
A Vector-Sparsity for Distributions
While our framework is developed for sparsity along the dimensions of a multivariate discrete
distribution, it is easily extended to alternative notions of sparsity. One common setting is where
we are interested in sparsity of the distribution p(·) when represented as a vector p e.g. sparsifying
the number of valid states of a univariate distribution such as a histogram. In our setting, this can
be solved by constructing a binary vector Z 2 Z = {0, 1}|X |, where each dimension of Z indexes
one of the possible states of X . As each state of X is associated with an element of the vector p,
state restrictions imply vector sparsity of p. For example z = [1, 1, . . . , 1, 0] implies that X can take
all states apart from the last one, z = [1, 1, 0, . . . , 0] implies that only the first two states are valid,
and so on. Setting P(Z = z) / P(X 2 {states indexed by z}) / z>p completes the transformation.
In summary, dimension-wise sparsity of z corresponds to restrictons on the support of X , which
equivalently corresponds to sparsification of the vector probability p.

B Connection between Variational Derivative and Gradient
As random variable has discrete space X , we can use a vector to store probability of every x 2 X of
a distribution q(·) : X ! [0, 1]. That is, the vector serves as an oracle of q(·). We denote the vector
as bq 2 [0, 1]|X | to distinguish it from the original q(·) 2 P .

We define a bijection map �(·) : X ! [|X |], and let 8x 2 X , we have q(x) = bq�(x), where bq�(x)

is the �(x)th entry of vector bq. In this case, we may consider bF (bq) as a function in vector space,
i.e., bF (·) : [0, 1]|X | ! R, and F [q] = bF (bq). That is, we have re-represent the original functional
F : P ! R as a function bF : [0, 1]|X | ! R. The function bF (·) naturally has its gradient.

Definition 6. Gradient of bF (·). The gradient of bF (·) : [0, 1]|X | ! R is

r bF (bq) =
h
@ bF
@bq1 , · · · ,

@ bF
@bq|X|

i>

We next show that no matter which bijection map is chosen, the gradient of bF (·), i.e., Definition 6.
and the variational derivative of F [·], i.e., Definition 3, are equivalent.

Theorem 5. In the case that X is discrete, definition 3 is equivalent to definition 6 given any bijection
�(·) : X ! [|X |], i.e.,

�F
�q (x) = r bF (bq)�(x)

for any x 2 X , where r bF (bq)�(x) is the �(x)th entry of gradient vector r bF (bq).

Proof. First we define an operator vec(·) from function space over X to vector space R|X |, so that for
a function f(·) : X ! R and every x 2 X , we have f(x) = vec(f)�(x). That is, by using vec(·),
we store every information of f(·) into a vector. Therefore, by substituting �F

�q (x) by r bF (bq)�(x) in
definition 3, we have:
X

x2X
r bF (bq)�(x)� = vec(�)>r bF (bq) = lim

✏!0

bF (bq+✏vec(�))� bF (bq)
✏

=


d

d✏
F̂ (q̂ + ✏vec(�))

�

✏=0

=


d

d✏
F̂ (vec(q + ✏�))

�

✏=0

=


dF [q + ✏�]

d✏

�

✏=0

This shows that �F
�q = vec�1(rF̂ (q̂)�(x)), i.e., �F

�q (x) = r bF (bq)�(x) for any x 2 X , where the
inverse of vec(·) exists because that the �(·) is bijection.

Though they are equivalent in discrete settings, we can see that definition 3 is more general than
definition 6, as the variational derivative can be easily extended to continuous X . Even when X is
discrete, it can also be used when q is given by a function, with no need to store everything in a
vector.

11

C Discussion on Other Projection Heuristics
One may ponder how may other heuristics perform when dealing with the `2-norm sparse projection.
For example, a two-stage thresholding approach, i.e. i) running gradient descent to convergence,
and then ii) projection. However, it is known to be sub-optimal even for simple problems, such as
least-squares with sparsity constraints. In fact, the results when using such approach on `2-norm
minimization are the same as the Greedy baseline: It i) converges to the global optimum q(·), and then
ii) use greedy projection to try to minimize F [p(·)] = kp(·)� q(·)k22 subject to sparsity constraint,
which has been shown to be inferior than IHT (subsection 4.1).

One may also come up with the idea of choosing the k “heaviest” coordinates as support. However, in
the general case, taking the k-heaviest coordinates of q (without assuming any structure) would result
into a non-valid putative solution; recall, by definition of the discrete setting, we have n coordinates,
each of which takes m points, leading to a mn sample space. Simply taking the k-heaviest coordinates
of that long vector would result into an intermediate representation of non-zero positions that does not
correspond to a probability distribution. A variation of this approach is fine for the “vector-sparsity”
special case.

D Proof of Theorem 1
Here, we show that the subset selection problem can be reduced to the sparse l2 distribution l2-norm
projection problem (2). Let us first define the subset sum problem, or SSP.
Definition 7 (Subset Sum Problem [26]). Given a ground set of integers, G ⇢ {Z}n, in the Subset
Sum Problem we look for a non-empty subset S ✓ G, such that the sum of all elements in S is zero.
This is an NP-complete problem.

Consider a Subset Sum Problem instance with a ground set G, where |G| = n. Let us denote its
elements as e1, . . . , en. We reformulate the sparse distribution `2-norm projection problem as follows.
Let X be n-dimensional binary space, i.e., X = {0, 1}n. For x 2 X , let its positive positions denote
a subset, i.e., Gx = {ei | xi = 1}. Define an n-dimensional function qk : X ! R as

qk(x) =

⇢
1, if

P
e2Gx

e = 0 and |Gx| = k,

0, otherwise,

where k is a parameter.

Then, we try to find its projection to Dk from k = 1 to k = n. Denote bpk(·) as the optimal `2-norm
projection of qk(·) to k-sparse distribution set Dk. We can see that, if there is no subset Gx with size
k that sum up to zero, then qk(·) is zero everywhere. Denote the support of the optimal projection
bpk(·) as S?, and we can see that bpk(x) = 1

2k for every supp(x) ✓ S?. That is, bpk(0) = 1
2k , since

supp(0) = ; ✓ S?.

If there exist a subset Gx0 with size k that sum up to zero, we can see that bpk(x) = 1 when x = x0

and bpk(x) = 0 elsewhere. Therefore, noting that |supp(x0)| = k, we can check whether bpk –i.e.,
the optimal `2-norm projection of qk(·) to Dk– has bpk(0) = 1

2k , to know that whether there exist a
subset Gx ✓ G with size k summing up to zero.

If there exist a polynomial algorithm solving the projection problem in O(poly(n)), then we can run
it O(n) times to try from k = 1 to k = n, to solve the Subset Sum Problem. Since the Subset Sum
Problem is NP-hard, hence the NP-hardness of the sparse distribution `2-norm projection problem.

E Proof of Theorem 2
We prove the theorem by showing that, for any algorithm we can design an example where the
algorithm fails. Note that in Algorithm 1 the input of projection step is not necessarily a distribution.
That is, we have to consider the input of the projection problem (2) a general function. Let X be
n-dimensional binary space, i.e., X = {0, 1}n. Denote an always-zero function q0 : X ! 0. Given
an deterministic algorithm f , it takes in a function q : X ! R and output a distribution bp(·) with
support S, where |S| = k. Assume the algorithm f evaluates T = O(poly(n)) positions, denoting
as x1,x2, . . . ,xT . Note that T can be much less than

�n
k

�
, as

�n
k

�
cannot be upper bound by any n

c

where c is a constant. Therefore, there exist an x? as

x? 2 X\{x1, . . . ,xT } s.t. supp(x) 6= S and |supp(x)| = k

12

Now we construct an n-dimensional function q : X ! R as

q(x) =

⇢
1 + �, if x = x?

0, otherwise ,

where � > 0. We input the constructed q to the deterministic algorithm f . Note that the value
of positions it evaluates do not have any differences compared to those when q0 is inputed, i.e.,
q(xi) = q0(xi) = 0 for every i 2 [T]. As f is deterministic, the output solution is still bp with support
S. As a result, q(x) = 0 for every x 2 XS . Denoting bpS as the optimal `2-norm projection of q to
PS , we have kq(·)� bp(·)k22 � kq(·)� bpSk22 = 1/|XS |+ (1 + �)2.

Noting that the optimal projection is

p
?(x) =

⇢
1, if x = x?

0, otherwise ,

we can see the optimal `2-norm distance is kq(·)� p
?(·)k22 = �

2. Therefore, the approximation rate
of algorithm f on this input q is

' =
kq � bpk22
kq � p?k22

� 1 �
1

|XS | + (1 + �)2

�2
� 1 �

1
|XS | + 1

�2
� 1

As � can be arbitrarily close to 0, the approximation ratio ' can not be upper bounded.

F Proof of Theorem 3
Proof. First, we quantify the influence of the gradient step. For any support S ⇢ [n], let q̂S be the
optimal projection of q = p� µ

�F
�p to sparsity domain PS , and let p̂S be the optimal projection of p

to sparsity domain PS . Then, we have

kq̂S � qk2 =
���q̂S � p+ µ

�F
�p

���
2
� kq̂S � pk2 � µL � kp̂S � pk2 � µL

Its upper bound is

kq̂S � qk2  kp̂S � qk2 =
���p̂S � p+ µ

�F
�p

���
2
 kp̂S � pk2 + µL

That is,

kp̂S � pk2 + µL � kq̂S � qk2 � kp̂S � pk2 � µL (5)

Nest, consider a support S ⇢ S 0, where S 0 = supp(p). We use the greedy procedure to add one
element e 2 [n]\S to S . It is to find

e 2 arg min
i2[n]\S

kq̂S[i � qk2

Define ✓ as a parameter describing how much better if we choose support S ⇢ S 0 to project than
choosing other supports.

✓ = min
S:S⇢S0

✓
min

i2[n]\S0,j2S0\S
kq̂S[i � qk2 � kq̂S[j � qk2

◆

As we can see, the greater ✓ is, the more possible for the greedy method to finally find S 0. Moreover,
if ✓ > 0, then the greedy procedure finds exactly S 0. By using inequality (5), we have

✓ > min
S:S⇢S0

✓
min

i2[n]\S0,j2S0\S
kp̂S[i � pk2 � kp̂S[j � pk2

◆
� 2µL

Therefore, if we have

2µL < min
S:S⇢S0

✓
min

i2[n]\S0,j2S0\S
kp̂S[i � pk2 � kp̂S[j � pk2

◆
, (6)

we can guarantee ✓ > 0, which means the greedy method finds exactly S 0.

13

Next, we analyze when is inequality (6) achievable for enough small step size µ > 0, i.e., kp̂S[i �
pk2 � kp̂S[j � pk2 > 0 in inequality (6).

First, let us calculate kp̂S[i � pk22 for any i 2 [n]\S 0.

kp̂S[i � pk22 =
X

supp(x)|S[i|

(p̂S[i(x)� p(x))2 +
X

supp(x)>|S[i|

(p̂S[i(x)� p(x))2

=
X

supp(x)|S[i|

(p̂S[i(x)� p(x))2 +
X

supp(x)>|S[i|

p(x)2

=
X

x2XS[i

(p̂S[i(x)� p(x))2 +
X

supp(x)|S[i|,x/2XS[i

(p̂S[i(x)� p(x))2

+
X

supp(x)>|S[i|

p(x)2

=
X

x2XS[i

(p̂S[i(x)� p(x))2 +
X

supp(x)|S[i|,x/2XS[i

p(x)2 +
X

supp(x)>|S[i|

p(x)2

=
X

x2XS[i

(p̂S[i(x)� p(x))2 �
X

x2XS[i

p(x)2 +
X

x2X
p(x)2 (7)

Noting that p : X ! R+ is a distribution, we can explicitly find p̂S[i, as shown in the main text, then
X

x2XS[i

(p̂S[i(x)� p(x))2 =
(1�

P
x2XS[i

p(x))2

|XS[i|

Substituting it into equation (7), we have

kp̂S[i � pk22 =
(1�

P
x2XS[i

p(x))2

|XS[i|
�

X

x2XS[i

p(x)2 +
X

x2X
p(x)2 (8)

We can see that the derivation of equation (8) also holds for j 2 S 0\S , which means

kp̂S[j � pk22 =
(1�

P
x2XS[j

p(x))2

|XS[j |
�

X

x2XS[j

p(x)2 +
X

x2X
p(x)2

In our discrete setting, we have |XS[i| = |XS[j |.
Therefore,

kp̂S[i � pk22 � kp̂S[j � pk22

=
(1�

P
x2XS[i

p(x))2 � (1�
P

x2XS[j
p(x))2

|XS[j |
+

0

@
X

x2XS[j

p(x)2 �
X

x2XS[i

p(x)2

1

A

=

⇣
2�

P
x2XS[i

p(x)�
P

x2XS[j
p(x)

⌘⇣P
x2XS[j

p(x)�
P

x2XS[i
p(x)

⌘

|XS[j |

+

0

@
X

x2XS[j

p(x)2 �
X

x2XS[i

p(x)2

1

A

Noting that p is a k-sparse distribution with support S 0, we can see that for i 2 [n]\S 0, {XS[i\XS}\
XS0 = ;. Therefore, p(x) = 0 where x 2 XS[i\XS . Hence,we can simplify the previous equation
as

kp̂S[i � pk22 � kp̂S[j � pk22

=

⇣
2�

P
x2XS[i

p(x)�
P

x2XS[j
p(x)

⌘⇣P
x2XS[j\XS

p(x)
⌘

|XS[j |
+

0

@
X

x2XS[j\XS

p(x)2

1

A

14

As we can see, if there exist x 2 XS[j\XS for all S ⇢ S 0
, i 2 [n]\S 0

, j 2 S 0\S , such that p(x) > 0,
then kp̂S[i � pk22 � kp̂S[j � pk22 > 0 for all the S, i, j. That is, conceptually, there are enough
positions x 2 XS0 where p(x) > 0. And this condition leads us to the following wanted inequality.

min
S:S⇢S0

✓
min

i2[n]\S0,j2S0\S
kp̂S[i � pk2 � kp̂S[j � pk2

◆
> 0. (9)

Hence, under such conditions, i.e., inequality (9) and inequality (6) hold, the greedy method is
guaranteed to find exactly S 0.

G Proof of Theorem 4
Proof. Considering iteration t and t+ 1 as in algorithm 1. We drop parentheses for clarity. Applying
RSS property we have:

F [pt+1]� F [pt] 
⌧
�F

�pt
, p

t+1 � p
t

�
+

�

2
kpt+1 � p

tk22

=
1

µ
hpt � q

t+1
, p

t+1 � p
ti+ �

2
kpt+1 � p

tk22

Setting step size µ = 1/�, and then complete the square:

F [pt+1]� F [pt]  �

2
(kpt+1 � q

t+1k22 � kpt � q
t+1k22)

 �

2

⇥
(1 + �)kp⇤ � q

t+1k22 � kpt � q
t+1k22

⇤

where the inequality is due to approximate projection. Now by adding and subtracting p
t in kp⇤ �

q
t+1k22 on the right hand side, we have:

�

2

⇥
(1 + �)

�
kp⇤ � p

tk22 + kpt � q
t+1k22 + 2hp? � p

t
, p

t � q
t+1i

�
� kpt � q

t+1k22
⇤

=
�

2

⇥
(1 + �)kp⇤ � p

tk22 + �kpt � q
t+1k22 + 2(1 + �)hp? � p

t
, p

t � q
t+1i

⇤

=
�

2
(1 + �)kp⇤ � p

tk22 +
�

2�
k �F
�pt

k22 + (1 + �)hp? � p
t
,
�F

�pt
i

Applying the Lipschitz condition 2, we have:

F [pt+1]� F [pt]  �

2
(1 + �)kp⇤ � p

tk22 +
�L

2

2�
+ (1 + �)hp? � p

t
,
�F

�pt
i (10)

To bound the last inner product in (10), we need RSC property:

hp? � p
t
,
�F

�pt
i  F [p?]� F [pt]� ↵

2
kpt � p

?k22

Apply it to relax the inner product term, we have (10):

 � � ↵

2
(1 + �)kp? � p

tk22 +
�L

2

2�
+ (1 + �)[F [p?]� F [pt] (11)

Next we find the relation between F [p?]� F [pt] and kp? � p
tk22 by RSC:

F [pt]� F [p?] � h �F
�p?

, p
t � p

?i+ ↵

2
kpt � p

?k22 � ↵

2
kpt � p

?k22 � k �F
�p?

k2 · kpt � p
?k2

� ↵

2
kpt � p

?k22 � Lkpt � p
?k2 =

↵

2


kpt � p

?k2 �
L

↵

�2
� L

2

2↵

where the second inequality is by Cauchy–Schwarz inequality. When kpt � p
?k2  L

2↵ , we have

F [pt]� F [p?] � ↵

2
kpt � p

?k22 �
L
2

2↵
(12)

15

Apply (12) to (11) to convert kpt � p
?k2 to F [pt]� F [p?], we have (11)

 (1 + �)(2� �

↵
)[F [p?]� F [pt]] +

✓
�

2�
+ (1 + �)

� � ↵

2↵2

◆
L
2 (13)

We denote the last term in (13) as c1, and rearrange the equation, we have

F [pt+1]� F [p?]  (1� (1 + �)(2� �/↵))
⇥
F [pt]� F [p?]

⇤
+ c1

F [pt+1]� F [p?]� c  (1� (1 + �)(2� �/↵))
⇥
F [pt]� F [p?]� c

⇤
(14)

where

c =
c1

(1 + �)(2� �/↵)
=

�
�/(2�) + (1 + �)(� � ↵)/(2↵2)

�
L
2

(1 + �)(2� �/↵)

From (14), we can see that if 0 < (1 + �)(2 � �/↵) < 1, or 2 � 1/(1 + �) < �/↵ < 2, IHT is
guaranteed to converge to F [p?] + c linearly. The smaller � is and the closer is � to ↵, the smaller c
is.

H Aditional Experimental details
Model Compression / Compressed sensing
We apply our IHT to the task of expectation-preserving distribution compression, useful for efficiently
storing large probability tables. Given a distribution p(·), our goal is to construct a sparse approxi-
mation q(·), such that q(·) approximately preserves expectations with respect to p(·). Interestingly,
this model compression problem is equivalent to compressed sensing, but with the distributional
constraints. We consider the vector sparsity in this experiment, i.e., the distribution q is represented
as a long vector in space [0, 1]n, as described in Appendix A. The problem setting we use in this
experiment is to minimize ||Aq �Ap||22 subject to the vector distribution k-sparsity constraint of q,
i.e., ||q||0  k and

P
i2[n] qi = 1. We first train the algorithms to minimize ||Aq �Ap||22 and then

test their error on ||Bq �Bp||22, where A,B are randomly drawn from normal distribution N (0, 1),
and p 2 [0, 1]n is a distribution generated from data.

We use real-world data: Total Charges in 2012 Base Data 1, Hospital Discharge Data Public Use
Data File1, which contains 740817 records. We set 10000 bins with bin size of 1000, to converge the
data into a histogram, and hence the distribution p 2 [0, 1]10000. Note that p is already sparse. We
set the dimension of A,B to 500⇥ 10000.

We compare IHT with two baselines, i.e., Lasso and Random. Note that in vector-sparsity setting, the
sparse l2 distribution projection can be done optimally, since it becomes essentially a projection to a
simplex, as we discussed in the main paper. The Lasso baseline is to minimize ||Aq�Ap||22+�||q||1
and then project its solution to the k-sparse distribution domain. The Random baseline is to randomly
generate T k-sparse distribution, and simply choose the best, where T is the iteration number of IHT.
Note that though the Greedy algorithm can work on this setting theoretically, it is too time costly to
compare with the previously mentioned three algorithms.

As both training matrix A and testing matrix B are randomly generated, we use 10 different A
for which we train the algorithms for 10 times, and after each training process we generate 20 test
matrices B to test the error of each algorithms.

1
https://www.dshs.state.tx.us/THCIC/Hospitals/Download.shtm

16

https://www.dshs.state.tx.us/THCIC/Hospitals/Download.shtm

0 50 100 150 200

iteration

0

5

10

15

E
rr

o
r

IHT Train Error

IHT Error

Lasso Error

Random Error

(a) IHT converges fast (k = 200)

100 200 300 400 500

k

0

5

10

15

E
rr

o
r

IHT

Lasso

Random

(b) Error Comparison with different sparsity k

Figure 4: Real-data Experiments

Figure 4 (a) gives the convergence result when we set sparsity level k = 200. The IHT Train Error
shows the training error of IHT at each iterations. IHT Error, Lasso Error and Random Error are
testing errors of the three algorithms after training. We can see the promising results of IHT which
outperforms other baselines. In Figure 4 (b), we test the three algorithms on different sparsity level
k = 100 · · · 500. IHT, Lasso and Random are testing errors of the three algorithms after training. Our
results verify that IHT does the best regardless of sparsity level k.

Digits data: Dataset compression
We study representative prototype selection for the Digits data [31], which contains 7291 training and
2007 test examples of handwritten grayscale images. Prototypes are representative examples chosen
from the data, in order to achieve dataset compression, while preserving certain desirable properties.
In this experiment, our goal is to achieve compression to speed up nearest neighbor classification on
unseen data as the quality measure of the selected prototypes. To this end, we embed the data using
the RBF kernel exp(�|xi � xi|2), where the parameter � is set using cross validation, and use the
Maximum Mean Discrepancy (MMD) between the discrete data distribution in the embedded space,
with the sparse data distribution representing the selected samples as our cost function for IHT. For two
densities p and p, we can write MMD2 = Ex,y⇠pK(x, y)�2Ex⇠p,y⇠qK(x, y)+Ex⇠q,y⇠qK(x, y),
where K(·, ·) is the RBF kernel function. After the prototypes are selected, we evaluate the 0/1
classification error with 1 Nearest Neighbor on the test data using only the selected prototypes.

We compare two forward selection greedy variants (Local Greedy and Global Greedy) proposed
by [32] and the means algorithm (labeled as PS) proposed by [33], both state of the art. The results
are presented in Figure 3(b). We see that IHT performs better than the baselines across different
number of selected prototypes, especially when the number of prototypes is smaller.

17

