neither environment nor policy specific,
therefore cannot have zero expected rewards. Successor features decouple environment and policy
from rewards, but changing the reward changes the optimal policies [7, 6]. Temporal Value Transport
(TVT) uses an attentional memory mechanism to learn a value function that serves as fictitious
reward but optimal policies are not guaranteed to be kept [21]. All these methods do not ensure zero
expected future rewards that would speed up learning. Like RUDDER, previous methods have used
supervised methods for reinforcement learning [34, 8, 38]. Separate backward models can be learned
in a supervised manner to trace back from known goal states [ 4] or from high reward states [16].
“Hindsight Credit Assignment” (HCA) [17] and “Upside-Down Reinforcement Learning” [39, 45]
use supervised learning via cross-entropy to select a backward model that predicts the action to
take (output) to achieve a desired return (input 1) from current state (input 2) in a certain number
of steps (input 3). For HCA the desired return can be replaced by a desired future state and the
number of steps can be relaxed to being achieved until episode end. Instead of backward models,



“backpropagation through a model” [26, 31, 32, 49, 37, 4, 5] uses forward models, which predict the
return and generate update signals for a policy by backward analysis via sensitivity analysis. While
RUDDER also uses a forward model, it (i) uses contribution analysis instead of sensitivity analysis
for backward analysis, and (ii) uses the whole state-action sequence to predict the return.

2 Reward Redistribution and Novel Learning Algorithms

Reward redistribution is our main new concept to achieve expected future rewards equal to zero.
We start by introducing MDPs, return-equivalent sequence-Markov decision processes (SDPs), and
reward redistribution. Furthermore, optimal reward redistribution is defined and novel learning
algorithms based on reward redistribution are introduced.

MDP Definitions and Return-Equivalent Sequence-Markov Decision Processes (SDPs). A fi-
nite Markov decision process (MDP) P is 5-tuple P = (8,A,R,p,v) of finite sets § of states
s (random variable S; at time t), A of actions a (random variable A;), and R of rewards r (ran-
dom variable R;1). Furthermore, P has transition-reward distributions p(Sy11 = §', Rgr1 = 7 |
Sy = s, Ay = a) conditioned on state-actions, and a discount factor v € [0,1]. The marginals
are p(r | s,a) = > ., p(s',7 | s,a) and p(s’ | s,a) = >, p(s’,7 | 5,a). The expected reward
isr(s,a) = >, 7mp(r | s,a). The return Gy is Gy = Y-y v Ritx+1. For finite horizon MDPs
with sequence length 7" and v = 1 the return is G} = Zz;é Ritx+1. A Markov policy is given
as action distribution 7(4; = @ | S; = s) conditioned on states. We often equip an MDP P
with a policy m without explicitly mentioning it. The action-value function ¢™ (s, a) for policy 7
is ¢"(s,a) = E; [Gt | St = s, At = a]. The goal of learning is to maximize the expected return at
time ¢ = 0, that is v] = E [Go]. The optimal policy 7* is 7* = argmax . [v]]. A sequence-Markov
decision process (SDP) is defined as a decision process which is equipped with a Markov policy and
has Markov transition probabilities but a reward that is not required to be Markov. Two SDPs P and
‘P are return-equivalent if (i) they differ only in their reward distributions and (ii) they have the same
expected return at t = 0 for each policy m: v§ = v{. They are strictly return-equivalent if they have
the same expected return for every episode and for each policy 7. Strictly return-equivalent SDPs
are return-equivalent. Return-equivalent SDPs have the same optimal policies. For more details see
Supplements S2.2.

Reward Redistribution. Strictly return-equivalent SDPs P and P can be constructed by re-
ward redistributions. A reward redistribution given an SDP P is a procedure that redistributes
for each sequence sg,ao,...,sr,ar the realization of the sequence-associated return variable
Go = ZZ;O I:{t_H or its expectation along the sequence. Later we will introduce a reward re-
distribution that depends on the SDP P. The reward redistribution creates a new SDP P with the
redistributed reward R; 1 at time (¢t + 1) and the return variable Gy = Zf,T:o Ryy1. A reward redistri-
bution is second order Markov if the redistributed reward R; 1 depends only on (s;_1,a:—1, St, az).
If the SDP P is obtained from the SDP P by reward redistribution, then P and P are strictly return-
equivalent. The next theorem states that the optimal policies are still the same for P and P (proof
after Supplements Theorem S2).

Theorem 1. Both the SDP P with delayed reward Rt+1 and the SDP P with redistributed reward
Ry have the same optimal policies.

Optimal Reward Redistribution with Expected Future Rewards Equal to Zero. We move on
to the main goal of this paper: to derive an SDP via reward redistribution that has expected future
rewards equal to zero and, therefore, no delayed rewards. At time (¢ — 1) the immediate reward is R;
with expectation r(s;—_1, a;—1). We define the expected future rewards x(m, ¢ — 1) at time (¢ — 1) as
the expected sum of future rewards from Ry 1 t0 R4 14m-

Definition 1. For 1 <t < T and 0 < m < T —t, the expected sum of delayed rewards at time
(t — 1) in the interval [t +1,t +m + 1] is defined as k(m,t —1) = E; D" Revayr | $1—1, as—1].

For every time point ¢, the expected future rewards (T — ¢ — 1,t) given (s, a;) is the expected sum
of future rewards until sequence end, that is, in the interval [t + 2, T + 1]. For MDPs, the Bellman
equation for Q-values becomes ¢™ (s¢, a;) = r(s¢, ar) + k(T —t — 1,¢). We aim to derive an MDP



with k(T — t — 1,¢) = 0, which yields ¢™ (s¢, a;) = r(st, a;). In this case, learning the Q-values
simplifies to estimating the expected immediate reward r(s¢,a:) = E[Ryy1 | S¢, a:]. Hence, the
reinforcement learning task reduces to computing the mean, e.g. the arithmetic mean, for each
state-action pair (s, a;). A reward redistribution is defined to be optimal, if x(T —t — 1,t) = 0 for
0 <t < T — 1. In general, an optimal reward redistribution violates the Markov assumptions and the
Bellman equation does not hold (proof after Supplements Theorem S3). Therefore, we will consider
SDPs in the following. The next theorem states that a delayed reward MDP P with a particular policy
7 can be transformed into a return-equivalent SDP P with an optimal reward redistribution.

Theorem 2. We assume a delayed reward MDP P, where the accumulated reward is given at
sequence end. A new SDP P is obtained by a second order Markov reward redistribution, which
ensures that ‘P is return-equivalent to P. For a specific m, the following two statements are equivalent:
(I) k(T —t—1,t) =0, i.e. the reward redistribution is optimal,

(1) E[Ry1 | st—1,a0-1,8t,a1) = G (8¢,a¢) — § (8¢-1,a4-1) - (1)
An optimal reward redistribution fulfills for 1 <t < Tand0 < m < T —t: k(m,t —1) = 0.

The proof can be found after Supplements Theorem S4. The equation x(7' —t¢ — 1, ¢) = 0 implies that
the new SDP P has no delayed rewards, that is, E; [Ry114+ | St—1,a:-1] = 0, for0 < 7 < T—t—1
(Supplements Corollary S1). The SDP P has no delayed rewards since no state-action pair can
increase or decrease the expectation of a future reward. Equation (1) shows that for an optimal reward
redistribution the expected reward has to be the difference of consecutive ()-values of the original
delayed reward. The optimal reward redistribution is second order Markov since the expectation of
Ry attime (¢ + 1) depends on (s;—1, ar—1, St, at).

The next theorem states the major advantage of an optimal reward redistribution: ¢™ (s, a;) can be
estimated with an offset that depends only on s; by estimating the expected immediate redistributed
reward. Thus, @-value estimation becomes trivial and the computation of the advantage function of

the MDP P is simplified.
Theorem 3. If the reward redistribution is optimal, then the Q-values of the SDP P are given by

q"(st,ar) = r(sg,ae) = §"(st,a0) — Es, 0,0 (07 (Se-1,a0-1) [ 8] = 7 (se,a0) — 47 (s¢) -
. 2
The SDP P and the original MDP ‘P have the same advantage function. @
Using a behavior policy 7 the expected immediate reward is
Ex [Rig1 | se,a] = @ (se,a0) — ™7 (1) . 3)

The proof can be found after Supplements Theorem S5. If the reward redistribution is not optimal,
then k(T — t — 1,t) measures the deviation of the )-value from r(s;, a;). This theorem justifies
several learning methods based on reward redistribution presented in the next paragraph.

Novel Learning Algorithms Based on Reward Redistributions. We assume v = 1 and a finite
horizon or an absorbing state original MDP P with delayed rewards. For this setting we introduce
new reinforcement learning algorithms. They are gradually changing the reward redistribution
during learning and are based on the estimations in Theorem 3. These algorithms are also valid for
non-optimal reward redistributions, since the optimal policies are kept (Theorem 1). Convergence
of RUDDER learning can under standard assumptions be proven by the stochastic approximation
for two time-scale update rules [12, 22]. Learning consists of two updates: a reward redistribution
network update and a (Q-value update. Convergence proofs to an optimal policy are difficult, since
locally stable attractors may not correspond to optimal policies.

According to Theorem 1, reward redistribution keeps the optimal policies. Therefore, even non-
optimal reward redistributions ensure correct learning. However, an optimal reward redistribution
speeds up learning considerably. Reward redistribution can be combined with methods that use
@-value ranks or advantage functions. We consider (A) Q-value estimation, (B) policy gradients,
and (C) Q-learning. Type (A) methods estimate ()-values and are divided into variants (i), (ii), and
(iii). Variant (i) assumes an optimal reward redistribution and estimates ¢ (s, a;) with an offset
depending only on s;. The estimates are based on Theorem 3 either by on-policy direct (Q-value
estimation according to Eq. (2) or by off-policy immediate reward estimation according to Eq. (3).
Variant (ii) methods assume a non-optimal reward redistribution and correct Eq. (2) by estimating «.



Variant (iii) methods use eligibility traces for the redistributed reward. RUDDER learning can be
based on policies like “greedy in the limit with infinite exploration” (GLIE) or “restricted rank-based
randomized” (RRR) [43]. GLIE policies change toward greediness with respect to the ()-values
during learning. For more details on these learning approaches see Supplements S2.7.1.

Type (B) methods replace in the expected updates E. [Vglogm(a | s;0)q™ (s, a)] of policy gradients
the value ¢™ (s, a) by an estimate of 7 (s, a) or by a sample of the redistributed reward. The offset
¥™(s) in Eq. (2) or 1v™7(s) in Eq. (3) reduces the variance as baseline normalization does. These
methods can be extended to Trust Region Policy Optimization (TRPO) [40] as used in Proximal
Policy Optimization (PPO) [42]. The type (C) method is Q-learning with the redistributed reward.
Here, (Q-learning is justified if immediate and future reward are drawn together, as typically done.

3 Constructing Reward Redistributions by Return Decomposition

We now propose methods to construct reward redistributions. Learning with non-optimal reward
redistributions does work since the optimal policies do not change according to Theorem 1. However,
reward redistributions that are optimal considerably speed up learning, since future expected rewards
introduce biases in TD methods and high variances in MC methods. The expected optimal redis-
tributed reward is the difference of ()-values according to Eq. (1). The more a reward redistribution
deviates from these differences, the larger are the absolute x-values and, in turn, the less optimal
the reward redistribution gets. Consequently, to construct a reward redistribution which is close to
optimal we aim at identifying the largest ()-value differences.

Reinforcement Learning as Pattern Recognition. We want to transform the reinforcement learn-
ing problem into a pattern recognition task to exploit deep learning approaches. The sum of the
Q-value differences gives the difference between expected return at sequence begin and the expected
return at sequence end (telescope sum). Thus, Q-value differences allow to predict the expected return
of the whole state-action sequence. Identifying and redistributing the reward to the largest ()-value
differences reduces the prediction error most. ()-value differences are assumed to be associated
with patterns in state-action transitions. The largest )-value differences are expected to be found
more frequently in sequences with very large or very low return. The resulting task is to predict the
expected return from the whole sequence and identify which state-action transitions have contributed
the most to the prediction. This pattern recognition task serves to construct a reward redistribution,
where the redistributed reward corresponds to the different contributions. The next paragraph shows
how the return is decomposed and redistributed along the state-action sequence.

Return Decomposition. The return decomposition idea is that a function g predicts the expectation
of the return for a given state-action sequence (return for the whole sequence). The function g is
neither a value nor an action-value function since it predicts the expected return when the whole
sequence is given. With the help of g either the predicted value or the realization of the return is
redistributed over the sequence. A state-action pair receives as redistributed reward its contribution
to the prediction, which is determined by contribution analysis. We use contribution analysis since
sensitivity analysis has serious drawbacks, e.g. local minima, instabilities, exploding or vanishing
gradients, and proper exploration [19, 36]. The biggest drawback is that the relevance of actions
is missed since sensitivity analysis does not consider the contribution of actions to the output, but
only their effect on the output when slightly perturbing them. Contribution analysis determines how
much a state-action pair contributes to the final prediction. We can use any contribution analysis
method, but we specifically consider three methods: (A) differences of return predictions, (B)
integrated gradients (IG) [46], and (C) layer-wise relevance propagation (LRP) [3]. For (A), g must
try to predict the sequence-wide return at every time step. The redistributed reward is given by the
difference of consecutive predictions. The function g can be decomposed into past, immediate, and
future contributions to the return. Consecutive predictions share the same past and the same future
contributions except for two immediate state-action pairs. Thus, in the difference of consecutive
predictions contributions cancel except for the two immediate state-action pairs. Even for imprecise
predictions of future contributions to the return, contribution analysis is more precise, since prediction
errors cancel out. Methods (B) and (C) rely on information later in the sequence for determining
the contribution and thereby may introduce a non-Markov reward. The reward can be viewed to be
probabilistic but is prone to have high variance. Therefore, we prefer method (A).



Explaining Away Problem. We still have to tackle the problem that reward causing actions might
not receive redistributed rewards since they are explained away by later states. To describe the
problem, assume an MDP P with the only reward at sequence end. To ensure the Markov property,
states in P have to store the reward contributions of previous state-actions; e.g. st has to store all
previous contributions such that the expectation 7(s, ar) is Markov. The explaining away problem
is that later states are used for return prediction, while reward causing earlier actions are missed.
To avoid explaining away, we define a difference function A(s;_1,a;—1, S¢,a;) between a state-
action pair (s, a;) and its predecessor (s;—1,a;—1). That A is a function of (s¢, a, St—1,a¢—1) is
justified by Eq. (1), which ensures that such As allow an optimal reward redistribution. The sequence
of differences is Aoy := (A(s—1,a-1,50,a0);--.,A(sp—1,ar—1,s7,ar)). The components
A are assumed to be statistically independent from each other, therefore A cannot store reward
contributions of previous A. The function g should predict the return by g(Ag.r) = 7(st,ar) and
can be decomposed into g(Ag.1) = ZtT:O h¢. The contributions are hy = h(A(s¢—1,at—1, St, at))
for 0 < ¢ < T. For the redistributed rewards R; 1, we ensure E [Ryy1 | $¢—1,a1—1, S, a¢] = hy.
The reward Rz of P is probabilistic and the function g might not be perfect, therefore neither
g(Ag.1) = T4 for the return realization 7741 nor g(Ag.r) = 7(st, ar) for the expected return
holds. Therefore, we need to introduce the compensation 77,1 — ZZ:O hMA(Sr—1,0r-1,57,a7))
as an extra reward R7 o at time 7" + 2 to ensure strictly return-equivalent SDPs. If g was perfect,
then it would predict the expected return which could be redistributed. The new redistributed rewards
Ry 1 are based on the return decomposition, since they must have the contributions /; as mean:

T
E[R: | s0,a0] = ho, Rris = Rpi1— th, 4
)
E[Riy1 | st—1,a4-1,50,a¢) = hy, 0<t< T, )

where the realization 771 is replaced by its random variable R7. . If the prediction of g is perfect,
then we can redistribute the expected return via the prediction. Theorem 2 holds also for the correction
R1.o (see Supplements Theorem S6). A g with zero prediction errors results in an optimal reward
redistribution. Small prediction errors lead to reward redistributions close to an optimal one.

RUDDER: Return Decomposition using LSTM. RUDDER uses a Long Short-Term Memory
(LSTM) network for return decomposition and the resulting reward redistribution. RUDDER consists
of three phases. (I) Safe exploration. Exploration sequences should generate LSTM training samples
with delayed rewards by avoiding low ()-values during a particular time interval. Low ()-values hint
at states where the agent gets stuck. Parameters comprise starting time, length, and ()-value threshold.
(II) Lessons replay buffer for training the LSTM. If RUDDER’s safe exploration discovers an
episode with unseen delayed rewards, it is secured in a lessons replay buffer [24]. Unexpected
rewards are indicated by a large prediction error of the LSTM. For LSTM training, episodes with
larger errors are sampled more often from the buffer, similar to prioritized experience replay [35].
(III) LSTM and return decomposition. An LSTM learns to predict sequence-wide return at every
time step and, thereafter, return decomposition uses differences of return predictions (contribution
analysis method (A)) to construct a reward redistribution. For more details see [1].

Feedforward Neural Networks (FFNs) vs. LSTMs. In contrast to LSTMs, FNNs are not suited
for processing sequences. Nevertheless, FNNs can learn a action-value function, which enables
contribution analysis by differences of predictions. However, this leads to serious problems by
spurious contributions that hinder learning. For example, any contributions would be incorrect if
the true expectation of the return did not change. Therefore, prediction errors might falsely cause
contributions leading to spurious rewards. FNNs are prone to such prediction errors since they have
to predict the expected return again and again from each different state-action pair and cannot use
stored information. In contrast, the LSTM is less prone to produce spurious rewards: (i) The LSTM
will only learn to store information if a state-action pair has a strong evidence for a change in the
expected return. In this way, key events can be stored. If information is stored, then internal states
and, therefore, also the predictions change, otherwise the predictions stay unchanged. Hence, storing
events receives a contribution and a corresponding reward, while by default nothing is stored and no
contribution is given. (ii) The LSTM tends to have smaller prediction errors since it can reuse past
information for predicting the expected return. (iii) Prediction errors of LSTMs are much more likely



to cancel via prediction differences than those of FNNs. Since consecutive predictions of LSTMs
rely on the same internal states, they usually have highly correlated errors.

Human Expert Episodes. They are an alternative to exploration and can serve to fill the lessons
replay buffer. Learning can be sped up considerably when the LSTM identifies human key actions.
RUDDER will reward human key actions even for episodes with low return since other actions that
thwart high returns receive negative reward. Using human demonstrations in reinforcement learning
led to a huge improvement on some Atari games like Montezuma’s Revenge [29, 2].

Limitations. RUDDER might not be effective for tasks without delayed rewards, since LSTM
learning takes extra time and and struggles with extremely long sequences. Moreover, reward
redistribution may introduce disturbing spurious reward signals.

4 Experiments

RUDDER is evaluated on three artificial tasks with delayed rewards. These tasks are designed to show
problems of TD, MC, and potential-based reward shaping. RUDDER overcomes these problems.
Next, we demonstrate that RUDDER also works for more complex tasks with delayed rewards.
Therefore, we compare RUDDER with a Proximal Policy Optimization (PPO) baseline on 52 Atari
games. All experiments use finite time horizon or absorbing states MDPs with v = 1 and reward at
episode end. For more information see Supplements S4.1.2.

Artificial Tasks (I)—(III). Task (I) shows that TD methods have problems with vanishing information
for delayed rewards. The goal is to learn that a delayed reward is larger than a distracting immediate
reward. Therefore, the correct expected future reward must be assigned to many state-action pairs.
Task (II) is a variation of the introductory pocket watch example with delayed rewards. It shows
that MC methods have problems with the high variance of future unrelated rewards. The expected
future reward that is caused by the first action has to be estimated. Large future rewards that are not
associated with the first action impede MC estimations. Task (IIT) shows that potential-based reward
shaping methods have problems with delayed rewards. For this task, only the first two actions are
relevant, to which the delayed reward has to be propagated back.

The tasks have different delays, are tabular (()-table), and use an e-greedy policy with e = 0.2. We
compare RUDDER, MC, and TD()\) on all tasks, and Monte Carlo Tree Search (MCTS) on task
(D). Additionally, on task (III), SARSA(\) and reward shaping are compared. We use A = 0.9 as
suggested previously [47]. Reward shaping is either the original method, the look-forward advice, or
the look-back advice all with three different potential functions. RUDDER uses an LSTM net without
output and forget gates, no lessons buffer, and no safe exploration. Contribution analysis is performed
with differences of return predictions. A ()-table is learned by an exponential moving average
of the redistributed reward (RUDDER’s ()-value estimation) or by ()-learning. The performance
is measured by the learning time to achieve 90% of the maximal expected return. A Wilcoxon
signed-rank indicates a significant performance difference between RUDDER and other methods.

(I) Grid World shows problems of TD methods with delayed rewards. The task illustrates a time
bomb that explodes at episode end. The agent has to defuse the bomb and then run away as far as
possible since defusing fails with a certain probability. Alternatively, the agent can immediately
run away, which, however, leads to less reward on average. The Grid World is a 31 x 31 grid with
bomb at coordinate [30,15] and start at [30 — d, 15], where d is the delay of the task. The agent
can move up, down, left, and right as long as it stays on the grid. At the end of the episode, after
| 1.5d] steps, the agent receives a reward of 1000 with probability of 0.5, if it has visited bomb. At
each time step, the agent receives an immediate reward of ¢ - ¢ - h, where ¢ depends on the chosen
action, t is the current time step, and h is the Hamming distance to bomb. Each move toward the
bomb, is immediately penalized with ¢ = —0.09. Each move away from the bomb, is immediately
rewarded with ¢ = 0.1. The agent must learn the ()-values precisely to recognize that directly
running away is not optimal. Figure 1(I) shows the learning times to solve the task vs. the delay of
the reward averaged over 100 trials. For all delays, RUDDER is significantly faster than all other
methods with p-values < 1072, Speed-ups vs. MC and MCTS, suggest to be exponential with delay
time. RUDDER is exponentially faster with increasing delay than (), supporting Supplements
Theorem S8. RUDDER significantly outperforms all other methods.
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Figure 1: Comparison of RUDDER and other methods on artificial tasks with respect to the learning
time in episodes (median of 100 trials) vs. the delay of the reward. The shadow bands indicate the
40% and 60% quantiles. In (II), the y-axis of the inlet is scaled by 10°. In (III), reward shaping
(RS), look-ahead advice (look-ahead), and look-back advice (look-back) use three different potential
functions. In (IIT), the dashed blue line represents RUDDER with (), in contrast to RUDDER with
-estimation. In all tasks, RUDDER significantly outperforms all other methods.

(II) The Choice shows problems of MC methods with delayed rewards. This task has probabilistic
state transitions, which can be represented as a tree with states as nodes. The agent traverses the tree
from the root (initial state) to the leafs (final states). At the root, the agent has to choose between the
left and the right subtree, where one subtree has a higher expected reward. Thereafter, it traverses the
tree randomly according to the transition probabilities. Each visited node adds its fixed share to the
final reward. The delayed reward is given as accumulated shares at a leaf. The task is solved when
the agent always chooses the subtree with higher expected reward. Figure 1(II) shows the learning
times to solve the task vs. the delay of the reward averaged over 100 trials. For all delays, RUDDER
is significantly faster than all other methods with p-values < 1078, The speed-up vs. MC, suggests
to be exponential with delay time. RUDDER is exponentially faster with increasing delay than Q(}),
supporting Supplements Theorem S8. RUDDER significantly outperforms all other methods.

(IIT) Trace-Back shows problems of potential-based reward shaping methods with delayed rewards.
We investigate how fast information about delayed rewards is propagated back by RUDDER, Q()),
SARSA()), and potential-based reward shaping. MC is skipped since it does not transfer back
information. The agent can move in a 15x 15 grid to the 4 adjacent positions as long as it remains on
the grid. Starting at (7, 7), the number of moves per episode is 7' = 20. The optimal policy moves the
agentup in ¢ = 1 and right in ¢ = 2, which gives immediate reward of —50 at { = 2, and a delayed
reward of 150 at the end ¢ = 20 = T'. Therefore, the optimal return is 100. For any other policy, the
agent receives only an immediate reward of 50 at t = 2. For ¢ < 2, state transitions are deterministic,
while for £ > 2 they are uniformly distributed and independent of the actions. Thus, the return
does not depend on actions at ¢ > 2. We compare RUDDER, original reward shaping, look-ahead
advice, and look-back advice. As suggested by the authors, we use SARSA instead of ()-learning for
look-back advice. We use three different potential functions for reward shaping, which are all based
on the reward redistribution (see Supplements). At ¢ = 2, there is a distraction since the immediate
reward is —50 for the optimal and 50 for other actions. RUDDER is significantly faster than all other
methods with p-values < 10717, Figure 1(III) shows the learning times averaged over 100 trials.
RUDDER is exponentially faster than all other methods and significantly outperforms them.

Atari Games. RUDDER is evaluated with respect to its learning time and achieved scores on Atari
games of the Arcade Learning Environment (ALE) [9] and OpenAl Gym [13]. RUDDER is used
on top of the TRPO-based [40] policy gradient method PPO that uses GAE [41]. Our PPO baseline
differs from the original PPO baseline [42] in two aspects. (i) Instead of using the sign function of
the rewards, rewards are scaled by their current maximum. In this way, the ratio between different
rewards remains unchanged and the characteristics of games with large delayed rewards can be
recognized. (ii) The safe exploration strategy of RUDDER is used. The entropy coefficient is replaced
by Proportional Control [11, 10]. A coarse hyperparameter optimization is performed for the PPO
baseline. For all 52 Atari games, RUDDER uses the same architectures, losses, and hyperparameters,



RUDDER baseline delay delay-event

Bowling 192 56 200 strike pins
Solaris 1,827 616 122 navigate map
Venture 1,350 820 150 find treasure

Seaquest 4,770 1,616 272  collect divers

Table 1: Average scores over 3 random seeds with 10 trials each for delayed reward Atari games.
"delay": frames between reward and first related action. RUDDER considerably improves the PPO
baseline on delayed reward games.

which were optimized for the baseline. The only difference to the PPO baseline is that the policy
network predicts the value function of the redistributed reward to utilize reward redistribution for
PPO. Contribution analysis uses an LSTM network with differences of return predictions. Here A
is the pixel-wise difference of two consecutive frames augmented with the current frame. LSTM
training and reward redistribution are restricted to sequence chunks of 500 frames.

Policies are trained with no-op starting condition for 200M game frames using every 4th frame.
Training episodes end with losing a life or at maximal 108K frames. All scores are averaged over 3
different random seeds for the network and the ALE initialization. We assess the performance by
the learning time and the achieved scores. First, we compare RUDDER to the baseline by average
scores per game throughout training, to assess learning speed [42]. For 32 (20) games RUDDER
(baseline) learns on average faster. Next, we compare the average scores of the last 10 training
games. For 29 (23) games RUDDER (baseline) has higher average scores. In the majority of games
RUDDER, improves the scores of the PPO baseline. To compare RUDDER and the baseline on Atari
games that are characterized by delayed rewards, we select the games Bowling, Solaris, Venture, and
Seaquest. In these games, high scores are achieved by learning the delayed rewards, while learning
the immediate rewards and extensive exploration (like for Montezuma’s revenge) is less important.
The results are presented in Table 1. For more details and further results see Supplements S4.2.
Figure 2 displays how RUDDER redistributes rewards to key events in Bowling. At delayed reward
Atari games, RUDDER considerably increases the scores compared to the PPO baseline.

steering ball striking pins

original reward
1

=redistributed reward 1(I)0 frames

Figure 2: RUDDER redistributes rewards to key events in the Atari game Bowling. Originally,
rewards are delayed and only given at episode end. The first 120 out of 200 frames of the episode are
shown. RUDDER identifies key actions that steer the ball to hit all pins.

Conclusion. We have introduced RUDDER, a novel reinforcement learning algorithm based on the
new concepts of reward redistribution and return decomposition via contribution analysis. On artificial
tasks, RUDDER significantly outperforms TD()), MC, MCTS, and reward shaping methods. On
Atari games, RUDDER on average improves a PPO baseline, with the most prominent improvement
on long delayed reward games.
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