
Adversarial Robustness through Local Linearization

Chongli Qin
DeepMind

James Martens
DeepMind

Sven Gowal
DeepMind

Dilip Krishnan
Google

Krishnamurthy (Dj) Dvijotham
DeepMind

Alhussein Fawzi
DeepMind

Soham De
DeepMind

Robert Stanforth
DeepMind

Pushmeet Kohli
DeepMind

chongliqin@google.com

A Empirical Observations on Adversarial Training: Supplementary

0.04

0.00

0.040.04

0.00

0.04

l(
x
; y

)

10

0

10

20

cat

deer

(a) 1 step

0.04

0.00

0.040.04

0.00

0.04
l(
x
; y

)

10

0

10

20

cat

deer

(b) 8 steps

Figure A1: A plot of `(x) around the image 126 of CIFAR-10 test set which shows that training with
just 1 step of PGD for adversarial training gets highly non-linear loss surface - (A1a), while training
with 8 steps of PGD the surface becomes more smooth - (A1b). (A1a, A1b) are `(x) projection onto
2D plane, where one direction is the adversarial perturbation while the other is random.

CIFAR-10: Wide-ResNet-28-10 (8/255)
No. of PGD step Nominal Accuracy Adversarial Accuracy

(Multi-Targeted)
1 84.42% 0.0%
2 83.67% 0.0%
4 87.70% 45.91%
8 87.20% 46.03%
16 86.78% 46.14%

Table A1: Table showing the corresponding nominal accuracy and adversarial accuracy for networks
trained shown in Fig 2. The Multi-Targeted is described in Sec. 5.1.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

B Local Linearity Upper Bounds Robustness: Proof of Proposition 4.1

Proposition 4.1. Consider a loss function `(x) that is once-differentiable, and a local neighbourhood
defined by B(ε). Then for all δ ∈ B(ε)

|`(x+ δ)− `(x)| ≤ |δ∇x`(x)|+ γ(ε, x).

Proof. Firstly we note that |`(x+ δ)− `(x)| can be rewritten as the following:

|`(x+ δ)− `(x)| =
∣∣δT∇x`(x) + `(x+ δ)− `(x)− δT∇x`(x)

∣∣ .
Thus we can form the following bound:

|`(x+ δ)− `(x)| ≤
∣∣δT∇x`(x)

∣∣+ g(δ;x),

where g(δ;x) =
∣∣`(x+ δ)− `(x)− δT∇x`(x)

∣∣. We note that since γ(ε, x) = maxδ∈B(ε) g(δ;x),
therefore for all δ ∈ B(ε)

|`(x+ δ)− `(x)| ≤
∣∣δT∇x`(x)

∣∣+ γ(ε, x).

C Local Linearity γ(ε, x) bounds adversarial loss by itself

C.1 A local quadratic model of the loss

The starting point for proving our bounds will be the following local quadratic approximation of the
loss:

`(x+ δ) = `(x) + δ>∇x`(x) +
1

2
δ>G(x)δ + ε(δ), (C1)

Here, G(x) is the Generalized Gauss-Newton matrix (GGN) [6, 5], and ε(δ) denotes the error of the
approximation.

The GGN is a Hessian-alternative which appears frequently in approximate 2nd-order optimization
algorithms for neural networks. It is defined for losses of the form `(x) = ν(y, f(x)), where ν(y, z)
is convex in z. (Valid examples for ν(y, z) include the standard softmax cross-entropy error and
squared error.) It’s given by

G(x) = J>HνJ,

where J is the Jacobian of f , and Hν is the Hessian of ν(y, z) with respect to z.

One interpretation of the GGN is that it’s the Hessian of a modified loss ˆ̀(x) ≡ ν(y, f̂(x)), where
f̂ is the local linear approximation of f (given by f̂(x + δ) = Jδ + f(x)). For certain standard
loss functions (including the ones we consider) it also corresponds to the Fisher Information Matrix
associated with the network’s predictive distribution [5].

In the context of optimization, the local quadratic approximation induced by the GGN tends to work
better than the actual 2nd-order Taylor series [e.g. 4], perhaps because it gives a better approximation
to `(x + δ) over non-trivial distances [5]. (It must necessarily be a worse approximation for very
small values of δ, since the 2nd-order Taylor series is clearly optimal in that respect.)

C.2 Bounds for common loss functions

Our basic strategy in proving the following results is to rearrange Eq (C1) to establish the following
bound on the curvature in terms of g(δ;x) which is defined in Eq (5) in the main text:

1

2
δ>G(x)δ = `(x+ δ)− (`(x) + δ>∇x`(x))− ε(δ)

≤ |`(x+ δ)− (`(x) + δ>∇x`(x))|+ |ε(δ)|
= g(δ;x) + |ε(δ)|. (C2)

We then show that for both the squared error and softmax cross-entropy loss functions, one can
bound |δ>∇x`(x)| in terms of the curvature g(δ;x) and by extension is bounded by the local linearity
measure: γ(ε;x) = maxδ∈B(ε) g(δ;x). Note that such a bound won’t exist for general loss functions.

2

Proposition C.1. Suppose that ν(y, z) = 1
2‖y − z‖

2 is the squared error and z = f(x; θ) is the
output of the neural network. Then for any perturbation vector δ ∈ B(ε) we have

|δ>∇x`(x)| ≤ 2
√

2`(x)(γ(ε;x) + |ε(δ)|),

where ε(δ) is the error of the local quadratic approximation defined in Equation C1.

Proposition C.2. Suppose that ν(y, z) = log(y>p(z)) is the softmax cross-entropy error, where y is
a 1-hot target vector, and p(z) is the vector of probabilities computed via the softmax function. Then
for any perturbation vector δ ∈ B(ε) we have

|δ>∇x`(x)| ≤

√
2

y>p(z)
(γ(ε;x) + |ε(δ)|),

where ε(δ) is the error of the local quadratic approximation defined in Equation C1.

Remark. We note p>y is just the probability of the target label under the model. And so 1/p>y won’t
be very big, provided that the model is properly classifying the data with some reasonable degree of
certainty. (Indeed, for highly certain predictions it will be close to 1.) Thus the upper bound given in
Proposition C.2 should shrink at a reasonable rate as the regularizer γ(ε;x) does, provided that error
term ε(δ) is negligable.

D Proofs

D.1 Proof of Proposition C.1

Proof. For convenience we will write `(x) = 1
2‖r(x)‖2, where we have defined r(x) = y − f(x).

We observe that for the squared error loss,∇x`(x) = −J>r and G(x) = J>J (because Hν = I).

Thus by Equation C2 we have

‖Jδ‖2 = δ>J>Jδ = δ>G(x)δ ≤ 2(g(δ;x) + |ε(δ)|) ≤ 2(γ(ε;x) + |ε(δ)|).

Using these facts, and applying the Cauchy-Schwarz inequality, we get

|δ>∇x`(x)|2 = | − δ>J>r|2

= |(Jδ)>r|2

≤ ‖Jδ‖2‖r‖2

≤ 8(γ(ε;x) + |ε(δ)|)`(x).

Taking the square root of both sides yields the claim.

D.2 Proof of Proposition C.2

Proof. We begin by defining r(x) = y − p, and observing that for the softmax cross-entropy loss,
∇x`(x) = −J>r, and H(x) = J>Hν(z)J where

Hν(z) = diag(p)− pp>.

Because the entries of p are non-negative and sum to 1 we can factor this as

Hν = CC>, where C = diag(q)− pq>,

and where q is defined as the entry-wise square root of the vector p. To see that this is correct, note
that

CC> = (diag(q)− pq>)(diag(q)− pq>)>

= diag(q)2 − diag(q)qp> − pq> diag(q) + pq>qp>

= diag(p)− pp> − pp> + pp>

= Hν ,

where we have used the properties of q and p, such as q>q = 1, diag(q)q = p, etc.

3

Using this factorization we can rewrite the curvature term as

δ>G(x)δ = δ>J>Hν(z)Jδ = ∆z>Hν(z)∆z = ∆z>CC>∆z = ‖C>∆z‖2,
where we have defined ∆z = Jδ (intuitively, this is “the change in z due to δ”). Thus by Equation
C2 we have

‖C>∆z‖2 ≤ 2(g(δ;x) + |ε(δ)|) ≤ 2(γ(ε;x) + |ε(δ)|).
Let v = 1

q>y
y, which is well defined because q is entry-wise positive (since p must be), and y is a

one-hot vector. Using said properties of y and q we have that

Cv = (diag(q)− pq>)
1

q>y
y

=
1

q>y
q � y − 1

q>y
p(q>y)

= y − p = r,

where � denotes the entry-wise product.

It thus follows that
δ>∇x`(x) = −δ>J>r = z>r = ∆z>(Cv) = (C>∆z)>v.

Using the above facts, and applying the Cauchy-Schwarz inequality, we arrive at

|δ>∇x`(x)|2 = |(C>∆z)>v|2 ≤ ‖C>∆z‖2‖v‖2

≤ 2(γ(ε;x) + |ε(δ)|) 1

(q>y)2
‖y‖2

=
2

p>y
(γ(ε;x) + |ε(δ)|),

where we have used the facts that (q>y)2 = p>y and ‖y‖ = 1. Taking the square root of both sides
yields the claim.

E Local Linearity Regularizer - Algorithm

Algorithm 1 Local Linearization of Network

Require: Training data X = {(x1, y1), · · · , (xN , yN)}. Learning rate lr and batch size for training
b and number of iterations N . Number of iterations for inner optimization M and step size s and
network architecture parameterized by θ.

1: Initialize variables θ.
2: for all i ∈ {0, 1, . . . , N} do
3: Get mini-batch B = {(xi1 , yi1), · · · , (xib , yib)}.
4: Calculte loss wrt to minibatch LB = 1

b

∑b
j=1 `(xij ; yij).

5: Initialize initial perturbation δ uniformly in the interval [−ε, ε].
6: for all j ∈ {0, 1, . . . ,M} do
7: Calculate g = 1

b

∑b
t=1∇δg(δ;xit , yit) at δ.

8: Update δ ← Proj(δ − s×Optimizer(g))
9: end for

10: Compute objective L = LB + 1/b
∑b
j=1

(
λg(δ;xij , yij) + µ

∣∣δT∇xl(x)
∣∣)

11: θ ← θ − lr ×Optimizer(∇θL)
12: end for

Note g(δ;x, y) = `(x+ δ; y)− `(x; y)− δT∇x`(x; y).

F Experiments and Results: Supplementary

F.1 Evaluation Setup

Optimization: Rather than using the sign of the gradient (FGSM) [1], we do the update steps
using Adam [2] as the optimizer. More concretely, the update on the adversarial perturbation is

4

δ ← Proj (δ − ηAdam(∇δl(x+ δ; y))). We have consistently found that using Adam gives a
stronger attack compared to the sign of the gradient. For Multi-Targeted (see Table 1), the step
size is set to be η = 0.1 and we run for 200 steps. For Untargeted and Random-Targeted, we use
a step size schedule setting η = 0.1 up until 100 steps then 0.01 up until 150 steps and 0.001 for
the last 50 steps. We find these to give us the best adversarial accuracy evaluation, the decrease in
step size is especially helpful in cases where the gradient is obfuscated. Furthermore, we use 20
different random initialization (we term this a random restart) of the perturbation, δ0, for going
through the optimization procedure. We consider an attack successful if any of these 20 random
restarts is successful. For CIFAR-10 we also show results for FGSM with 20 steps (FGSM-20) with a
step size ε/10 as this is a commonly used attack for evaluation.

F.2 Training and Hyperparameters

The hyperparameters for λ and µ are chosen by doing a hyperparameter sweep. This is provided for
in the table below.

CIFAR-10: Wide-ResNet-28-8 (8/255)
LLR (λ, µ) Nominal PGD-50

Accuracy
(4., 0.2) 88.73% 52.38%
(4., 0.3) 87.64% 52.55%
(4., 0.5) 86.83% 53.33%
weight on TRADES Nominal PGD-50

Accuracy
2. 88.49% 48.00%
4. 88.63% 50.50%
6. 87.40% 50.91%
8. 81.90% 46.13%

CIFAR-10: Wide-ResNet-40-8 (8/255)
LLR (λ, µ) Nominal PGD-50

Accuracy
(3., 0.5) 88.74% 53.26%
(3., 2.0) 78.74% 52.20%
(4., 0.75) 86.28% 55.47%
(4., 0.85) 83.86% 54.31%
weight on TRADES Nominal PGD-50

Accuracy
4. 89.01% 51.50%
6. 88.12% 52.24%
8. 82.59% 46.06%

Table F2: This is the hyperparameter sweep for both TRADES and LLR for Wide-ResNet-28-8 with
softplus as the activation function. Note that we use PGD-50 (which is a weaker attack) as this is
the evaluation we use on the fly during training. The row highlighted in bold is the network we have
shown in Table 2.

CIFAR-10: For all of the baselines we recreated and the LLR network we used the same schedule
which is inspired by TRADES [8]. For Wide-ResNet-28-8, we use initial learning rate 0.1 and we
decrease after 100 and 105 epochs. We train till 110 epochs. For Wide-ResNet-40-8 we use initial
learning rate 0.1 and we decrease after 100 and 105 epochs with a factor of 0.1. We train to 110
epochs. The optimizer we used momentum 0.9. For LLR the λ = 4 and µ = 3, the weight placed on
the nominal loss `(x) is also 2. We use l2-regularization of 2e-4. The training is done on a batch size
of 256. We also slowly increase the size of the perturbation radius over 15 epochs starting from 0.0
until it gets to 8/255. For Wide-ResNet-28-8, Wide-ResNet-40-8 we train with 10 and 15 steps of
PGD respectively using Adam with step size of 0.1.

ImageNet (4/255): To train the LLR network the initial learning rate is 0.1, the decay schedule
is similar to [7], we decay by 0.1 after 35, 70 and 95 epochs. We train for 100 epochs. The LLR

5

hyperparameters are λ = 3 and µ = 6, the weights placed on the nominal loss is 3. We use l2-
regularization of 1e-4. The training is done on batch size of 512. We slowly increase the perturbation
radius over 20 epochs from 0 to 4/255. We train with 2 steps of PGD using Adam and step size 0.1.

ImageNet (16/255): To train the LLR network the initial learning rate is 0.1, we decay by 0.1 after
17 and 35 epochs and 50 epochs – we train to 55 epochs. The LLR hyperparameters are λ = 3 and
µ = 9, the weights placed on the nominal loss is 3. We use l2-regularization of 1e-4. The training
is done on batch size of 512. We slowly increase the perturbation radius over 90 epochs from 0 to
16/255. We train with 10 steps of PGD using Adam with step size of 0.1.

Batch Normalization During training we use the local batch statistics at the nominal point. Sup-
pose µ, σ denotes the local batch statistics at every layer of the network for point x. Let us also
denote `(x; y, µ, σ) to be the loss function corresponding to when we use batch statistics µ and σ.
Then the loss we calculate at train time is the following

`(x; y, µ, σ) + µ
∣∣δTLLR∇x`(x; y, µ, σ)

∣∣+ λ max
δ∈B(ε)

g(δ;x, y, µ, σ),

where δLLR = argmaxδ∈B(ε)g(δ;x, y, µ, σ) and

g(δ;x, y, µ, σ) =
∣∣`(x+ δ; y, µ, σ)− `(x; y, µ, σ)− δT∇x`(x; y, µ, σ)

∣∣ .
F.3 Ablation Studies

CIFAR-10: Wide-ResNet-28-8 (8/255)
Regularizer Nominal Untargeted Multi-Targeted

Accuracy
λγ(ε, x) 84.75% 50.42% 49.38%
µ|δTLLR∇x`(x)|+λγ(ε, x) 86.83% 52.99% 51.13%

ImageNet: ResNet-152 (4/255)
Regularizer Nominal Untargeted Random-Targeted

Accuracy Success Rate
λγ(ε, x) 71.40% 41.30% 1.90%
µ|δTLLR∇x`(x)|+λγ(ε, x) 72.70% 47.00% 0.40%

Table F3: By removing
∣∣δT∇xl(x)

∣∣B from LLR shown in Eq. (8), the adversarial accuracy evaluated
using multi-targeted reduces by 1.75% for CIFAR-10 while the adversarial reduces by 5.70%.

We investigate the effects of adding the term
∣∣δT∇xl(x)

∣∣ into LLR shown in Eq. (8). The results are
shown in Table F3. We can see that adding the term

∣∣δT∇x`(x)
∣∣ only yields minor improvements

to the adversarial accuracy (49.38% vs 51.13%) for CIFAR-10, while we get a boost of almost 6%
adversarial accuracy for ImageNet (41.30% vs 47.00%).

F.4 Resistance to Gradient Obfuscation

CIFAR-10: Wide-ResNet-28-8 (8/255)
Methods PGD steps Nominal Untargeted Multi-Targeted
ADV-1 1 88.45% 0.00% 0.00%
ADV-2 2 76.63% 0.00% 0.00%
LLR-1 1 93.03% 1.80% 1.60%
LLR-2 2 90.46% 46.47% 44.50%

Table F4: This shows that LLR trained with even just two steps of PGD can get an adversarial
accuracy of 44.50% under the strongest evaluation, while both adversarially trained networks (ADV-1,
ADV-2) gets 0.0%.

In Fig F2 we show the adversarial perturbations for networks ADV-2 and LLR-2. We see that, in
contrast to LLR-2, the adversarial perturbation for ADV-2 looks similar to random noise. When the

6

Label: deer - Prediction: deer - Adversarial: bird

(a) ADV-2

Label: deer - Prediction: deer - Adversarial: bird

(b) LLR-2

Figure F2: We show adversarial examples arising from training with either 2-step PGD adversarial
training or 2-step PGD LLR. For both (a) and (b), the first image is the original, the second is the
adversarially perturbed image and the third image to is the scaled adversarial perturbation found
using 50 steps of PGD.

0 2 4 6 8 10 12 14√
γ(8/255, x)

0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty

Adversarial - 2 steps

Linearity - 2 steps

Adversarial - 20 steps

Figure F3: This is a histogram plot of the values of
√
γ(8/255, x) on the test set after training is

done either with two steps of PGD for the linearity objective (orange); two-steps of PGD for the
adversarial objective (blue) or 20 steps of PGD for the adversarial objective (green). The statistics of
γ(ε, x) after training with 2-steps of PGD with the linearity objective aligns well with training using
20 steps of the adversarial objective. In contrast, training with 2-steps of PGD of the adversarial
objective gets very different looking histogram, where we obtain much higher values of γ(ε, x).

adversarial perturbation resembles random noise, this is often a sign that the network is gradient
obfuscated.

Furthermore, we show that the adversarial accuracy for LLR-2 is 44.50% as opposed to ADV-2 which
is 0%. Surprisingly, even training with just 1 step of PGD for LLR (LLR-1) we obtain non-zero
adversarial accuracy.

In Fig F3, we show the values of γ(ε, x) we obtain when we train with LLR or adversarial training
(ADV). To find γ(ε, x) = maxδ∈B(ε) g(δ, x) we maximize g(δ, x) by running 50 steps of PGD with
step size 0.1. Here, we see that values of γ(ε, x) for adversarial training with 20 steps of PGD is
similar to LLR-2. In contrast, adversarial training (ADV-2) with just two steps of PGD gives much
higher values of γ(ε, x).

F.5 Adversarially Perturbed Images for 16/255

The perturbation radius 16/255 has become the norm [3, 7] to use to gauge how robust a network is
on ImageNet. However, to be robust we need to make sure that the perturbation is sufficiently small
such that it does not significantly affect our visual perception. We hypothesize that this perturbation
radius is outside of this regime. Fig F4 shows that we can find examples which not only wipe out
objects (the curbs) in the image, but can actually add faint images onto the white background. This
significantly affects our visual perception of the image.

References
[1] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial

examples. arXiv preprint arXiv:1412.6572, 2014.

7

Label: bobsled - Prediction: tench - Adversarial: washbasin

Label: bobsled - Prediction: tench - Adversarial: washer

Label: bobsled - Prediction: tench - Adversarial: snowmobile

Figure F4: Images created with adversarial attack on a LLR model for perturbation radius 16/255.
The image which is attacked is the 1st of the validation set for ImageNet, the true label is "bobsled".
Each row displays the images in the following order: original image, adversarially perturbed image
and the adversarial perturbation (scaled). The attack attempts to imprint faint images onto the white
background. Additionally, the curb (where we often expect a bobsled to be next to) on the right of the
original image has been completely removed by the attack.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

[4] James Martens. Deep learning via hessian-free optimization. In ICML, volume 27, pages
735–742, 2010.

[5] James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

[6] Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

[7] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising
for improving adversarial robustness. arXiv preprint arXiv:1812.03411, 2018.

8

[8] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I
Jordan. Theoretically principled trade-off between robustness and accuracy. arXiv preprint
arXiv:1901.08573, 2019.

9

	Empirical Observations on Adversarial Training: Supplementary
	Local Linearity Upper Bounds Robustness: Proof of Proposition 4.1
	Local Linearity (, x) bounds adversarial loss by itself
	A local quadratic model of the loss
	Bounds for common loss functions

	Proofs
	Proof of Proposition C.1
	Proof of Proposition C.2

	Local Linearity Regularizer - Algorithm
	Experiments and Results: Supplementary
	Evaluation Setup
	Training and Hyperparameters
	Ablation Studies
	Resistance to Gradient Obfuscation
	Adversarially Perturbed Images for 16/255

