
Supplementary Material for Fast and Flexible
Multi-Task Classification Using Conditional Neural

Adaptive Processes

James Requeima∗
University of Cambridge

Invenia Labs
jrr41@cam.ac.uk

Jonathan Gordon∗
University of Cambridge
jg801@cam.ac.uk

John Bronskill∗
University of Cambridge
jfb54@cam.ac.uk

Sebastian Nowozin
Google Research Berlin
nowozin@google.com

Richard E. Turner
University of Cambridge

Microsoft Research
ret26@cam.ac.uk

A Algorithm for Constructing Stochastic Estimator

An algorithm for constructing the stochastic training objective L̂(φ; τ) for a single task τ is given
in Algorithm A.1. CAT(·;π) denotes a the likelihood of a categorical distribution with parameter
vector π. This algorithm can be used on a batch of tasks to construct an unbiased estimator for the
auto-regressive likelihood of the task outputs.

Algorithm A.1 Stochastic Objective Estimator for Meta-Training.
1: procedure META-TRAINING({x∗m,y∗m}Mm=1, D

τ ,θ,φ)
2: ψτf ← ψf ({fθ(xn)|x ∈ Dτ};φf)
3: ψτc ← ψw({fθ(xn;ψf)|x ∈ Dτ ,yn = c};φw) ∀c ∈ Cτ
4: for m ∈ 1, ...,M do
5: πm ← fθ(x

∗
m;ψτf)

Tψτw
6: log p(y∗m|πm)← logCAT(y∗m;πm)
7: end for
8: return L̂(φ; τ)← 1

M

∑
M

log p(y∗m|πm)

9: end procedure

B Additional Related Work Details

The choice of task-specific parameters ψτ . Clearly, any approach to multi-task classification
must adapt, at the very least, the top-level classifier layer of the model. A number of successful
models have proposed doing just this with e.g., neighbourhood-based approaches [1], variational
inference [2], or inference networks [3]. On the other end of the spectrum are models that adapt all
the parameters of the classifier, e.g., [4, 5, 6]. The trade-off here is clear: as more parameters are
adapted, the resulting model is more flexible, but also slow and prone to over-fitting. For this reason
we modulate a small portion of the network parameters, following recent work on multi-task learning
[7, 8, 9].

∗Authors contributed equally

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

We argue that just adapting the linear classification layer is sufficient when the task distribution
is not diverse, as in the standard benchmarks used for few-shot classification (OMNIGLOT [10]
and mini-imageNet [11]). However, when faced with a diverse set of tasks, such as that introduced
recently by Triantafillou et al. [12], it is important to adapt the feature extractor on a per-task basis as
well.

The adaptation mechanism ψφ (D
τ). Adaptation varies in the literature from performing full

gradient descent learning with Dτ [13] to relying on simple operations such as taking the mean
of class-specific feature representations [1, 14]. Recent work has focused on reducing the number
of required gradient steps by learning a global initialization [4, 5] or additional parameters of the
optimization procedure [11]. Gradient-based procedures have the benefit of being flexible, but are
computationally demanding, and prone to over-fitting in the low-data regime. Another line of work
has focused on learning neural networks to output the values of ψ, which we denote amortization [3].
Amortization greatly reduces the cost of adaptation and enables sharing of global parameters, but
may suffer from the amortization gap [15] (i.e., underfitting), particularly in the large data regime.
Recent work has proposed using semi-amortized inference [12, 16], but have done so while only
adapting the classification layer parameters.

C Experimentation Details

All experiments were implemented in PyTorch [17] and executed either on NVIDIA Tesla P100-
PCIE-16GB or Tesla V100-SXM2-16GB GPUs. The full CNAPS model runs in a distributed fashion
across 2 GPUs and takes approximately one and a half days to complete episodic training and testing.

C.1 META-DATASET Training and Evaluation Procedure

C.1.1 Feature Extractor Weights θ Pretraining

We first reduce the size of the images in the ImageNet ILSVRC-2012 dataset [18] to 84 × 84 pixels.
Some images in the ImageNet ILSVRC-2012 dataset are duplicates of images in other datasets
included in META-DATASET, so these were removed. We then split the 1000 training classes of
the ImageNet ILSVRC-2012 dataset into training, validation, and test sets according to the criteria
detailed in [12]. The test set consists of the 130 leaf-node subclasses of the “device" synset node, the
validation set consists of the the 158 leaf-node subclasses of the “carnivore" synset node, and the
training set consists of the remaining 712 leaf-node classes. We then pretrain a feature extractor with
parameters θ based on a modified ResNet-18 [19] architecture on the above 712 training classes. The
ResNet-18 architecture is detailed in Table E.8. Compared to a standard ResNet-18, we reduced the
initial convolution kernel size from 7 to 5 and eliminated the initial max-pool step. These changes
were made to accommodate the reduced size of the imagenet training images. We train for 125
epochs using stochastic gradient descent with momentum of 0.9, weight decay equal to 0.0001, a
batch size of 256, and an initial learning rate of 0.1 that decreases by a factor of 10 every 25 epochs.
During pretraining, the training dataset was augmented with random crops, random horizontal flips,
and random color jitter. The top-1 accuracy after pretraining was 63.9%. For all subsequent training
and evaluation steps, the ResNet-18 weights were frozen.The dimensionality of the feature extractor
output is df = 512. The hyper-parameters used were derived from the PyTorch [17] ResNet training
tutorial. The only tuning that was performed was on the number of epochs used for training and the
interval at which the learning rate was decreased. For the number of epochs, we tried both 90 and
125 epochs and selected 125, which resulted in slightly higher accuracy. We also found that dropping
the learning rate at an interval of 25 versus 30 epochs resulted in slightly higher accuracy.

C.1.2 Episodic Training of φ

Next we train the functions that generate the parametersψτf , ψτw for the feature extractor adapters and
the linear classifier, respectively. We train two variants of CNAPS (on ImageNet ILSVRC-2012 only
and all datasets - see Table C.2). We generate training and validation episodes using the reader from
[20]. We train in an end-to-end fashion for 110,000 episodes with the Adam [21] optimizer, using a
batch size of 16 episodes, and a fixed learning rate of 0.0005. We validate using 200 episodes per
validation dataset. Note that when training on ILSVRC only, we validate on ILSVRC only, however,
when training on all datasets, we validate on all datasets that have validation data (see Table C.2) and

2

consider a model to be better if more than half of the datasets have a higher classification accuracy
than the current best model. No data augmentation was employed during the training of φ. Note
that while training φ the feature extractor fθ(·) is in ‘eval’ mode (i.e. it will use the fixed batch
normalization statistics learned during pretraining the feature extractor weights θ with a moving
average). No batch normalization is used in any of the functions generating the ψτ parameters, with
the exception of the set encoder g (that generates the global task representation zτG). Note that the
target points are never passed through the set encoder g. Again, very little hyper-parameter tuning
was performed. No grid search or other hyper-parameter search was used. For learning rate we tried
both 0.0001 and 0.0005, and selected the latter.We experimented with the number of training episodes
in the range of 80,000 to 140,000, with 110,000 episodes generally yielding the best results. We also
tried lowering the batch size to 8, but that led to decreased accuracy.

C.1.3 Evaluation

We generate test episodes using the reader from [20]. We test all models with 600 episodes each
on all test datasets. The classification accuracy is averaged over the episodes and a 95% confidence
interval is computed. We compare the best validation and fully trained models in terms of accuracy
and use the best of the two. Note that during evaluation, the feature extractor fθ(·) is also in ‘eval’
mode.

ImageNet ILSVRC-2012 All Datasets

Train Validation Test Train Validation Test

ILSVRC [18] ILSVRC [18] ILSVRC [18] ILSVRC [18] ILSVRC [18] ILSVRC [18]
Omniglot [10] Omniglot [10] Omniglot [10] Omniglot [10]
Aircraft [22] Aircraft [22] Aircraft [22] Aircraft [22]
Birds [23] Birds [23] Birds [23] Birds [23]
Textures [24] Textures [24] Textures [24] Textures [24]
Quick Draw [25] Quick Draw [25] Quick Draw [25] Quick Draw [25]
Fungi [26] Fungi [26] Fungi [26] Fungi [26]
VGG Flower [27] VGG Flower [27] VGG Flower [27] VGG Flower [27]
MSCOCO [28] MSCOCO [28] MSCOCO [28]
Traffic Signs [29] Traffic Signs [29]
MNIST [30] MNIST [30]
CIFAR10 [31] CIFAR10 [31]
CIFAR100 [31] CIFAR100 [31]

Table C.2: Datasets used to train, validate, and test models.

D Additional Few-Shot Classification Results

D.1 Few-Shot Classification Results When Training on ILSVRC-2012 only

Table D.3 shows few-shot classification results on META-DATASET when trained on ILSVRC-2012
only. We emphasize that this scenario does not capture the key focus of our work, and that these
results are provided mainly for completeness and compatibility with the work of Triantafillou et al.
[12]. In particular, our method relies on training the parameters φ to adapt the conditional predictive
distribution to new datasets. In this setting, the model is never presented with data that has not been
used to pre-train θ, and therefore cannot learn to appropriately adapt the network to new datasets.
Despite this, CNAPS demonstrate competitive results with the methods evaluated by Triantafillou
et al. [12] even in this scenario.

D.2 Feature Extractor Parameter Learning

Figure D.10 shows t-SNE [32] plots that visualize the output of the set encoder zG and the FiLM layer
parameters following the first and last convolutional layers of the feature extractor at test time. Even
with unseen test data, the set encoder has learned to clearly separate examples arising from diverse
datasets. The FiLM generators learn to generate feature extractor adaptation parameters unique to
each dataset. The only significant overlap in the FiLM parameter plots is between CIFAR10 and
CIFAR100 datasets which are closely related.

3

Dataset Finetune MatchingNet ProtoNet fo-MAML Proto-MAML CNAPS

ILSVRC [18] 45.8±1.1 45.0±1.1 50.5±1.1 36.1±1.0 51.0±1.1 50.6±1.1
Omniglot [10] 60.9±1.6 52.3±1.3 60.0±1.4 38.7±1.4 63.0±1.4 45.2±1.4
Aircraft [22] 68.7±1.3 49.0±0.9 53.1±1.0 34.5±0.9 55.3±1.0 36.0±0.8
Birds [23] 57.3±1.3 62.2±1.0 68.8±1.0 49.1±1.2 66.9±1.0 60.7±0.9
Textures [24] 69.1±0.9 64.2±0.9 66.6±0.8 56.5±0.8 67.8±0.8 67.5±0.7
Quick Draw [25] 42.6±1.2 42.9±1.1 49.0±1.1 27.2±1.2 53.7±1.1 42.3±1.0
Fungi [26] 38.2±1.0 34.0±1.0 39.7±1.1 23.5±1.0 38.0±1.1 30.1±0.9
VGG Flower [27] 85.5±0.7 80.1±0.7 85.3±0.8 66.4±1.0 86.9±0.8 70.7±0.7
Traffic Signs [29] 66.8±1.3 47.8±1.1 47.1±1.1 33.2±1.3 51.2±1.1 53.3±0.9
MSCOCO [28] 34.9±1.0 35.0±1.0 41.0±1.1 27.5±1.1 43.4±1.1 45.2±1.1
MNIST [30] 70.4±0.8
CIFAR10 [31] 65.2±0.8
CIFAR100 [31] 53.6±1.0

Table D.3: Few-shot classification results on META-DATASET [12] using models trained on ILSVRC-2012 only.
All figures are percentages and the ± sign indicates the 95% confidence interval. Bold text indicates the highest
scores that overlap in their confidence intervals. Results from competitive methods from [12]

𝒛𝐺 𝜷1𝑏1 𝜸1𝑏1 𝜸4𝑏2𝜷4𝑏2
Aircraft
CIFAR10
CIFAR100
MSCOCO
Birds
Textures
Fungi
ILSVRC
MNIST
Omniglot
Quick Draw
Traffic Signs
VGG Flower

Figure D.10: t-SNE plots of the output of the set encoder zG and the FiLM layer parameters at the start
(β1b1,γ1b1) and end (β4b2,γ4b2) of the feature extraction process at test time.

D.3 Joint Training of θ and φ

Our experiments in jointly training θ and φ show that the two-stage training procedure proposed in
Section 3 is crucially important. In particular, we found that joint training diverged in almost all cases
we attempted. We were only able to train jointly in two circumstances: (i) Using batch normalization
in “train” mode for both context and target sets. We stress that this implies computing the batch
statistics at test time, and using those to normalize the batches. This is in contrast to the methodology
we propose in the main text: only using batch normalization in “eval” mode, which enforces that no
information is transferred across tasks or datasets. (ii) “Warm-start" the training procedure with batch
normalization in “train” mode, and after a number of epochs (we use 50 for the results shown below),
switch to proper usage of batch normalization. All other training procedures we attempted diverged.

Table D.4 details the results of our study on training procedures. The results demonstrate that the
two-stage greatly improves performance of the model, even compared to using batch normalization
in “train mode”, which gives the model an unfair advantage over our standard model.

D.4 Comparison Between CNAPS and Parallel Residual Adapters [8]

CNAPS adds FiLM layers [9] in series with each convolutional layer to adapt the feature extractor to
a particular task while parallel residual adapters from Rebuffi et al. [8] adds 1× 1 convolutions in
parallel with each convolution layer to do the same. However, if the number of feature channels is C,
then the number of parameters required for each convolutional layer in the feature extractor is 2C for
CNAPS and C2 for parallel residual adapters. Hence, parallel residual adapters have C/2 times the
capacity compared to FiLM layers. Despite this advantage, CNAPs achieves superior results as can
be seen in Table D.5.

4

Dataset Joint Training
(warmstart BN)

Joint Training
(BN train mode)

Two-Stage Training
(BN test mode)

ILSVRC [18] 17.3±0.7 41.6±1.0 49.5±1.0
Omniglot [10] 74.9±1.0 80.8±0.9 89.7±0.5
Aircraft [22] 51.4±0.8 70.5±0.7 87.2±0.5
Birds [23] 44.1±1.0 48.3±1.0 76.7±0.9
Textures [24] 49.1±0.7 73.5±0.6 83.0±0.6
Quick Draw [25] 46.6±1.0 71.5±0.8 72.3±0.8
Fungi [26] 20.4±0.9 43.1±1.1 50.5±1.1
VGG Flower [27] 66.6±0.8 71.0±0.7 92.5±0.4
Traffic Signs [29] 21.2±0.8 40.4±1.1 48.4±1.1
MSCOCO [28] 18.8±0.7 37.1±1.0 39.7±0.9

Table D.4: Few-shot classification results on META-DATASET [12] comparing joint training for θ and φ
(columns 2 and 3) to two-stage training (column 4). All figures are percentages and the ± sign indicates the 95%
confidence interval. Bold text indicates the highest scores that overlap in their confidence intervals.

Dataset Parallel Residual Adapter CNAPS

ILSVRC [18] 51.2 ± 1.0 52.3 ± 1.0
Omniglot [10] 87.3 ± 0.7 88.4 ± 0.7
Aircraft [22] 78.3 ± 0.7 80.5 ± 0.6
Birds [23] 67.8 ± 0.9 72.2 ± 0.9
Textures [24] 55.5 ± 0.7 58.3 ± 0.7
Quick Draw [25] 70.9 ± 0.7 72.5 ± 0.8
Fungi [26] 44.6 ± 1.1 47.4 ± 1.0
VGG Flower [27] 81.7 ± 0.7 86.0 ± 0.5
Traffic Signs [29] 57.2 ± 0.9 60.2 ± 0.9
MSCOCO [28] 43.7 ± 1.0 42.6 ± 1.1
MNIST [30] 91.1 ± 0.4 92.7 ± 0.4
CIFAR10 [31] 64.5 ± 0.8 61.5 ± 0.7
CIFAR100 [31] 50.4 ± 0.9 50.1 ± 1.0

Table D.5: Few-shot classification results on META-DATASET [12] using models trained on all training datasets
for Parallel Residual Adapters [8] and CNAPS. All figures are percentages and the ± sign indicates the 95%
confidence interval over tasks. Bold text indicates the scores within the confidence interval of the highest score.
Tasks from datasets below the dashed line were not used for training.

E Network Architecture Details

E.1 ResNet18 Architecture details

Throughout our experiments in Section 5, we use a ResNet18 [19] as our feature extractor, the
parameters of which we denote θ. Table E.6 and Table E.7 detail the architectures of the basic block
(left) and basic scaling block (right) that are the fundamental components of the ResNet that we
employ. Table E.8 details how these blocks are composed to generate the overall feature extractor
network. We use the implementation that is provided by the PyTorch [17]3, though we adapt the code
to enable the use of FiLM layers.

E.2 Adaptation Network Architecture Details

In this section, we provide the details of the architectures used for our adaptation networks. Table E.9
details the architecture of the set encoder g : Dτ 7→ zG that maps context sets to global representations.

Table E.10 details the architecture used in the auto-regressive parameterization of zAR. In our
experiments, there is one such network for every block in the ResNet18 (detailed in Table E.8). These

3https://pytorch.org/docs/stable/torchvision/models.html

5

Table E.6: ResNet-18 basic block b.

Layers
Input
Conv2d (3× 3, stride 1, pad 1)
BatchNorm
FiLM (γb,1,βb,1)
ReLU
Conv2d (3× 3, stride 1, pad 1)
BatchNorm
FiLM (γb,2,βb,2)
Sum with Input
ReLU

Table E.7: ResNet-18 basic scaling block b.

Layers
Input
Conv2d (3× 3, stride 2, pad 1)
BatchNorm
FiLM (γb,1,βb,1)
ReLU
Conv2d (3× 3, stride 1, pad 1)
BatchNorm
FiLM (γb,2,βb,2)
Downsample Input by factor of 2
Sum with Downsampled Input
ReLU

ResNet-18 Feature Extractor (θ) with FiLM Layers: x→ fθ(x;ψ
τ
f), x

∗ → fθ(x
∗;ψτf)

Stage Output size Layers
Input 84× 84× 3 Input image
Pre-processing 41× 41× 64 Conv2d (5× 5, stride 2, pad 1, BatchNorm, ReLU)
Layer 1 41× 41× 64 Basic Block × 2
Layer 2 21× 21× 128 Basic Block, Basic Scaling Block
Layer 3 11× 11× 256 Basic Block, Basic Scaling Block
Layer 4 6× 6× 512 Basic Block, Basic Scaling Block
Post-Processing 512 AvgPool, Flatten

Table E.8: ResNet-18 feature extractor network.

networks accept as input the set of activations from the previous block, and map them (through the
permutation invariant structure) to a vector representation of the output of the layer. The representation
zi = (zG, zAR) is then generated by concatenating the global and auto-regressive representations,
and fed into the adaptation network that provides the FiLM layer parameters for the next layer. This
network is detailed in Table E.11, and illustrated in Figure 5. Note that, as depicted in Figure 5, each
layer has four networks with architectures as detailed in Table E.11, one for each γ and β, for each
convolutional layer in the block.

E.3 Linear Classifier Adaptation Network

Finally, in this section we give the details for the linear classifer ψτw, and the adaptation network that
provides these task-specific parameters ψw(·). The adaptation network accepts a class-specific repre-
sentation that is generated by applying a mean-pooling operation to the adapted feature activations
of each instance associated with the class in the context set: zτc = 1

Nτc

∑
x∈Dτc

fθ(x;ψ
τ
f), where Nτ

c

denotes the number of context instances associated with class c in task τ . ψw is comprised of two
separate networks (one for the weights ψw and one for the biases ψb) detailed in Table E.12 and
Table E.13. The resulting weights and biases (for each class in task τ) can then be used as a linear
classification layer, as detailed in Table E.14.

6

Set Encoder (g): x→ zτG
Output size Layers
84× 84× 3 Input image
42× 42× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
21× 21× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
10× 10× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
5× 5× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
2× 2× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)

64 AdaptiveAvgPool2d

Table E.9: Set encoder g.

Set Encoder (φf): {f liθ (x;ψτf)} → ziAR

Output size Layers

li channels × li channel size Input {f liθ (x;ψτf)}
li channels × li channel size AvgPool, Flatten

li channels fully connected, ReLU
li channels 2 × fully connected with residual skip connection, ReLU
li channels fully connected with residual skip connection
li channels mean pooling over instances
li channels Input from mean pooling
li channels fully connected, ReLU

Table E.10: Network of set encoder φf .

Network (φf): (zG, zAR)→ (γ,β)

Output size Layers
64 + li channels Input from Concatenate
li channels fully connected, ReLU
li channels 2 × fully connected with residual skip connection, ReLU
li channels fully connected with residual skip connection

Table E.11: Network φf .

Table E.12: Network φw.
Network (φw):
zc → ψw,w

Output size Layers
512 Input from mean pooling
512 2 × fully connected, ELU
512 fully connected
512 Sum with Input

Table E.13: Network φb.
Network (φb):
zc → ψw,b

Output size Layers
512 Input from mean pooling
512 2 × fully connected, ELU
1 fully connected

Linear Classifier (ψw): fθ(x∗;ψτf)→ p(y∗|x∗,ψτ (Dτ),θ)

Output size Layers
512 Input features fθ(x∗;ψτf)
512× Cτ Input weights w
512× 1 Input biases b
Cτ fully connected
Cτ softmax

Table E.14: Linear classifier network.

7

F Continual Learning Implementation Details

As noted in Sections 2 and 5, our model can be applied to continual learning with one small
modification: we store a compact representation of our training data that can be updated at each step
of the continual learning procedure. Notice that Figure 3 indicates that the functional representation
of our linear classification layer ψτw(·) contains a mean pooling layer that combines the per-class
output of our feature extractor {fθ (xτm;ψf) |xτm ∈ Dτ ,yτm = c}. The result of this pooling,

zc =
1

M

∑
fθ (x

τ
m;ψf) (F.4)

where M = |{fθ (xτm;ψf) |xτm ∈ Dτ ,yτm = c}|, is supplied as input to the network ψw(·). This
network yields the class conditional parameters of the linear classifierψτw, resulting in (along with the
feature extractor parameters ψτf) the full paramterization of ψτ . We store zc as the training dataset
representation for, class c.

If at any point in our continual learning procedure we observe new training data for class c we can
update our representation for class c by computing z′c = 1

M

∑
fθ
(
xτm
′;ψf

)
the pooled average

resulting from M new training examples xτm
′ for class c. We then update zc with the weighted

average: zc ← Mzc+Nzc
M+N . At prediction time, we supply zc to ψw(·) to produce classification

parameters for class c.

Similar to the input to ψτw(·), the input to ψτf (·) also contains a mean-pooled representation, this
time of the entire training dataset zτG. This representation is also stored and updated in the same way.

One issue with our procedure is that it is not completely invariant to the order in which we observe the
sequence of training data during our continual learning procedure. The feature extractor adaptation
parameters are only conditioned on the most recent training data, meaning that if data from class c is
not present in the most recent training data, zc was generated using "old" feature extractor adaptation
parameters (from a previous time step). This creates a potential disconnect between the classification
parameters from previous time steps and the feature extractor output. Fortunately, in our experiment
we noticed little within dataset variance for the adaptation parameters. Since all of our experiments on
continual learning were within a single dataset, this did not seem to be an issue as CNAPS were able
to achieved good performance. However, for continual learning experiments that contain multiple
datasets, we anticipate that this issue will need to be addressed.

G Additional Continual Learning Results

In Section 5 we provided results for continual learning experiments with Split MNIST [33] and Split
CIFAR100 [34]. The results showed the average performance as more tasks were observed for the
single and multi head settings. Here, we provide more complete results, detailing the performance
through “time" at the task level. Figure G.11 details the performance of CNAPS (with varying

1 2 3 4 5
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 1

1 2 3 4 5
Tasks

Task 2

1 2 3 4 5
Tasks

Task 3

1 2 3 4 5
Tasks

Task 4

1 2 3 4 5
Tasks

Task 5

1 2 3 4 5
Tasks

Average
RWalk 10k-shot
CNAPs 1-shot
CNAPs 10-shot
CNAPs 100-shot

1 2 3 4 5
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 1

1 2 3 4 5
Tasks

Task 2

1 2 3 4 5
Tasks

Task 3

1 2 3 4 5
Tasks

Task 4

1 2 3 4 5
Tasks

Task 5

1 2 3 4 5
Tasks

Average
RWalk 10k-shot
CNAPs 1-shot
CNAPs 10-shot
CNAPs 100-shot

Figure G.11: Continual learning results on Split MNIST. Top row is multi-head, bottom row is single-head.

number of observed examples) and Riemannian Walk (RWalk) [34] on the five tasks of Split MNIST

8

through time. Note that RWalk makes explicit use of training data from previous time steps when
new data is observed, while CNAPS do not.

Figure G.11 implies that CNAPS is competitive with RWalk in this scenario, despite seeing far
less data per task, and not using old data to retrain the model at every time-step. Further, we see
that CNAPS is naturally resistant to forgetting, as it uses internal task representations to maintain
important information about tasks seen at previous time-steps.

Figure G.12 demonstrates that CNAPS maintains similar results when scaling up to considerably
more difficult datasets such as CIFAR100. Here too, CNAPS has not been trained on this dataset, yet
demonstrates performance comparable to (and even better than) RWalk, a method explicitly trained
for this task that makes use of samples from previous tasks at each time step.

1 2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

Task 10

1 2 3 4 5 6 7 8 9 10
Tasks

Average
RWalk 10k-shot
CNAPs 1-shot
CNAPs 10-shot
CNAPs 100-shot

1 2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

Task 10

1 2 3 4 5 6 7 8 9 10
Tasks

Average
RWalk 10k-shot
CNAPs 1-shot
CNAPs 10-shot
CNAPs 100-shot

Figure G.12: Continual learning results on Split CIFAR100. Top two rows are multi-head, bottom two rows are
single-head.

9

H Additional Active Learning Results

In Section 5 we provided active learning results for CNAPS and Prototypical Networks on the VGG
Flowers dataset and three held out test languages from the Omniglot dataset. Here, we provide the
results from all twenty held-out languages in Omniglot.

Figure H.13 demonstrates that in almost all held-out languages, using the predictive distribution of
CNAPS not only improves overall performance, but also enables the model to make use of standard
acquisition functions [35] to improve data efficiency over random acquisition. In contrast, we see that
in most cases, random acquisition performs as well or better than acquisition functions that rely on
the predictive distribution of Prototypical Networks. This provides empirical evidence that in addition
to achieving overall better performance, the predictive distribution of CNAPS is more calibrated, and
thus better suited to tasks such as active learning that require uncertainty in predictions.

10

85

90
CN

AP
s

Angelic

70

75

80
Atemayar_Qelisayer

75

80

85

Atlantean

87.5

90.0

92.5
Aurek-Besh

Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

80

85

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

70

75

0 10 20 30
Acquisitions

80

85

0 10 20 30
Acquisitions

87.5

90.0

92.5

80

85

CN
AP

s

Avesta

75

80

Ge_ez

82.5

85.0

87.5
Glagolitic

60

65

Gurmukhi
Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

75

80

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

75

80

0 10 20 30
Acquisitions

82

84

86

0 10 20 30
Acquisitions

62.5

65.0

67.5

60

65

CN
AP

s

Kannada

85

90

Keble

65.0

67.5

70.0
Malayalam

75

80
Manipuri

Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

62.5

65.0

67.5

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

85

90

0 10 20 30
Acquisitions

66

68

70

0 10 20 30
Acquisitions

75.0

77.5

75

80

CN
AP

s

Mongolian

80

85
Old_Church_Slavonic_(Cyrillic)

60

65

Oriya

65

70

75
Sylheti

Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

77.5

80.0

82.5

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

80

82

84

0 10 20 30
Acquisitions

60.0

62.5

65.0

0 10 20 30
Acquisitions

65

70

75

80

85

CN
AP

s

Syriac_(Serto)

65

70

Tibetan

65

70

75

80 Tengwar

65

70

75

ULOG
Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

75

80

85

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

66

68

70

0 10 20 30
Acquisitions

65

70

75

0 10 20 30
Acquisitions

60

65

70

Figure H.13: Active learning results on all twenty held-out OMNIGLOT languages.

11

References

[1] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pages 4080–4090, 2017.

[2] Matthias Bauer, Mateo Rojas-Carulla, Jakub Bartłomiej Świątkowski, Bernhard Schölkopf, and
Richard E Turner. Discriminative k-shot learning using probabilistic models. arXiv preprint
arXiv:1706.00326, 2017.

[3] Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner.
Meta-learning probabilistic inference for prediction. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HkxStoC5F7.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135,
2017.

[5] Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2018.

[6] Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. arXiv preprint arXiv:1806.03836, 2018.

[7] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. In Advances in Neural Information Processing Systems, pages 506–516,
2017.

[8] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8119–8127, 2018.

[9] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM:
Visual reasoning with a general conditioning layer. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[10] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning
of simple visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science
Society, volume 33, 2011.

[11] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Proceed-
ings of the International Conference on Learning Representations (ICLR), 2017.

[12] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-dataset:
A dataset of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096,
2019.

[13] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? In Advances in neural information processing systems, pages 3320–3328,
2014.

[14] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, pages 3630–3638, 2016.

[15] Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational
autoencoders. arXiv preprint arXiv:1801.03558, 2018.

[16] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

[17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

12

https://openreview.net/forum?id=HkxStoC5F7

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[20] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Code for
"meta-dataset: A dataset of datasets for learning to learn from few examples". https://
github.com/google-research/meta-dataset, 2019.

[21] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations (ICLR), 2015.

[22] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[23] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[24] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3606–3613, 2014.

[25] David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477, 2017.

[26] Brigit Schroeder and Yin Cui. Fgvcx fungi classification challenge at fgvc5. https://www.
kaggle.com/c/fungi-challenge-fgvc-2018, 2018.

[27] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing, pages 722–729. IEEE, 2008.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[29] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel.
Detection of traffic signs in real-world images: The german traffic sign detection benchmark. In
The 2013 international joint conference on neural networks (IJCNN), pages 1–8. IEEE, 2013.

[30] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, 2:18, 2010.

[31] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[32] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[33] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 3987–3995. JMLR. org, 2017.

[34] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 532–547, 2018.

[35] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical
models. Journal of artificial intelligence research, 4:129–145, 1996.

13

https://github.com/google-research/meta-dataset
https://github.com/google-research/meta-dataset
https://www.kaggle.com/c/fungi-challenge-fgvc-2018
https://www.kaggle.com/c/fungi-challenge-fgvc-2018

	Algorithm for Constructing Stochastic Estimator
	Additional Related Work Details
	Experimentation Details
	Meta-Dataset Training and Evaluation Procedure
	Feature Extractor Weights TEXT Pretraining
	Episodic Training of TEXT
	Evaluation

	Additional Few-Shot Classification Results
	Few-Shot Classification Results When Training on ILSVRC-2012 only
	Feature Extractor Parameter Learning
	Joint Training of TEXT and TEXT
	Comparison Between CNAPs and Parallel Residual Adapters rebuffi2018efficient

	Network Architecture Details
	ResNet18 Architecture details
	Adaptation Network Architecture Details
	Linear Classifier Adaptation Network

	Continual Learning Implementation Details
	Additional Continual Learning Results
	Additional Active Learning Results

