
Appendix459

A Missing Proofs from Section 3460

In this section, we prove correctness of our `2 Kronecker product regression algorithm. Specifically,461
we prove Theorem 3.1. To prove correctness, we need to establish several facts about the leverage462
scores of a Kronecker product.463

Proposition A.1. Let Ui ∈ Rni×di be an orthonormal basis for Ai ∈ Rni×di . Then U = ⊗qi=1Ui464
is an orthonormal basis for A = ⊗qi=1Ai.465

Proof. Note that the column norm of each column of U is the product of column norms of the Ui’s,466
which are all 1. Thus U has unit norm columns. It suffices then to show that all the singular values467
of U are 1 or −1, but this follows from the fact that the singular values of U are the product of468
singular values of the Ui’s, which completes the proof.469

Corollary A.2. Let A = ⊗qi=1Ai, where Ai ∈ Rni×di . Fix any~i = (i1, . . . , iq) ∈ [n1] × [n2] ×470
· · · × [nq], and let~i index into a row of A in the natural way. Then the~i-th leverage score of A is471
equal to

∏q
j=1 σij (Aj), where σt(B) is the t-th leverage score of a matrix B.472

Proof. Note U = ⊗qi=1Ui is an orthonormal basis for A = ⊗qi=1Ai by the prior Proposition. Now473
if U~i,∗ is the~i-th row of U , then by fundamental properties of Kronecker products [VL00], we have474

‖U~i,∗‖2 =
∏q
j=1 ‖(Uj)ij ,∗‖2, which completes the proof. Note here that we used the fact that475

leverage scores are independent of the choice of orthonormal basis [Woo14].476

Proposition A.3 (Theorem 29 of [CW13]). Given a matrixA ∈ Rn×d, let σ ∈ Rn be the `2 leverage477
scores of A (see definition 2.4). Then there is an algorithm which computes values σ̃1, σ̃2, . . . , σ̃n478
such that σ̃i = (1 ± ε)σi simultaneously for all i ∈ [n] with probability 1 − 1/nc for any constant479
c ≥ 1. The runtime is Õ(nnz(A) + poly(d/ε)).480

Proposition A.4. Given A = ⊗qi=1Ai, where Ai ∈ Rni×di , there is an algorithm which, with481
probability 1 − 1/nc for any constant c ≥ 1, outputs a diagonal matrix D ∈ Rn×n with m non-482
zeros entries, such that Di,i = 1/(mσ̃i) is non-zero with probability σ̃i ∈ (1 ± 1/10)σi(A). The483

time required is Õ(
∑q
i=1 nnz(Ai) + poly(dq/ε) +mq).484

Proof. By Proposition A.3, we can compute approximate leverage scores of each Ai up to error485
Θ(1/q) in time Õ(nnz(Ai) + poly(d/ε)) with high probability. To sample a leverage score from486
A, it suffices to sample one leverage score from each of the Ai’s by Corollary A.2. The probability487
that a given row ~i = (i1, . . . , iq) ∈ [n1] × [n2] × · · · × [nq] of A is chosen is

∏q
j=1 σ̃(Aj)ij =488

(1 ± Θ(1/q))qσ~i(A) = (1 ± 1/10)σ~i(A) as needed. Obtaining a sample takes Õ(1) time per Ai489
(since a random number needs to be generated to O(log(n))-bits of precision in expectation and490
with high probability to obtain this sample), thus O(q) time overall, so repeating the sampling M491
times gives the desired additive mq runtime.492

The q = 1 version of the following result can be found in [CW13, SWZ19].493

Proposition A.5. Let D ∈ Rn×n be the diagonal row sampling matrix generated via Proposition494
A.4, with m = Θ(1/(δε2)) non-zero entries. Let A = ⊗qi=1Ai as above, and let U ∈ Rn×r be an495
orthonormal basis for the column span of A, where r = rank(A). Then for any matrix B with n496
rows, we have497

Pr
[
‖U>D>DB − U>B‖F ≤ ε‖U‖F ‖B‖F

]
≥ 1− δ

Proof. By definition of leverage scores and Proposition A.4, D is a matrix which sample each row498
Ui,∗ of U with probability at least (9/10)‖Ui,∗‖2/‖U‖F . Taking the average of m such rows,499
we obtain the approximate matrix product result with error O(1/

√
δm) with probability 1 − δ by500

Theorem 2.1 of [KV17].501
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We our now ready to prove the main theorem of this section, Theorem 3.1502

Theorem 3.1(Kronecker product `2 regression) LetD ∈ Rn×n be the diagonal row sampling matrix503
generated via Proposition A.4, with m = Θ(1/(δε2)) non-zero entries, and let A = ⊗qi=1Ai,504
where Ai ∈ Rni×di , and b ∈ Rn, where n =

∏q
i=1 ni and d =

∏q
i=1 di. Then we have let505

x̂ = arg minx∈Rd ‖DAx − Db‖2, and let x∗ = arg minx′∈Rd ‖Ax − b‖2. Then with probability506
1− δ, we have507

‖Ax̂− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2
Moreover, the total runtime requires to compute x̂ is508

Õ

(
q∑

i=1

nnz(Ai) + (dq/(δε))O(1)

)
.

509

Proof. Let U be an orthonormal basis for the column span ofA. By Lemma 3.3 of [CW09], we have510
‖A(x̂−x∗)‖2 ≤ 2

√
ε‖Ax∗− b‖2. Note that while Lemma 3.3 of [CW09] uses a different sketching511

matrix D than us, the only property required for the proof of Lemma 3.3 is that |U>D>DB −512
U>B‖F ≤

√
ε/d‖A‖F ‖B‖F with probability at least 1 − δ for any fixed matrix B, which we513

obtain by Proposition A.5 by having O(d/(δε2)) non-zeros on the diagonal of D). By the normal514
equations, we have A>(Ax∗− b) = 0, thus 〈A(x̂−x∗), (Ax∗− b)〉 = 0, and so by the Pythagorean515
theorem we have516

‖Ax̂− b‖22 = ‖Ax∗ − b‖22 + ‖A(x̂− x∗)‖22 ≤ (1 + 4ε)‖Ax∗ − b‖22
Which completes the proof after rescaling of ε. The runtime required to obtain the matrix D is517
Õ(
∑q
i=1 nnz(Ai) + poly(dq/ε)) by Proposition A.4, where we set D to have m = Θ(d/(δε2))518

non-zero entries on the diagonal. Once D is obtained, one can compute D(A + b) in time O(md),519
thus the required time is O(δ−1(d/ε)2). Finally, computing x̂ once DA,Db are computed requires520
a single pseudo-inverse computation, which can be carried out inO(δ−1d3/ε2) time (sinceDA now521
has only O(δ−1(d/ε)2) rows).522

523

B Missing Proofs from Section 3.1524

We now give a complete proof of Theorem 3.2. Our high level approach follows that of [DDH+09].525
Namely, we first obtain a vector x′ which is a O(1) approximate solution to the optimal, and then526
use the residual error ρ ∈ Rd of x′ to refine x′ to a (1 ± ε) approximation x̂. The fact that x′ is527
a constant factor approximation follows from our Lemma B.5. Given x′, by Lemma B.9 we can528
efficiently compute the matrix Σ which samples from the coordinates of the residual error ρ =529
(A1 ⊗ · · · ⊗ Aq)x′ − b in the desired runtime. The sampling lemma is the main technical lemma,530
and requires a careful multi-part sketching and sampling routine. Given this Σ, the fact that x̂ is a531
(1 + ε) approximate solution follows directly from Theorem 6 of [DDH+09]. Our main theorem532
and its proof is stated below. The proof will utilize the lemmas and sampling algorithm developed533
in the secitons which follow.534

Theorem 3.2 (Main result, `p, 1 + ε-approximation). Fix 1 ≤ p < 2. Then for any constant535
q = O(1), given matrices A1, A2, · · · , Aq , where Ai ∈ Rni×di , let n =

∏q
i=1 ni, d =

∏q
i=1 di. Let536

x̂ ∈ Rd be the output of Algorithm 2. Then537

‖(A1 ⊗A2 ⊗ · · · ⊗Aq)x̂− b‖p ≤ (1 + ε) min
x∈Rn

‖(A1 ⊗A2 ⊗ · · · ⊗Aq)x− b‖p

holds with probability at least 1− δ. In addition, our algorithm takes538

Õ

((
q∑

i=1

nnz(Ai) + nnz(b) + (d/ε)O(1)

)
log(1/δ)

)

time to output x̂ ∈ Rd.539

14



Proof. By Lemma B.5, the output x′ in line 16 of algorithm 3.1 is an 8 approximation of the optimal540
solution, and x′ is obtained in time Õ(

∑q
i=1 nnz(Ai) + (dq/ε)O(1)). We then obtain the residual541

error ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b (implicitly). By Theorem 6 of [DDH+09], if we let Σ ∈ Rn×n542

be a row sampling matrix where Σi,i = 1/α
1/p
i with probability αi = min{1,max{qi, r2

|ρi|p
‖ρ‖pp },543

where qi is the row sampling probability used in the sketch Π from which x′ was obtained,544
andr2 = O(d3/ε2 log(1/ε)), then the solution to minx ‖Σ(A1 ⊗ · · · ⊗ Aq)x − Σb‖p will be a545
(1 + ε) approximately optimal solution. By Lemma B.9, we can obtain such a matrix Σ in time546
Õ(
∑q
i=1 nnz(Ai) + q nnz(b) + (d log(n)/(εδ)O(q2)), which completes the proof of correctness. Fi-547

nally, note that we can solve the sketched regression problem minx ‖Σ(A1⊗· · ·⊗Aq)x−Σb‖p which548

hasO((d log(n)/ε)O(q2)(1/δ)) constraints and d variables in timeO((d log(n)/ε)O(q2)(1/δ)) using549
linear programming for p = 1 (see [CLS19] for the state of the art linear program solver), or more550
generally interior point methods for convex programming for p > 1 (see [BCLL18] for the state of551
the art `p solver).552

Now to boost the failure probability from a O(1/δ) to log(1/δ) dependency, we do the following.553
We run the above algorithm with δ = 1/10, so that our output x̂ ∈ Rd is a (1 + ε) approximation554
with probability 9/10. Now note that we actually have an (1 + ε) estimate of the cost ‖(A1 ⊗A2 ⊗555
· · · ⊗ Aq)x̂ − b‖p of the solution x̂, which is simply given by ‖Σ(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x̂ − Σb‖p556
where Σ is the sampling matrix used to compute x̂. Thus we can simply repeat the above process557
O(log(1/δ)) times, and take the solution with the minimal cost overall.558

We start by defining a tensor operation which will be useful for our analysis.559

Definition B.1 ( ((·, . . . , ·), ·) operator for tensors and matrices). Given tensor A ∈ Rd1×d2×···×dq560
and matrices Bi ∈ Rni×di for i ∈ [q], we define the tensor ((B1, B2, . . . , Bq), A) ∈561
Rn1×n2×···×nq :562

((B1, B2, . . . , Bq), A)i1,...,iq =

d1∑

i′1=1

d2∑

i′2=1

· · ·
dq∑

i′q=1

Ai′1,i′2,...,i′q

q∏

`=1

(B`)i`,i′`

Observe for the case of q = 2, we just have ((B1, B2), A) = B1AB
>
2 ∈ Rn1×n2 .563

Using the above notation, we first prove a result about reshaping tensors.564

Lemma B.2 (Reshaping). Given matrices A1, A2, · · · , Aq ∈ Rni×di and a tensor B ∈565

Rn1×n2×···×nq , let n =
∏q
i=1 ni and let d =

∏d
i=1 di. Let b denote the vectorization of566

B. For any tensor X ∈ Rd1×d2×···×dq , we have ‖((A1, A2, · · · , Aq), X) − B‖ξ is equal to567
‖(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x − b‖ξ where ξ is any entry-wise norm (such as an `p-norm) and x is568
the vectorization of X . See Definition B.1 of the ((·, . . . , ·), ·) tensor operator.569

Observe, for the case of q = 2, this is equivalent to the statement that ‖A1XA
>
2 − B‖ξ = ‖(A1 ⊗570

A2)x− b‖ξ.571

Proof. For the pair x ∈ Rd, X ∈ Rd1×d2×···×dq , the connection is the following: ∀i1 ∈572
[d1], . . . , iq ∈ [dq],573

xi1+
∑q

l=2(il−1)·∏l−1
t=1 dt

= Xi1,··· ,iq .

Similarly, for b ∈ Rn, B ∈ Rn1×n2×···×nq , for any j1,∈ [n1], . . . , jq ∈ [nq],574

bj1+
∑q

l=2(jl−1)·∏l−1
t=1 nt

= Bj1,j2,··· ,jq .

For simplicity, for any (i1, . . . , iq) ∈ [d1]×· · ·× [dq] and (j1, . . . , jq) ∈ [n1]×· · ·× [nq] we define575
~i = i1 +

∑q
l=2(il − 1) ·∏l−1

t=1 dt and similarly ~j = j1 +
∑q
l=2(jl − 1) ·∏l−1

t=1 nt. Then we can576
simplify the above relation and write x~i = Xi1,i2,··· ,iq , and b~j = Bj1,j2,··· ,jq .577
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For a matrixZ, letZi,∗ denote the i-th row ofZ. We consider the~j-th entry of (A1⊗A2⊗· · ·⊗Aq)x,578

((A1 ⊗A2 ⊗ · · · ⊗Aq)x)~j =
〈

(A1 ⊗A2 ⊗ · · · ⊗Aq)~j,∗ · x
〉

=

d1∑

i1=1

d2∑

i2=1

· · ·
dq∑

iq=1

(
q∏

l=1

(Al)jl,il

)
· x~i

=

d1∑

i1=1

d2∑

i2=1

· · ·
dq∑

iq=1

(
q∏

l=1

(Al)jl,il

)
·Xi1,i2,··· ,iq

= ((A1, A2, · · · , Aq), X)j1,...,jq .

Where the last equality is by Definition (B.1). Since we also have b~j = Bj1,...,jq , this completes the579
proof of the Lemma.580

B.1 Sampling from an `p-Well-Conditioned Base581

In this Section, we discuss the first half of Algorithm 2 which computes x′ ∈ Rd, which we will582
show is a O(1)-approximate solution to the optimal. First note that by Lemma 2.3 together with fact583
2.6, we know that AiR−1

i is an `p well conditioned basis for Ai (recall this means that AiR−1
i is584

a (α, β, p) well conditioned basis for A, and β/α = d
O(1)
i ) with probability 1 − O(1/q), and we585

can then union bound over this occurring for all i ∈ [q]. Given this, we now prove that (A1R
−1
1 ⊗586

A2R
−1
2 ⊗ · · · ⊗AqR−1

q ) is a well conditioned basis for (A1 ⊗A2 ⊗ · · · ⊗Aq).587

Lemma B.3. Let Ai ∈ Rni×di and Ri ∈ Rdi×di . Then if AiR−1
i is a (αi, βi, p) well-conditioned588

basis for Ai for i = 1, 2, . . . , q, we have for all x ∈ Rd1···dq :589
q∏

i=1

αi‖x‖p ≤ ‖(A1R
−1
1 ⊗A2R

−1
2 ⊗ · · · ⊗AqR−1

q )x‖p ≤
q∏

i=1

βi‖x‖p

Proof. We first consider the case of q = 2. We would like to prove590

α1α2‖x‖p ≤ ‖(A1R
−1
1 ⊗A2R

−1
2 )x‖p ≤ β1β2‖x‖p,

First note, by the reshaping Lemma B.2, this is equivalent to591

α1α2‖X‖p ≤ ‖A1R
−1
1 X(R−1

2 A2)>‖p ≤ β1β2‖X‖p.
Where X ∈ Rd1×d2 is the tensorization of x. We first prove one direction. Let U1 = A1R

−1
1 and592

U2 = A2R
−1
2 . We have593

‖U1XU
>
2 ‖pp =

n2∑

i2=1

‖U1(XU>2 )i2‖pp

≤
n2∑

i2=1

βp1‖(XU>2 )i2‖pp

= βp1‖XU>2 ‖pp
≤ βp1βp2‖X‖pp,

where the first step follows from rearranging, the second step follows from the well-conditioned594
property of U1, the third step follows from rearranging again, the last step follows from the well-595
conditioned property of U2. Similarly, we have596

‖U1XU
>
2 ‖pp =

n2∑

i2=1

‖U1(XU>2 )i2‖pp

≥
n2∑

i2=1

αp1‖(XU>2 )i2‖pp

= αp1‖XU>2 ‖pp
≥ αp1αp2‖X‖pp,
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where again the first step follows from rearranging, the second step follows from the well-597
conditioned property of U1, the third step follows from rearranging again, the last step follows598
from the well-conditioned property of U2.599

In general, for arbitrary q ≥ 2, similarly using our reshaping lemma, we have600

‖(⊗qi=1(AiR
−1
i ))x‖p ≥

q∏

i=1

αi‖x‖p,

‖(⊗qi=1(AiR
−1
i ))x‖p ≤

q∏

i=1

βi‖x‖p.

601

Putting this together with fact 2.6, and noting d = d1 · · · dq , we have602

Corollary B.4. Let AiR−1
i be as in algorithm 2. Then we have for all x ∈ Rd1···dq :603

(1/d)O(1)‖x‖p ≤ ‖(A1R
−1
1 ⊗ · · · ⊗AqR−1

q )x‖p ≤ dO(1)‖x‖p,
In other words, (A1R

−1
1 ⊗ · · · ⊗AqR−1

q ) is a well conditioned `p basis for (A1 ⊗ · · · ⊗Aq)604

From this, we can obtain the following result.605

Lemma B.5. Let x′ ∈ Rd be the output of the O(1)-Approximate `p Regression Procedure in
Algorithm 2. Then with probability 99/100 we have

‖(A1 ⊗ · · · ⊗Aq)x′ − b‖p ≤ 8 min
x
‖(A1 ⊗ · · · ⊗Aq)x− b‖p

Moreover, the time required to compute x′ is Õ(
∑q
i=1 nnz(Ai) + (dq/ε)O(1)).606

Proof. By Theorem 6 of [DDH+09], if we let Π be a diagonal row sampling matrix such that607

Πi,i = 1/q
1/p
i with probability qi ≥ min{1, r1

‖Ui,∗‖pp
‖U‖pp }, where U is a `p well-conditioned basis for608

(A1 ⊗ · · · ⊗Aq) and r1 = O(d3), then the solution x′ to609

min
x
‖Π((A1 ⊗ · · · ⊗Aq)x− b‖

will be a 8-approximation. Note that we can solve the sketched regression problem minx ‖Π((A1⊗610
· · · ⊗ Aq)x

′ − b‖ which has O(poly(d/ε)) constraints and d variables in time poly(d/ε) using611
linear programming for p = 1 (see [CLS19] for the state of the art linear program solver), or more612
generally interior point methods for convex programming for p > 1 (see [BCLL18] for the state of613
the art `p solver).614

Then by Corollary B.4, we know that setting U = (A1R
−1
1 ⊗ · · · ⊗ AqR−1

q ) suffices, so now we615
must sample rows of U . To do this, we must approximately compute the norms of the rows of U .616
Here, we use the fact that ‖ · ‖pp norm of a row of (A1R

−1
1 ⊗ · · · ⊗AqR−1

q ) is the product of the row617

norms of the AiR−1
i that correspond to that row. Thus it suffices to sample a row ji from each of618

the AiR−1
i ’s with probability at least min{1, r1‖(AiR−1

i )ji,∗‖pp/‖AiR−1
i ‖pp} for each i ∈ [q].619

To do this, we must estimate all the row norms ‖(AiR−1
i )ji,∗‖pp to (1 ± 1/10) error. This is done620

in steps 7 − 10 of Algorithm 2, which uses dense p-stable sketches Z ∈ Rd×τ , and computes621
(AiR

−1
i Z), where τ = Θ(log(n)). Note that computing R−1

i Z ∈ Rd×τ requires Õ(d2). Once622
computed, Ai(R−1

i Z) can be computed in Õ(nnz(Ai)) time. We then take the median of the coor-623
dinates of (AiR

−1
i Z) (normalized by the median of the p-stable distribution Dp, which can be effi-624

ciently approximated to (1 ± ε) in O(poly(1/ε)) time, see Appendix A.2 of [KNW10] for details)625
as our estimates for the row norms. This is simply the Indyk median estimator [Ind06], and gives626
a (1 ± 1/10) estimate ai,j of all the row norms ‖(AiR−1

i )j,∗‖pp with probability 1 − 1/ poly(n).627
Then it follows by Theorem 6 of [DDH+09] that x′ is a 8-approximation of the optimal solution628
with probability 99/100 (note that we amplified the probability by increasing the sketch sizes Si by629
a constant factor), which completes the proof.630

631
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B.2 `p Sampling From the residual of a O(1)-factor approximation632

By Lemma B.5 in the prior section, we know that the x′ first returned by the in algorithm 2 is a633
8-approximation. We now demonstrate how we can use this O(1) approximation to obtain a (1 + ε)634
approximation. The approach is again to sample rows of (A1 ⊗ · · · ⊗ Aq). But instead of sampling635
rows with the well-conditioned leverage scores qi, we now sample the i-th row with probability636
αi = min{1,max{qi, r2|ρi|p/‖ρ‖pp}} , where ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b ∈ Rn is the residual637
error of the O(1)-approximation x′. Thus we must now determine how to sample quickly from the638
residuals |ρi|p/‖ρ‖pp. Our sampling algorithm will need a tool originally developed in the streaming639
literature.640

Count-sketch for heavy hitters with the Dyadic Trick. We now introduce a sketch S which641
finds the `2 heavy hitters in a vector x efficently. This sketch S is known as count-sketch for heavy642
hitters with the Dyadic Trick. To build S we first stack Θ(log(n)) copies of the count sketch matrix643
Si ∈ Rk′×n [CW13]. The matrix Si is constructed as follows. Si has exactly one non-zero entry644
per column, which is placed in a uniformly random row, and given the value 1 or −1 uniformly645
at random. For Si, let hi : [n] → [k′] be such that hi(t) is the row with the non-zero entry in646
the t-th column of Si, and let gi : [n] → {1,−1} be such that the value of that non-zero entry647
is gi(t). Note that the hi, gi can be implemented as 4-wise independent hash functions. Fix any648
x ∈ Rn. Then given S1x, S2x, · · · , SΘ(log(n))x, we can estimate the value of any coordinate xj by649
mediani∈Θlog(n){gi(j)(Six)hi(j)}.650

It is well-known that this gives an estimate of xj with additive error Θ(1/
√
k′)‖x‖2 with probability651

1−1/poly(n) for all j ∈ [n] [CCFC04]. However, naively, to find the heaviest coordinates in x, that652
is all coordinates xj with |xj | ≥ Θ(1/

√
k′)‖x‖2, one would need to query O(n) estimates. This653

is where the Dyadic trick comes in [CM05]. We repeat the above process Θ(log(n)) times, with654
matrices S(i,j), for i, j ∈ Θ(log(n)). Importantly, however, in S(i,j), for all t, t′ ∈ [n] such that the655
first j most significant bits in their binary identity representation are the same, we set h(i,j)(t) =656
h(i,j)(t

′), effectively collapsing these identities to one. To find a heavy item, we can then query the657
values of the *two* identities from S(1,1), S(2,1), · · · , S(Θ(log(n)),1), and recurse into all the portions658
which have size at least Θ(1/

√
k′)‖x‖2. It is easy to see that we recurse into at most O(k′) such659

pieces in each of the Θ(log(n)) levels, and it takes O(log(n)) time to query a single estimate, from660
which the desired runtime of O(k′ log2(n)) is obtained. For a further improvement on size k of the661
overall sketched required to quickly compute Q, see [LNNT16]. We summarize this construction662
below in definition B.6.663
Definition B.6 (Count-sketch for heavy hitters with Dyadic Trick [CCFC04, LNNT16]). There is664
a randomized sketch S ∈ Rk×n with k = O(log2(n)/ε2) such that, for a fixed vector x ∈ Rn,665
given Sx ∈ Rk, one can compute a set Q ⊂ [n] with |Q| = O(1/ε2) such that {i ∈ [n] | |xi| ≥666
ε‖x‖2} ⊆ Q with probability 1−1/ poly(n). Moreover, Sx can be computed inO(log2(n) nnz(x))667
time. Given Sx, the set Q can be computed in time O(k).668

We begin with some notation. For a vector y ∈ Rn, where n = n1 · · ·nq , one can index any entry669

of yi via~i = (i1, i2, · · · , iq) ∈ [n1]× · · · × [nq] via i = i1 +
∑q
j=2(ij − 1)

∏ij−1
l=1 nl. It will useful670

to index into such a vector y interchangably via a vector y~i and an index yj with j ∈ [n]. For any671

set of subsets Ti ⊂ [ni], we can define yT1×···Tq
∈ Rn as y restricted to the ~i ∈ T1 × · · · × Tq .672

Here, by restricted, we mean the coordinates in y that are not in this set are set equal to 0. Similarly,673
for a y ∈ Rni and S ⊂ [ni], we can define yS as y restricted to the coordinates in S. Note that in674
Algorithm 4, In denotes the n× n identity matrix for any integer n. We first prove a proposition on675
the behavior of Kronecker products of p-stable vectors, which we will need in our analysis.676
Proposition B.7. Let Z1, Z2, · · · , Zq be independent vectors with entries drawn i.i.d. from the p-677
stable distribution, with Zi ∈ Rni . Now fix any i ∈ [q], and any x ∈ Rn, where n = n1n2 · · ·nq .678
Let ej ∈ Rni be the j-th standard basis column vector for any j ∈ [ni]. Let Γ(i, j) = [n1]× [n2]×679
· · · × [ni−1]× {j} × [ni+1]× · · · × [nq]. Define the random variable680

Xi,j(x) = |(Z1 ⊗ Z1 ⊗ · · · ⊗ Zi−1 ⊗ e>j ⊗ Zi+1 ⊗ · · · ⊗ Zq)x|p.
Then for any λ > 1, with probability at least 1−O(q/λ) we have681

‖xΓ(i,j)‖pp/λq ≤ Xi,j(x) ≤ (λ log(n))q‖xΓ(i,j)‖pp
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Algorithm 4 Algorithm to `p sample Θ(r2) entires of ρ = (A1 ⊗ · · · ⊗Aq)x′ − b
1: procedure RESIDUAL `p SAMPLE(ρ, r2)
2: r3 ← Θ(r2 logq

2

(n)/δ).
3: Generate i.i.d. p-stable vectors Z1,j , Z2,j , . . . , Zq,j ∈ Rn for j ∈ [τ ] for τ = Θ(log(n))
4: T ← ∅ . sample set to return
5: Pre-compute and store Zi,jAi ∈ R1×di for all i ∈ [q] and j ∈ [τ ]
6: Generate count-sketches for heavy hitters Si ∈ Rk×ni of Definition B.6 for all i ∈ [q],

where k = O(log2(n)r
O(1)
3 ).

7: for t = 1, 2, . . . , r3 do
8: s = (s1, . . . , sq)← (∅, . . . , ∅) . next sample to return
9: wj ←

(
(In1

)⊗ (
⊗q

k=2 Z
k,j)ρ

)
∈ Rn1 . In ∈ Rn×n is identity

10: Define w ∈ Rn1 by wl = medianj∈[τ ]{|wjl |} for l ∈ [n1]

11: Sample j∗ ∈ [n1] from the distribution
(
|w1|p
‖w‖pp ,

|w2|p
‖w‖pp , . . . ,

|wn1
|p

‖w‖pp

)

12: s1 ← j∗

13: for i = 2, . . . , q do
14: for j ∈ [τ ] do
15: Write e>ak ∈ R1×nk as the standard basis vector

16: vji ← Si
(

(
⊗i−1

k=1 e
>
ak

)⊗ (Ini
)⊗ (

⊗q
k=i+1 Z

k,j)ρ
)
∈ Rk

17: Compute heavy hitters Hi,j ⊂ [ni] from vji . Definition B.6

18: βji ←
(

(
⊗i−1

k=1 e
>
ak

)⊗ (
⊗q

k=i Z
k,j)ρ

)
∈ R

19: end for
20: Define βi ∈ Rk′ by βi = medianj∈[τ ]{|βji |p}
21: Hi = ∪τj=1Hi,j

22: γi ← medianj∈[τ ]

(
(
⊗i−1

k=1 e
>
ak

)⊗ Zi,j[ni]\Hi
⊗ (
⊗q

k=i+1 Z
k,j)ρ

)
∈ R

23: if with probability 1− γi/βi then
24: Draw ξ ∈ Hi with probability

medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ )⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

∑
ξ′∈Hi

medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

25: si ← ξ
26: else . si was not sampled as a heavy hitter
27: Randomly partition [ni] into Ωi1,Ω

i
2, . . . ,Ω

i
η with η = Θ(r2

3)
28: Sample t ∼ [η] uniformly at random
29: for j ∈ Ωt \Hi do
30: θj = medianl∈[τ ]

(
|(⊗i−1

k=1 e
>
ak

)⊗ (e>j )⊗ (
⊗q

k=i+1 Z
k,l)ρ|p

)

31: end for
32: Sample si ← j∗ from the distribution { θj∑

j′∈Ωt\Hi
θj′
}j∈Ωt\Hi

33: end if
34: end for
35: T ← S ∪ s where s = (s1, . . . , sq)
36: end for
37: return sample set T
38: end procedure

Proof. First observe that we can reshape y = xΓ ∈ Rm where m = n/ni, and re-write this random682
variable as Xi,j(x) = |(Z1 ⊗ Z2 ⊗ · · · ⊗ Zq−1)y|p. By reshaping Lemma B.2, we can write this683
as |(Z1 ⊗ Z2 ⊗ · · · ⊗ Zq−2)Y Z>q−1|p, where Y ∈ Rm/nq−1×nq−1 . We first prove a claim. In the684
following, for a matrix A, let ‖A‖pp =

∑
i,j |Ai,j |p.685
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Claim B.8. Let Z be any p-stable vector and X a matrix. Then for any λ > 1, with probability686
1−O(1/λ), we have687

λ−1‖X‖pp ≤ ‖XZ‖pp ≤ log(n)λ‖X‖pp.

Proof. By p-stability, each entry of |(XZ)i|p is distributed as |zi|p‖Xi,∗‖pp, where zi is again p-688
stable (but the z′is are not independent). Now p-stables have tails that decay at the rate Θ(1/xp)689
(see Chapter 1.5 of [Nol07]), thus Pr[|zi|p > x] = O(1/x) for any x > 0. We can condition on690
the fact that zi < λ · n10 for all i, which occurs with probability at least 1 − n−9/λ by a union691
bound. Conditioned on this, we have E[|zi|p] = O(log(n)) (this can be seen by integrating over the692
truncated tail O(1/x)), and the upper bound then follows from a application of Markov’s inequality.693

For the lower bound Let Yi be an indicator random variable indicating the event that |zi|p < 2/λ.694
Now p-stables are anti-concentrated, namely, their pdf is upper bounded by a constant everywhere.695
It follows that Pr[Yi] < c/λ for some constant c. By Markov’s inequality Pr[

∑
i Yi‖Xi,∗‖pp >696

‖X‖pp/2] < O(1/λ). Conditioned on this, the remaining ‖X‖pp/2 of the `p mass shrinks by less697
than a 2/λ factor, thus ‖XZ‖pp > (‖X‖pp/2)(2/λ) = ‖X‖pp/λ as needed.698

By the above claim, we have ‖Y ‖p/λ1/p ≤ ‖Y Z>q−1‖p ≤ (log(n)λ)1/p‖Y ‖p with probability699

1 − O(1/λ). Given this, we have Xi,j(x) = |(Z1 ⊗ Z2 ⊗ · · · ⊗ Zq−2)y′|p, where ‖Y ‖p/λ1/p ≤700
‖y′‖p ≤ (log(n)λ)1/p‖Y ‖p. We can inductively apply the above argument, each time getting a blow701
up of (log(n)λ)1/p in the upper bound and (1/λ)p in the lower bound, and a failure probability of702
(1/λ). Union bounding over all q steps of the induction, the proposition follows.703

704

Lemma B.9. Fix any r2 ≥ 1, and suppose that x′ = minx ‖Π(A1 ⊗ · · · ⊗ Aq)x − Πb‖p and705

Π ∈ Rn×n is a row sampling matrix such that Πi,i = 1/q
1/p
i with probability qi. Define the706

residual error ρ = (A1 ⊗ · · · ⊗ Aq)x
′ − b ∈ Rn. Then Algorithm 4, with probability 1 − δ,707

succeeds in outputting a row sampling matrix Σ ∈ Rn×n such that Σi,i = 1/α
1/p
i with probability708

αi = min{1,max{qi, r3|ρi|p/‖ρ‖pp}} for some r3 ≥ r2, and otherwise Σi,i = 0. The algorithm709
runs in time710

Õ

(
q∑

i=1

nnz(Ai) + q nnz(b) + (r2 log(n)/δ)O(q2)

)
.

Proof. The algorithm is given formally in figure 4. We analyze the runtime and correctness here.711

Proof of Correctness. The approach of the sampling algorithm is as follows. Recall that we can712
index into the coordinates of ρ ∈ Rn via~a = (a1, . . . , aq) where ai ∈ [ni]. We build the coordinates713
of ~a one by one. To sample a ~a ∈ ∏q

i=1[ni], we can first sample a1 ∈ [n1] from the distribution714
Pr[a1 = j] =

∑
~u:u1=j |ρ~u|p/(

∑
~u |ρ~u|p). Once we fix a1, we can sample a2 from the conditional715

distribution distribution Pr[a2 = j] =
∑
~u:u2=j,u1=a1

|ρ~u|p/(
∑
~u:u1=a1

|ρ~u|p), and so on. For716
notation, given a vector ~a = (a1, . . . , ai−1), let ∆(~a) = {~u ∈ [n1]×· · ·× [nq] | aj = yj for all j =717
1, 2, . . . , i − 1}. Then in general, when we have sampled ~a = (a1, . . . , ai−1) for some i ≤ q, we718
need to sample ai ← j ∈ [nk] with probability719

Pr[ai = j] =
∑

~u∈∆(~a):ui=j

|ρ~u|p/


 ∑

~u∈∆(~a)

|ρ~u|p

 .

We repeat this process to obtain the desired samples. Note that to sample efficiently, we will have720
to compute these aforementioned sampling probabilities approximately. Because of the error in721

approximating, instead of returning r2 samples, we over-sample and return r3 = Θ(r2 logq
2

(n))722
samples.723

The first step is of the algorithm is to generate the p-stable vectors Zi,j ∈ Rni for i ∈ [q]724
and j = 1, 2, . . . ,Θ(log(n)). We can pre-compute and store Zi,jAi for i ∈ [q], which takes725
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Õ(
∑q
i=1 nnz(Ai)) time. We set wj ←

(
(In1)⊗ (

⊗q
k=2 Z

k,j)ρ
)
∈ Rn1 and define w ∈ Rn1726

by wl = medianj∈[τ ]{|wjl |} for l ∈ [n1]. Observe that wjl is an estimate of
∑
~u:u1=l |ρ~u|p. By727

Proposition B.7, it is a (c log(n))q approximation with probability at least 3/4 for some constant c.728
Taking the median of Θ(log(n)) repetitions, we have that729

c−q ·
∑

~u:u1=l

|ρ~u|p ≤ |wl|p ≤ (c log(n))q ·
∑

~u:u1=l

|ρ~u|p

with probability 1 − 1/poly(n), and we can then union bound over all such estimates every con-730
ducted over the course of the algorithm. We call the above estimate |wl|p a O((c log(n))q)-error731
estimate of

∑
~u:u1=l |ρ~u|p. Given this, we can correctly and independently sample the first coor-732

dinate of each of the Θ(r3) samples. We now describe how to sample the i-th coordinate. So733
in general, suppose we have sampled (a1, ..., ai−1) so far, and we need to now sample ai ∈ [ni]734
conditioned on (a1, ..., ai−1). We first consider735

W i,k =

(
(

i−1⊗

k=1

e>ak)⊗ (Ini)⊗ (

q⊗

k=i+1

Zk,j)ρ

)
∈ Rni

Note that the j-th coordinate W i,k
j for W i,k is an estimate of

∑
~u∈∆(~a):ui=j

|ρ~u|p. Again by By736

Proposition B.7, with probability 1 − 1/ poly(n), we will have |W i,k
j |p is a O((c log(n))q)-error737

estimate of
∑
~u∈∆(~a):ui=j

|ρ~u|p or at least one k ∈ [τ ]. Our goal will now be to find all j ∈ [ni]738

such that
∑
~u∈∆(~a):ui=j

|ρ~u|p ≥ Θ((c log(n))q/r8
3)
∑
~u∈∆(~a) |ρ~u|p. We call such a j a heavy hitter.739

Let Qi ⊂ [ni] be the set of heavy hitters. To find all the heavy hitters, we use the count-sketch740
for heavy hitters with the Dyadic trick of definition B.6. We construct this count-sketch of def B.6741
Si ∈ Rk′×ni where k′ = O(log2(n)r16

3 ). We then compute SiW i,k, for k = 1, 2, . . . , τ , and obtain742
the set of heavy hitters h ∈ Hi,k ⊂ [ni] which satisfy |W i,k

j |p ≥ Θ(1/r8
3)‖W i,k‖pp. By the above743

discussion, we know that for each j ∈ Qi, we will have |W i,k
j |p ≥ Θ(1/r16

3 )‖W i,k‖pp for at least744
one k ∈ [τ ] with high probability. Thus Hi = ∪τk=1Hi,k ⊇ Qi.745

We now will decide to either sample a heavy hitter ξ ∈ Hi, or a non-heavy hitter ξ ∈746
[ni] \ Hi. By Proposition B.7, we can compute a O((c log(n))−q)-error estimate βi =747

medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (
⊗q

k=i Z
k,j)ρ

)∣∣∣
p

of
∑
~u∈∆(~a) |ρ~u|p, meaning:748

O(c−q)
∑

~u∈∆(~a)

|ρ~u|p ≤ βi ≤ O((c log n)q)
∑

~u∈∆(~a)

|ρ~u|p.

Again, by Proposition B.7, we can compute a O((c log(n))−q)-error estimate γi ←749

medianj∈[τ ]

(
(
⊗i−1

k=1 e
>
ak

)⊗ Zi,j[ni]\Hi
⊗ (
⊗q

k=i+1 Z
k,j)ρ

)
of
∑
h∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p. It750

follows that751

O(c−2q)

∑
h∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p∑
~u∈∆(~a) |ρ~u|p

≤ γi
βi
≤ O((c log n)2q)

∑
h∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p∑
~u∈∆(~a) |ρ~u|p

In other words, γi/βi is aO((c log(n))2q)-error approximation of the true probability that we should752
sample a non-heavy item. Thus with probability 1− γi/βi, we choose to sample a heavy item.753

To sample a heavy item, for each ξ ∈ Hi, by Proposition B.7, we can compute an O((c log(n))−q)-754

error estimate medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ )⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

of
∑
~u∈∆(~a):ui=ξ

|ρ~u|p,755

meaning756
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
O(c−q)

∑

~u∈∆(~a):ui=ξ

|ρ~u|p

 ≤ medianj∈τ

∣∣∣∣∣

(
(
i−1⊗

k=1

e>ak)⊗ (e>ξ )⊗ (

q⊗

k=i+1

Zk,j)ρ

)∣∣∣∣∣

p

≤


O((c log n)q)

∑

~u∈∆(~a):ui=ξ

|ρ~u|p



Thus we can choose to sample a heavy item ξ ∈ Hi from the distribution given by757

Pr [sample ai ← ξ] =
medianj∈τ

∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ )⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

∑
ξ′∈Hi

medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

Which gives a O((c log(n))2q)-error approximation to the correct sampling probability for a heavy758
item.759

In the second case, with probability γi/βi, we choose to not sample a heavy item. In this case, we760
must now sample a item from [ni] \Hi. To do this, we partition [ni] randomly into Ω1, . . . ,Ωη for761
η = 1/r2

3 . Now there are two cases. First suppose that we have762

∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p∑
~u∈∆(~a) |ρ~u|p

≤ Θ(1/r3
3)

Now recall that γi/βi was a O((c log(n))2q)-error estimate of the ratio on the left hand side763
of the above equation, and γi/βi was the probability with which we choose to sample a764
non-heavy hitter. Since we only repeat the sampling process r3 times, the probability that765
we ever sample a non-heavy item in this case is at most Θ(q(c log(n))2q/r2

3) < Θ(q/r3),766
taken over all possible repetitions of this sampling in the algorithm. Thus we can safely767
ignore this case, and condition on the fact that we never sample a non-heavy item in this768
case. Otherwise,

∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p > Θ(1/r3
3)
∑
~u∈∆(~a) |ρ~u|p, and it follows that769 ∑

~u∈∆(~a):ui=j′
|ρ~u|p ≤ Θ(1/r5

3

∑
j∈[ni]\Hi

)
∑
~u∈∆(~a):ui=j

|ρ~u|p for all j′ ∈ [ni] \ Hi, since we770

removed all Θ(1/r8
3) heavy hitters from [ni] originally. Thus by Chernoff bounds, with high prob-771

ability we have that
∑
j∈Ωi\Hi

(
∑
~u∈∆(~a):ui=j

|ρ~u|p) = Θ(1/η
∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p),772
which we can union bound over all repetitions.773

Given this, by choosing t ∼ [η] uniformly at random, and then choosing j ∈ Ωt \ Hi with774
probability proportional to its mass in Ωt \ Hi, we get a Θ(1) approximation of the true sam-775
pling probability. Since we do not know its exact mass, we instead sample from the distribution776
{ θj∑

j′∈Ωt\Hi
θj′
}j∈Ωt\Hi

, where777

θj = median
l∈[τ ]

(∣∣∣∣∣(
i−1⊗

k=1

e>ak)⊗ (e>j )⊗ (

q⊗

k=i+1

Zk,l)ρ

∣∣∣∣∣

p)

Again by Proposition B.7, this gives a O((c log(n))2q)-error approximation to the correct sam-778
pling probability. Note that at each step of sampling a coorindate of ~a we obtained at most779
O((c log(n))2q)-error in the sampling probability. Thus, by oversampling by a O((c log(n))2q2

)780
factor, we can obtain the desired sampling probabilities. This completes the proof of correctness.781
Note that to improve the failure probability to 1− δ, we can simply scale r3 by a factor of 1/δ.782

Proof of Runtime. We now analyze the runtime. At every step i = 1, 2, . . . , q of the sampling, we783

compute vji ← Si
(

(
⊗i−1

k=1 e
>
ak

)⊗ (Ini
)⊗ (

⊗q
k=i+1 Z

k,j)ρ
)
∈ Rni for j = 1, 2, . . .Θ(log(n)).784

This is equal to785

Si

(
(
i−1⊗

k=1

(Ak)ak,∗)⊗ (Ai)⊗ (

q⊗

k=i+1

Zk,jAk)x′ − (
i−1⊗

k=1

e>ak)⊗ (Ini
)⊗ (

q⊗

k=i+1

Zk,j)b

)
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We first consider the term inside of the parenthesis (excluding Si). Note that the term786
(
⊗q

k=i+1 Z
k,jAk) was already pre-computed, and is a vector of length at most d, this this re-787

quires a total of Õ(
∑q
i=1 nnz(Ai) + d) time. Note that these same values are used for every788

sample. Given this pre-computation, we can rearrage the first term to write (
⊗i−1

k=1(Ak)ak,∗) ⊗789
(Ai)X

′(
⊗q

k=i+1 Z
k,jAk)> where X ′ is a matrix formed from x′ so that x′ is the vectorization of790

X ′ (this is done via reshaping Lemma B.2). The term y = X ′(
⊗q

k=i+1 Z
k,jAk)> can now be791

computed in O(d) time, and then we reshape again to write this as (
⊗i−1

k=1(Ak)ak,∗)Y A
>
i where Y792

again is a matrix formed from y. Observe that ζ = vec(
⊗i−1

k=1(Ak)ak,∗Y ) ∈ Rdi can be computed793
in time O(qd), since each entry is a dot product of a column Y∗,j ∈ Rd1·d2···di−1 of Y with the794
d1 · d2 · · · di−1 dimensional vector

⊗i−1
k=1(Ak)ak,∗, which can be formed in O(d1 · d2 · · · di−1q)795

time, and there are a total of di columns of Y .796

Given this, The first entire term Si(
⊗i−1

k=1(Ak)ak,∗)⊗ (Ai)⊗ (
⊗q

k=i+1 Z
k,jAk)x′ can be rewritten797

as SiAiζ, where ζ = ζ~a ∈ Rdi can be computed in O(dq) time for each sample ~a. Thus if we798
recompute the value SiAi ∈ Rk×n, where k = Õ(r16

3 ), which can be done in time Õ(nnzAi), then799
every time we are sampling the i-th coordinate of some ~a, computing the value of SiAiζ~a can be800

done in time O(kd2
i ) = r

O(1)
3 .801

We now consider the second term. We do a similar trick, reshaping b ∈ Rn into B ∈802
R(n1···ni)×(ni···nq) and writing this term as ((

⊗i−1
k=1 e

>
ak

)⊗(Ini
))B(

⊗q
k=i+1 Z

k,j)> and computing803

b′ = B(
⊗q

k=i+1 Z
k,j)> ∈ R(n1···ni) in nnz(B) = nnz(b) time. Let B′ ∈ R(n1···ni−1)×ni be such804

that vec(B′) = b′, and we reshape again to obtain (
⊗i−1

k=1 e
>
ak

)B′(Ini
) = (

⊗i−1
k=1 e

>
ak

)B′ Now note805
that so far, the value B′ did not depend on the sample ~a at all. Thus for each i = 1, 2, . . . , q, B′806
(which depends only on i) can be pre-computed in nnz(b) time. Given this, the value (

⊗i−1
k=1 e

>
ak

)B′807
is just a row B′(a1,...,ak),∗ of B′ (or a column of (B′)>). We first claim that nnz(B′) ≤ nnz(b) =808

nnz(B). To see this, note that each entry of B′ is a dot product Bj,∗(
⊗q

k=i+1 Z
k,j)> for some809

row Bj,∗ of B, and moreover there is a bijection between these dot products and entries of B′.810
Thus for every non-zero entry of B′, there must be a unique non-zero row (and thus non-zero en-811
try) of B. This gives a bijection from the support of B′ to the support of B (and thus b) which812
completes the claim. Since Si(B′(a1,...,ak),∗)

> can be computed in Õ(nnz(B′(a1,...,ak),∗)) time, it813

follows that Si(B′(a1,...,ak),∗)
> can be computed for all rows (B′(a1,...,ak),∗) of B in Õ(nnz(b))814

time. Given this precomputation, we note that (Ini
) ⊗ (

⊗q
k=i+1 Z

k,j)b is just Si(B′(a1,...,ak),∗)
>815

for some (a1, . . . , ak), which has already been pre-computed, and thus requires no addition time per816

sample. Thus, given a total of Õ(
∑q
i=1 nnz(Ai) + q nnz(b) + r

O(1)
3 ) pre-processing time, for each817

sample we can compute vji for all i ∈ [q] and j ∈ [τ ] in Õ(r
O(1)
3 ) time, and thus Õ(r

O(1)
3 ) time over818

all r3 samples.819

Given this, the procedure to compute the heavy hitters Hi,j takes Õ(r16
3 ) time by Definition B.6 for820

each sample and i ∈ [q], j ∈ [τ ]. By a identical pre-computation and rearrangement argument as821

above, each βji (and thus βi) can be computed in Õ(r
O(1)
3 ) time per sample after pre-computation.822

Now note that γi is simply equal to median j ∈ [τ ](βji − (
⊗i−1

k=1 e
>
ak

)⊗ (Zk,jHi
)⊗ (

⊗q
k=i+1 Z

k,j)ρ).823

Since (Zk,jHi
) is sparse, the above can similar be computed in O(d|Hi|) = Õ(r

O(1)
3 ) time per sample824

after pre-computation. To see this, note that the b term of (
⊗i−1

k=1 e
>
ak

)⊗ (Zk,jHi
)⊗ (

⊗q
k=i+1 Z

k,j)ρ825

can be written as (
⊗i−1

k=1 e
>
ak

)B′′′(Zk,jHi
)>, where B′′′ ∈ Rn1···ni−1×ni is a matrix that has already826

been pre-computed and does not depend on the given sample. Then this quantity is just the dot827
product of a row of B′′′ with (Zk,jHi

)>, but since (Zk,jHi
) is |Hi|-sparse, so the claim for the b term828

follows. For the (A1 ⊗ · · · ⊗ Aq) term, just as we demonstrated in the discussion of computing vji ,829
note that this can be written as (

⊗i−1
k=1(Ak)ak,∗)Y ((Ai)Hi,∗)

> for some matrix Y ∈ Rd1···di×di−1830
that has already been precomputed. Since (Ai)Hi,∗ only has O(|Hi|) non-zero rows, this whole831
product can be computed in time O(d|Hi|) as needed.832

23



Similarly, we can compute the sampling probabilities833

Pr [sample ai ← j] =
medianj∈τ

∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ )⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

∑
ξ′∈Hi

medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

for each every item ζ ∈ Hi in Õ(r
O(1)
3 ) time after pre-computation, and note |Hi| = Õ(r

O(1)
3 ) by834

definition B.6. Thus the total time to sample a heavy hitter in a given coordinate i ∈ [q] for each835

sample Õ(r
O(1)
3 ) per sample, for an overall time of Õ(qr

O(1)
3 ) over all samples and i ∈ [q].836

Finally, we consider the runtime for sampling a non-heavy item. Note that |Ωt| = O(ni/η) with837
high probability for all t ∈ [η] by chernoff bounds. Computing each838

θj = median
l∈[τ ]

(∣∣∣∣∣(
i−1⊗

k=1

e>ak)⊗ (e>j )⊗ (

q⊗

k=i+1

Zk,l)ρ

∣∣∣∣∣

p)

takes O(qd) time after pre-computation, and so we spend a total of O(qdni/η) time sampling an839
item from Ωt\Hi. Since we only ever sample a total of r3 samples, and η = Θ(r2

3), the total time for840
sampling non-heavy hitters over the course of the algorithm in coordinate i is o(ni) = o(nnz(Ai))841
as needed, which completes the proof of the runtime.842

Computing the Sampling Probabilities αi The above arguments demonstrate how to sample843
efficiently from the desired distribution. We now must describe how the sampling probabilities αi844
can be computed. First note, for each sample that is sampled in the above way, at every step we845
compute exactly the probability with which we decide to sample a coordinate to that sample. Thus846
we know exactly the probability that we choose a sample, and moreover we can compute each qi in847
O(d) time as in Lemma B.5. Thus we can compute the maximum of qi and this probability exactly.848
For each item sampled as a result of the leverage score sampling probabilities qi as in Lemma B.5,849
we can also compute the probability that this item was sampled in the above procedure, by using the850
same sketching vectors Zi,k and count-sketches Si. This completes the proof of the Lemma.851

852

C Missing Proofs from Section 4853

In this section, we prove the correctness of our all-pairs regression algorithm 3. Our main theorem,854
Theorem 4.1, relies crucially on the sample routine developed in Section C.1. We first prove the855
theorem which utilizes this routine, and defer the description and proof of the routine to Section856
C.1.857

Recall first the high level description of our algorithm (given formally in Figure 3). We pick S1, S2 ∈858
Rk×nand S are sparse p-stable sketches. We then compute M = (S1 ⊗ S2)(F ⊗ 1 − 1 ⊗ F ) =859
S1F⊗S21−S11⊗S2F , where F = [A, b]. We then take theQR decompositionM = QR. Finally,860
we sample rows of (F ⊗ 1 − 1 ⊗ F )R−1 with probability proportional to their `p norms. This is861
done by the sampling procedure described in Section C.1. Finally, we solve the regression problem862
minx ‖Π(Āx − b̄)‖p, where Π is the diagonal row-sampling matrix constructed by the sampling863
procedure.864

We begin by demonstrating that S1 ⊗ S2 is a poly(d) distortion embedding for the column span of865
[Ā, b̄].866

Lemma C.1. Let S1, S2 ∈ Rk×n be sparse p-stable transforms, where k = poly(d/(εδ)). Then for867
all x ∈ Rd+1, with probability 1− δ we have868

1/O(d4 log4 d)‖[Ā, b̄]x‖p ≤ ‖(S1 ⊗ S2)[Ā, b̄]x‖p ≤ O(d2 log2 d)‖[Ā, b̄]x‖p

Proof. Let F = [A, b]. Then a basis for the columns of [Ā, b̄] is given by F ⊗ 1− 1⊗ F . We first869
condition on both S1, S2 being a low-distortion embedding for the d + 2 dimensional column-span870
of [F,1]. Note that this holds with large constant probability by 2.3.871

So for any x ∈ Rd+1, we first show the upper bound872
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‖(S1 ⊗ S2)(F ⊗ 1− 1⊗ F )x‖p = ‖(S1F ⊗ S21)x− (S11⊗ S2F )‖p
= ‖S1Fx1

>S>2 − S11x
>F>S>2 ‖p

= ‖S1(Fx1> − 1x>F>)S>2 ‖p
≤ O(d log d)‖(Fx1> − 1x>F>)S>2 ‖p
≤ O(d2 log2 d)‖Fx1> − 1x>F>‖p
= O(d2 log2 d)‖(F ⊗ 1− 1⊗ F )x‖p

Where the first equality follows by properties of the Kronecker product [VL00], the second by873
reshaping Lemma B.2. The first inequality follows from the fact that each column of (Fx1> −874
1x>F>)S>2 is a vector in the column span of [F,1], and then using that S1 is a low distortion875
embedding. The second inequality follows from the fact that each row of (Fx1> − 1x>F>) is876
a vector in the column span of [F,1], and similarly using that S2 is a low distortion embedding.877
The final inequality follows from reshaping. Using a similar sequence of inequalities, we get the878
matching lower bound as desired.879

We now prove our main theorem.880

Theorem 4.1 Given A ∈ Rn×d and b ∈ Rn, for p ∈ [1, 2] there is an algorithm for the All-Pairs881
Regression problem that outputs x̂ ∈ Rd such that with probability 1− δ we have882

‖Āx̂− b̄‖p ≤ (1 + ε) min
x∈Rd

‖Āx− b̄‖p

Where Ā = A⊗ 1− 1⊗A ∈ Rn2×d and b̄ = b⊗ 1− 1⊗ b ∈ Rn2

. For p < 2, the running time is883
Õ(nd+ (d/(εδ))O(1)), and for p = 2 the running time is O(nnz(A) + (d/(εδ))O(1)).884

Proof. We first consider the case of p = 2. Here, we can use the fact that the TENSORSKETCH885
random matirx S ∈ Rk×n is a subspace embedding for the column span of [Ā, b̄] when k = Θ(d/ε2)886
[DSSW18], meaning that ‖S[Ā, b̄]‖2 = (1 ± ε)‖[Ā, b̄]x‖2 for all x ∈ Rd+1 with probability 9/10.887
Moreover, SĀ and Sb̄ can be computed in O(nnz(A) + nnz(b)) = O(nnz(A)) by [DSSW18]888
since they are the difference of Kronecker products. As a result, we can simply solve the regression889
problem x̂ = arg minx ‖SĀx− Sb̄‖2 in poly(kd) time to obtain the desired x̂.890

For p < 2, we use the algorithm in Figure 3, where the crucial leverage score sampling procedure891
to obtain Π in step 7 of Figure 3 is described in Lemma 4.2. Our high level approach follows the892
general `p sub-space embedding approach of [DDH+09]. Namely, we first compute a low-distortion893
embedding (S1 ⊗ S2)(F ⊗ 1 − 1 ⊗ F ). By Lemma C.1, using sparse-p stable transformations894
S1, S2, we obtain the desired poly(d) distortion embedding into Rk2

, where k = poly(d/ε). Note895
that computing (S1 ⊗ S2)(F ⊗ 1 − 1 ⊗ F ) can be done in O(nnz(A) + nnz(b) + n) time using896
the fact that (S1 ⊗ S2)(F ⊗ 1) = S1F ⊗ S21. As shown in [DDH+09], it follows that M =897
(F ⊗ 1− 1⊗ F )R−1 is an `p well-conditioned basis for the column span of (F ⊗ 1− 1⊗ F ) (see898

definition 2.5). Then by Theorem 5 of [DDH+09], if we let Π̂ be the diagonal row sampling matrix899

such that Π̂i,i = 1/q
1/p
i for each i with probability qi ≥ min{1, r‖Mi,∗‖pp/‖M‖pp} (and Π̂i,i = 0900

otherwise) for r = poly(d log(1/δ)/ε), then with probability 1−δ we have ‖Π̂(F⊗1−1⊗F )x‖p =901
(1± ε)‖(F ⊗ 1− 1⊗ F )x‖p for all x ∈ Rd+1. First assume that we had such a matrix.902

Since (Āx − b̄) is in the column span of (F ⊗ 1 − 1 ⊗ F ) for any x ∈ Rd+1, it follows that903
‖Π̂(Āx − b̄)‖p = (1 ± ε)‖(Āx − b̄)‖p for all x ∈ Rd, which completes the proof of correctness.904

By Lemma 4.2, we can obtain a row sampling matrix Π in time Õ(nd + poly(d/ε)), except that905

the entries of Π are instead equal to either 0 or 1/q̃
1/p
i where q̃i = (1 ± ε2)qi. Now let Π̂ be the906

idealized row sampling matrices from above, with entries either 0 or 1/q
1/p
i as needed for Theorem907

5 of [DDH+09]. Note that for any matrix Z each row of Π̂Zx is equal to ΠZx times some constant908
1−ε2 < c < 1+ε2. It follows that ‖Π(Āx− b̄)‖p = (1±ε2)‖Π̂(Āx− b̄)‖p for all x ∈ Rd, and thus909
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the objective function is changed by at most a (1± ε2) term, which is simply handled by a constant910
factor rescaling of ε.911

Finally, we can solve the sketched regression problem ‖Π(Āx − b̄)‖p which has poly(d/ε) con-912
straints and d variables in time poly(d/ε) using linear programming for p = 1 (see [CLS19] for the913
state of the art linear program sovler), or more generally interior point methods for convex program-914
ming for p > 1 (see [BCLL18] for the state of the art `p solver. Finally, the failure probability bound915
holds by union bounding over all the aforementioned results, and noting that the lowest probability916
event was the even that S1 ⊗ S2 was a low distortion embedding via Lemma C.1. This completes917
the proof of the theorem.918

919

C.1 Proof of Fast Sampling Lemma 4.2920

We now provide a full proof of the main technical lemma of Section 4. The sampling algorithm is921
given formally in Algorithm 5. The following proof of Lemma 4.2 analyzes each step in the process,922
demonstrating both correctness and the desired runtime bounds.923

Lemma 4.2Given R ∈ R(d+1)×(d+1) and F = [A, b] ∈ Rn×(d+1), there is an algorithm that, with924
probability 1− δ for any δ > n−c for any constant c, produces a diagonal matrix Π ∈ Rn2×n2

such925
that Πi,i = 1/q̃i

1/p with probability qi ≥ min{1, r‖Mi,∗‖pp/‖M‖pp} and Πi,i = 0 otherwise, where926
r = poly(d/ε) and M = (F ⊗ 1− 1⊗F )R−1, and q̃i = (1± ε2)qi for all i ∈ [n2]. The total time927
required is Õ(nnzA+ poly(d/ε)).928

Proof. Our proof proceeds in several steps. We analyze the runtime concurrently with out analysis929
of correctness.930

Reducing the number of Columns of R−1 We begin by generating a matrix G ∈ R(d+1)×ξ of931
i.i.d. N (0, 1/

√
ξ) Gaussian random variables. We then compute Y ← R−1G in Õ(d2) time. We932

first claim that it suffices to instead `p sample rows of C = (F ⊗ 1 − 1 ⊗ F )Y = MG. Note that933
each entry |Ci,j |p is distributed as gp‖Mi,∗‖p2 where G N (0, 1/

√
ξ) Gaussian, which holds by the934

2-stability of Gaussian random variables. Note that E[|g|p] = Θ(1/ξ), so E[‖Ci,∗‖pp] = ‖Mi,∗‖p2,935
and by sub-exponential concentration (see Chapter 2 of [Wai19]), we have that ‖Ci,∗‖pp = (1 ±936
1/10)‖Mi,∗‖p2 with probability 1 − 1/ poly(n), and we can union bound over this holding for all937
i ∈ [n2]. By relationships between the p norms, we have ‖Mi,∗‖pp/d < ‖Mi,∗‖p2 < ‖Mi,∗‖pp, thus938
this changes the overall sampling probabilities by a factor between Θ(1/d2) and Θ(d2). Thus, we939
can safely oversample by this factor (absorbing it into the value of r) to compensate for this change940
in sampling probabilities.941

Sampling a row from C. To sample a row from C, the approach will be to sample an entry942
Ci,j of C with probability proportional to ‖Ci,j‖pp/‖C‖pp. For every (i, j) sampled, we sample943
the entire i-th row of j, so that the j-th row is indeed sampled with probability proportional to its944
norm. Thus, it suffices to sample entries of C such that each Ci,j is chosen with probability at945
least min{1, r‖Ci,j‖pp/‖C‖pp}. First note that the i-th column of C = (F ⊗ 1 − 1 ⊗ F )Y can be946
rearranged into a n × n matrix via Lemma B.2, given by (FY∗,i1> − 1Y >∗,iF

>). To `p sample a947
coordinate from C, it suffices to first `p sample a column of one of the above matrices, and then `p948
sample an entry from that column.949

To do this, we first compute FY ∈ Rn×ξ, which can be done in time Õ(nnzA) because Y only has950
ξ = Θ(log(n)) columns. We then compute Z(FY∗,i1> − 1Y >∗,iF

>) ∈ R1×n for all i ∈ [d], where951
Z ∈ R1×n is a fixed vector of i.i.d. p-stable random variables. Once FY has been computed, for952
each i ∈ [ξ] it takes O(n) time to compute this n-dimensional vector, thus the total time required953
to compute all ξ vectors is Õ(n). We repeat this process t = O(log(n)) times with different p-954
stable vectors Z1, . . . , Z>, and take the median of each coordinate of Zj(FY∗,i1> − 1Y >∗,iF

>) ∈955
Rn, j ∈ [t], divided by the median of the p-stable distribution (which can be approximated to956
(1 ± ε) error in poly(1/ε) time, see Appendix A.2 of [KNW10] for details of this). This is done957
in Step 7 of Algorithm 5. It is standard this this gives a (1 ± 1/10) approximation the the norm958
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Algorithm 5 Algorithm to `p sample Θ(r) rows of M = (F ⊗ 1− 1⊗ F )R−1

1: procedure `p SAMPLE(F = [A, b] ∈ Rn×d, R−1 ∈ Rd+1×d+1, r)
2: Generate a matrix G ∈ Rd+1×ξ of i.i.d. N (0, 1/

√
ξ) Gaussian random variables, with

ξ = Θ(log(n))
3: Y ← R−1G ∈ Rd+1×ξ

4: C ← (F ⊗ 1− 1⊗ F )Y
5: Reshape i-th column C∗,i into (FY∗,i1> − 1(Y∗,i)>F>) ∈ Rn×n
6: Generate Z ∈ Rt×n i.i.d. p-stable for t = Θ(log(n)) . Definition 2.1
7: For all (i, l) ∈ [ξ]× [n], set

σi,l ← median
τ∈[t]

(∣∣(Z(FY∗,i1> − 1(Y∗,i)>F>)τ,l
∣∣p

(median(Dp))p

)

. Indyk Estimator [Ind06]
8: Set W (i,l) ← (FY∗,i1> − 1Y >∗,iF

>)∗,l = FY∗,i − 1(FY )l,i ∈ Rn
9: for j = 1, . . . ,Θ(r) do

10: Sample (i, l) from distribution σi,l/
(∑

i′,l′ σi′,l′
)

.
11: end for
12: T ← multi-set of samples (i, l)

13: Generate S0 ∈ Rk×n S ∈ Rk′×n count-sketches for heavy hitters with k = rO(1), k′ =
kO(1). . Definition B.6

14: Generate u1, . . . , un i.i.d. exponential variables.
15: D ← Diag(1/u

1/p
1 , . . . , 1/u

1/p
n ) ∈ Rn×n.

16: for each sample (i, l) ∈ T do
17: Compute S0W

(i,l) and obtain set of heavy hitters Q(i,l)
0 ⊂ [n]

18: Compute W (i,l)
j exactly for all j ∈ Q(i,l)

0 , to obtain true heavy hitters H(i,l).
19: Compute

αi,l ← median
τ∈[t]




∣∣∣Zτ,∗W (i,l) −∑ζ∈H(i,l) Zτ,ζW
(i,l)
ζ

∣∣∣
p

(median(Dp))p




20: if With prob 1− α(i,l)/σ(i,l), sample a heavy item j∗ ← j then
21: Sample a heavy item j∗ ← j from the distribution |W (i,l)

j |p/∑j∈H(i,l)
|W (i,l)

j |p.

22: return The row ((l − 1)n+ j∗) . Note that C(l−1)n+j∗,∗ contains W (i,l)
j∗

23: else
24: Randomly partition [n] into Ω1,Ω2, . . . ,Ωη with η = Θ(r4/ε4).
25: Sample t ∼ [η] uniformly at random.
26: Compute S(DW (i,l))Ωt\H(i,l) , and set Q(i,l) ⊂ Ωt \H(i,l) of heavy hitters.
27: j∗ ← arg maxj∈Q(i,l)(DW (i,l))j

28: return The row ((l − 1)n+ j∗) . Note that C(l−1)n+j∗,∗ contains W (i,l)
j∗

29: end if
30: end for
31: end procedure

‖(FY∗,i1>−1Y >∗,iF
>)∗,l‖p for each i ∈ [d], l ∈ [n] with probability 1−1/ poly(n) (See the Indyk959

median estimator [Ind06]).960

Now let σi,l be our estimate of the norm ‖(FY∗,i1> − 1Y >∗,iF
>)∗,l‖p, for all i ∈ [ξ] and l ∈961

[n]. We now sample a columns (i, l) ∈ [ξ] × [n], where each (i, l) is chosen with probability962
σi,l/(

∑
i′,l′ σi′,l′). We repeat this process Θ(r) times, to obtain a multi-set T ⊂ [ξ]× [n] of sampled963

columns (i, l). We stress that T is a multi-set, because the same column (i, l) may have been chosen964
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for multiple samples, and each time it is chosen we must independently sample one of the entries of965
that column. For any (i, l) ∈ T , we defineW (i,l) = (FY∗,i1>−1Y >∗,iF>)∗,l = (FY∗,i−1(FY )l,i).966

`p Sampling an entry from W (i,l). Now fix any (i, l) ∈ T . We show how to `p sample an entry967

from the vector W (i,l) ∈ Rn. In other words, for a given j ∈ [n], we want to sample W (i,l)
j ∈ [n]968

with probability at least r|W (i,l)
j |p/‖W (i,l)‖pp. We do this in two steps. First, let S0 ∈ Rk×n969

be the count-sketch for heavy hitters of definition B.6, where k = poly(r). Note that we can970
compute S0FY and S01 in time Õ(n), since FY ∈ Rn×ξ. Once this is done, for each (i, l) ∈971
T we can compute S0W

(i,l) in O(k) time by computing (S01(FY )l,i) (note that FY and S01972
are already computed), and subtracting it off from the i-th column of S0FY , so the total time is973

Õ(n+ poly(d/ε)) to compute S0W
(i,l) for all (i, l) ∈ |T |. Now we can obtain the set Q(i,l)

0 ⊂ [n]974
containing all the Ω̃(1/

√
k) heavy hitters in W (i,l) with high probability. We can then explicitly975

compute the value of W (i,l)
j for all j ∈ Q(i,l)

0 , and exactly compute the set976

H(i,l) =
{
j ∈ [n]

∣∣∣ |W (i,l)
j |p > β/r16‖W (i,l)‖pp

}
,

all in Õ(k) time via definition B.6, where β > 0 is a sufficiently small constant (here we use the977

fact that |x|p ≥ |x|2 for p ≤ 2). Note that we use the same sketch S0 to compute all sets Q(i,l)
0 , and978

union bound the event that we get the heavy hitters over all poly(d/ε) trails.979

We are now ready to show how we sample an index from W (i,l). First, we estimate the total `p980
norm of the items in [ni] \H(i,l) (again with the Indyk median estimator), and call this α(i,l) as in981
Algorithm 5, which can be computed in O(|H(i,l)|) additional time (by subtracting off the |H(i,l)|982

coordinates ZW (i,l)
ζ for all heavy hitters ζ ∈ H(i,l) from our estimate σ(i,l)), and with probability983

α(i,l)/σ(i,l), we choose to sample one of the items of H(i,l), which we can then sample from the984

distribution |W (i,l)
j |p/(∑j∈H(i,l) |W (i,l)

j |p). Since all the σ(i,l), α(i,l)’s were constant factor approx-985

imations, it follows that we sampled such an item with probability Ω(r|W (i,l)
j′ |p/‖C‖pp) as needed.986

Otherwise, we must sample an entry from [n] \ H(i,l). To do this, we first randomly partition [n]987
into η = Θ(r4/ε4) subsets Ω1,Ω2, . . . ,Ωη .988

We now make the same argument made in the proof of Lemma B.9, considering two cases. In the989
first case, the `p mass of [n] \ H(i,l) drops by a 1/r2 factor after removing the heavy hitters. In990
this case, α(i,l)/σ(i,l) = O(1/r2), thus we will never not sample a heavy hitter with probability991
1 − O(1/r), which we can safely ignore. Otherwise, the `p drops by less than a 1/r2 factor, and it992
follows that all remaining items must be at most a β/r14 heavy hitter over the remaining coordinates993
[n] \H(i,l) (since if they were any larger, they would be β/r16 heavy hitters in [n], and would have994
been removed inH(i,l)). Thus we can assume we are in the second case. So by Chernoff bounds, we995

have
∑
j∈Ωt

|W (i,l)
j |p = Θ( 1

η

∑
j∈[n]\H(i,l) |W (i,l)

j |p) with probability greater than 1−exp(−Ω(r)).996
We can then union bound over this event occurring for all t ∈ [η] and all (i, l) ∈ T . Given this, if997
we uniformly sample a t ∼ [η], and then `p sample a coordinate j ∈ Ωt, we will have sampled this998
coordinate with the correct probability up to a constant factor. We now sample such a t uniformly999
from η.1000

To do this, we generate a diagonal matrix D ∈ Rn×n, where Di,i = 1/u
1/p
i , where u1, . . . , un1001

are i.i.d. exponential random variables. For any set Γ ⊂ [n], let DΓ be D with all diagonal entries1002
(j, j) such that j /∈ Γ set equal to 0. Now let S ∈ Rk′×n be a second instance of count-sketch for1003
heavy hitters of definition B.6, where we set k′ = poly(k) from above. It is known that returning1004
j∗ = arg maxj∈Ωt\H(i,l) |(DW (i,l))j | is a perfect `p sample from Ωt \ H(i,l) [JW18]. Namely,1005

Pr[j∗ = j] = |W (i,l)
j |p/‖WΩt\H(i,`)‖pp for any j ∈ Ωt \ H(i,`) . Thus it will suffice to find this1006

j∗. To find j∗, we compute S(DW )Ωt\H(i,`) . Note that since FY has already been computed, to1007
do this we need only compute SDΩt\H(i,`)FY∗,i and SDΩt\H(i,`)1(FY )`,i, which takes total time1008

Õ(|Ωt \ H(i,`)|) = Õ(n/η). We then obtain a set Q(i,l) ⊂ Ωt \ H(i,`) which contains all j with1009
|(DW (i,l))j | ≥ Ω̃(1/

√
k′)‖(DW )Ωt\H(i,`)‖2.1010
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As noted in [JW18], the value maxj∈Ωt\H(i,l) |(DW (i,l))j | is distributed identically to1011

‖WΩt\H(i,`)‖p/u1/p where u is again an exponential random variable. Since exponential random1012

variables have tails that decay like e−Ω(x), it follows that with probability 1 − exp(−Ω(r)) that1013
we have maxj∈Ωt\H(i,l) |(DW (i,l))j | = Ω(‖WΩt\H(i,`)‖p/r), and we can then union bound over1014

the event that this occurs for all (i, l) ∈ T and Ωt. Given this it follows that (DW (i,l))j∗ =1015
Ω(‖WΩt\H(i,`)‖p/r). Next, for any constant c ≥ 2, by Proposition 1 of [JW18], we have1016

‖((DW )Ωt\H(i,`))tail(c log(n))‖2 = Õ(‖W (i,l)

Ωt\H(i,`)‖p) with probability 1 − n−c, where for a vec-1017
tor x, x(

[t]
) is x but with the top t largest (in absolute value) entries set equal to 0. Since there1018

are at most c log(n) coordinates in (DW )Ωt\H(i,`) not counted in ((DW )Ωt\H(i,`))tail(c log(n)),1019
and since (DW )j∗ is the largest coordinate in all of (DW )Ωt\H(i,`) , by putting together all of1020

the above it follows that (DW )j∗ is a Ω̃(1/r)-heavy hitter in (DW )Ωt\H(i,`) . Namely, that1021

|(DW )j∗ | ≥ Ω̃(‖(DW )Ωt\H(i,`)‖2/r). Thus, we conclude that j∗ ∈ Q(i,l).1022

Given that j∗ ∈ Q(i,l), we can then compute the value (DW (i,l))j = Dj,j(FYj,i − FYl,i) in O(1)1023
time to find the maximum coordinate j∗. Since |Q(i,l)| = O(k′) = O(poly(d/ε)), it follows that1024
the total time required to do this is Õ(n/η + poly(d/ε)). Since we repeat this process for each1025
(i, l) ∈ T , and |T | = Θ(r) whereas η = Θ(r4), it follows that the total runtime for this step is1026
Õ(n/r3 + poly(d/ε)). By [JW18], the result is a perfect `p sample from (DW )Ωt\H(i,`) , which is1027
the desired result. To complete the proof, we note that the only complication that remains is that1028
we utilize the same scaling matrix D to compute the sampled used in each of the columns W (i,l)1029
for each (i, l) ∈ T . However, note that for t 6= t′, we have that DΩt

and DΩt
are independent1030

random variables. Thus it suffices to condition on the fact that the t ∈ [η] that is sampled for each1031
of the |T | repetitions of sampling a Ωt are distinct. But this occurs with probability at least 1/r,1032
since |T | = Θ(r) and η = Θ(r4). Conditioned on this, all |T | samples are independent, and each1033
sample is an entry Ci,j of C such that the probability that a given (i, j) is chosen is |Ci,j |p/‖C‖pp.1034
Repeating this sampling Θ(r) times, we get that each Ci,j is sampled with probability at least1035
min{1, r|Ci,j |p/‖C‖pp}, which completes the proof of correctness. Note that the dominant runtime1036

of the entire procedure was Õ(nnz(A) + poly(d/ε)) as stated, and the probability of success was1037
1− exp(−r) + 1/ poly(n), which we can be amplified to any 1− δ for δ > 1/nc for some constant1038
c by increasing the value of r by log(1/δ) and the number of columns of the sketch G to log(1/δ),1039
which does not effect the Õ(nnz(A) + poly(d/ε)) runtime.1040

Computing approximations q̃i for qi. It remains now how to compute the approximate sampling1041
probabilities q̃i for Θ(r) rows of C that were sampled. Note that to sample an entry, in C, we first1042
sampled the n × 1 submatrix W (i,l) of C which contained it, where the probability that we sample1043
this submatrix is known to us. Next, if the entry of C was a heavy hitter in W (i,l), we exactly1044
compute the probability that we sample this entry, and sample it with this probability. If the entry j1045
ofW (i,l) is not a heavy hitter, we first sample an Ωt uniformly with probability exactly 1/η. The last1046

step is sampling a coordinate from W
(i,l)

Ωt\H(i,l) via exponential scaling. However, we do not know1047

the exact probability of this sampling, since this will be equal to |W (i,l)
j |p/‖W (i,l)

Ωt\H(i,l)‖pp, and we do1048

not know ‖W (i,l)

Ωt\H(i,l)‖pp exactly. Instead, we compute it approximately to error (1± ε2) as follows.1049

For each (i, l) ∈ T and α = 1, 2, . . . ,Θ(log(n)/ε4), we compute Z(α)W
(i,l)

Ωt\H(i,l) , where Z ∈1050

R1×|Ωt\H(i,l)| is a vector of p-stable random variables. Again, we use the Indyk median estimator1051

[Ind06], taking the median of these Θ(log(n)/ε4) repetitions, to obtain an estimate of ‖W (i,l)

Ωt\H(i,l)‖pp1052

with high probability to (1± ε2) relative error. Each repetition requires O(|Ωt \H(i,l)|) additional1053
time, and since |Ωt \H(i,l)||T | = o(ε4n/r3), it follows that the total computational time is at most1054
an additive o(n), thus computing the q̃i’s to error (1± ε2) does not effect the overall runtime.1055

1056
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D Missing Proofs from Section 51057

We first give the proof of the main theorem. The proof relies on Lemma D.4, which the rest of this1058
section will be devoted to proving.1059

Theorem 5.1 For any constant q ≥ 2, there is an algorithm which runs in timeO(
∑q
i=1 nnz(Ai)+1060

dpoly(k/ε)) and outputs a rank k-matrix B in factored form such that ‖B−A‖F ≤ (1 + ε) OPTk1061
with probability 9/10.1062

Proof. By Lemma D.4, we have (1− ε)‖A− AP‖2F ≤ ‖M −MP‖2F + c ≤ (1 + ε)‖A− AP‖2F1063
for all rank k projection matrices P . In particular, we have1064

min
P

(1 + ε)‖A−AP‖2F + c = (1 + ε) OPT2
k

where the minimum is taken over all rank k projection matrices. The minimizer P on the LHS is1065
given by the projection onto the top k singular space ofM . Namely, MP = MU>U where U is the1066
top k singular row vectors of M . Thus ‖M −MU>U‖2F + c ≤ (1 + ε) OPT2

k. Moreover, we have1067
‖A − AU>U‖2F ≤ (1 + 2ε)(‖M −MU>U‖2F + c) ≤ (1 + 4ε) OPT2

k. Thus ‖A − AU>U‖F ≤1068
(1 +O(ε)) OPTk as needed.1069

For runtime, note that we first must compute M = (⊗qi=1Si)(A1 ⊗ A2) = S1A1 ⊗ · · · ⊗ SqAq .1070
Now SiAi can be computed in O(nnz(Ai)) time for each i [CW13]. One all SiAi are computed,1071
their Kronecker product can be computed in time O(qk1k2 · · · kqd) = poly(kd/ε). Given M ∈1072
Rk1···kq×d, the top k singular vectors U can be computed by computing the SVD of M , which is1073
also done in time poly(kd/ε). Once U is obtained, the algorithm can terminate, which yields the1074
desired runtime.1075

To complete the proof of the main theorem, we will need to prove Lemma D.4. To do this, we begin1076
by introducing two definitions.1077

Definition D.1. A random matrix S is called a ε-subspace embedding for a rank k subspace V we1078
have simultaneously for all x ∈ V that ‖Sx‖2 = (1± ε)‖x‖2.1079

Definition D.2. A random matrix S satisfies the ε-approximate matrix product property if, for1080
any fixed matrices A,B, of the appropriate dimensions, we have Pr[‖A>S>SB − A>B‖F ≤1081
ε‖A‖F ‖B‖F ] ≥ 9/10.1082

We now show that S is both a subspace embedding and satisfies approximate matrix product, where1083
S = ⊗qi=1Si and Si ∈ Rki×ni are count-sketch matrices.1084

Lemma D.3. If S = (⊗qi=1Si) with Si ∈ Rki×ni , k1 = k2 = · · · = kq = Θ(qk2/ε2), then S is1085
an ε-subspace embedding for any fixed k dimensional subspace V ⊂ Rn with probability 9/10, and1086
also satisfies the (ε/k)-approximate matrix product property.1087

Proof. We first show that S satisfies the O(ε/k, 1/10, 2)-JL moment property. Here, the (ε, δ, `)-JL1088
moment property means that for any fixed x ∈ Rn with ‖x‖2 = 1, we have E[(‖Sx‖22− 1)2] ≤ ε`δ,1089
which will imply approximate matrix product by the results of [KN14].1090

We prove this by induction on q. Let k̄ = k1. First suppose S = (Q⊗ T ), where Q ∈ Rk1×n1 is a1091
count-sketch, and T ∈ Rk′×n′ is any random matrix which satisfies E[‖Tx‖22] = ‖x‖22 (T ∈ Rk′×n′1092
is unbiased), and E[(‖Tx‖2−1)2] ≤ 1+c/k̄ for some value c < k̄. Note that both of these properties1093
are satisfied with c = 4 if T ∈ Rk2×n2 is itself a count-sketch matrix [CW13]. Moreover, these are1094
the only properties we will need about T , so we will. We now prove that E[‖(S ⊗ T )x‖22] = 1 and1095
E[‖(S ⊗ T )x‖42] ≤ 1 + (c+ 4)/k̄ for any unit vector x.1096

Fix any unit x ∈ Rn now (here n = n1n
′), and let xj ∈ Rn′ be the vector obtained by restricted x to1097

the coordinates jn1+1 to (j+1)n1. For any i ∈ [k1], j ∈ [k′], let ij = (i−1)k′+j. Let hQ(i) ∈ [k1]1098
denote the row where the non-zero entry in the i-th column is placed in Q. Let σQ(i) ∈ {1,−1}1099
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denote the sign of the entry QhQ(i),i. Let δQ(i, j) indicate the event that hQ(i) = j. First note that1100

E


∑

i,j

((Q⊗ T )x)2
ij


 = E



k1∑

i=1

k′∑

j=1

(
n1∑

τ=1

δQ(τ, i)σQ(τ)(Txτ )j

)2



= E



k1∑

i=1

k′∑

j=1

n1∑

τ=1

δQ(τ, i)(Txτ )2
j




= E



n1∑

τ=1

k1∑

i=1

k′∑

j=1

δQ(τ, i)(Txτ )2
j




= E

[
n1∑

τ=1

‖Txτ‖22

]

= ‖x‖22

Where the last equality follows because count-sketch T is unbiased for the base case, namely that1101
E[‖Tx‖22] = ‖x‖22 for any x [Woo14], or by induction. We now compute the second moment,1102

E





∑

i,j

((Q⊗ T )x)2
ij




2

 = E





∑

i,j

(
n1∑

τ=1

δQ(τ, i)σQ(τ)(Txτ )j

)2



2



= E





∑

i,j

n1∑

τ1,τ2

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ2, i)σQ(τ2)(Txτ2)j




2



=

n1∑

τ1,τ2,τ3,τ4

E




∑

i,j

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ2, i)σQ(τ2)(Txτ2)j




·


∑

i,j

δQ(τ3, i)σQ(τ3)(Txτ3)jδQ(τ4, i)σQ(τ4)(Txτ4)j




 .

We now analyze the above expectation. There are several cases for the expectation of each term.1103
First, we bound the sum of the expectations when t1 = t2 = t3 = t4 by1104

n1∑

τ=1

E




∑

i,j

δQ(τ, i)σQ(τ)(Txτ )jδQ(τ, i)σQ(τ)(Txτ )j




·


∑

i,j

δQ(τ, i)σQ(τ)(Txτ )jδQ(τ, i)σQ(τ)(Txτ )j






≤
n1∑

τ=1

E
[
‖Txτ‖42

]
= 1 + c/k̄
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Where the last equation follows from the variance of count-sketch [CW13] for the base case, or by1105
induction for q ≥ 3. We now bound the sum of the expectations when t1 = t2 6= t3 = t4 by1106

∑

τ1 6=τ2
E




∑

i,j

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ1, i)σQ(τ1)(Txτ1)j




·


∑

i,j

δQ(τ2, i)σQ(τ2)(Txτ2)jδQ(τ2, i)σQ(τ2)(Txτ2)j






≤
∑

τ1 6=τ2
E[‖Txτ1‖22‖Txτ2‖22/k1]

≤ E[‖Tx‖42/k1] ≤ (1 + c/k̄)/k1.

We can similarly bound the sum of the terms with t1 = t3 6= t2 = t4 and t1 = t4 6= t3 = t2 by
(1 + c/k̄)/k1, giving a total bound on the second moment of

E[‖(Q⊗ T )x‖42] ≤ 1 + c/k̄ + 3(1 + c/k̄)/k1) ≤ 1 + (4 + c)/k̄

since any term with a ti /∈ {t1, t2, t3, t4} \ {ti} immediately has expectation 0. By induction, it
follows that E[(⊗qi=1Si)x‖22] = 1 for any unit x, and E[(⊗qi=1Si)x‖42] ≤ 1 + (4q+ c)/k̄, where c is
the constant from the original variance of count-sketch. Setting k̄ = k1 = · · · = kq = Θ(qk2/ε2)
with a large enough constant, this completes the proof that S = (⊗qi=1Si) has the O(ε/k, 1/10, 2)-
JL moment property. Then by Theorem 21 of [KN14], we obtain the approximate matrix product
property:

Pr[‖A>S>SB −A>B‖F ≤ O(ε/k)‖A‖F ‖B‖F ] ≥ 9/10

for any two matrices A,B. Letting A = B> = U where U ∈ Rn×k is a orthogonal basis for any1107
k-dimensional subspace V ⊂ Rn, it follows that1108

‖U>S>SU − Ik‖F ≤ O(ε/k)‖U‖2F ≤ O(ε),

where the last step follows becauseU is orthonormal, so ‖U‖2F = k. Since the Frobenius norm upper1109
bounds the spectral norm ‖ · ‖2, we have ‖U>S>SU − Ik‖2 ≤ O(ε), from which it follows that all1110
the eigenvalues of U>S>SU are in (1−O(ε), 1+O(ε)), which implies ‖SUx‖2 = (1±O(ε))‖x‖21111
for all x ∈ Rn, so for any y ∈ V , let xy be such that y = Uxy , and then ‖Sy‖2 = ‖SUxy‖2 =1112
(1 ± O(ε))‖xy‖2 = (1 ± O(ε))‖Uxy‖2 = (1 ± O(ε))‖y‖2, which proves that S is a subspace1113
embedding for V (not the second to last inequality holds because U is orthonormal).1114

Finally, we are ready to prove Lemma D.4.1115

Lemma D.4. Let S = (⊗qi=1Si) with Si ∈ Rki×ni , k1 = k2 = · · · = kq = Θ(qk2/ε2). Then1116
with probability 9/10 SA is a Projection Cost Preserving Sketch (PCP) for A, namely for all rank1117
k orthogonal projection matrix P ∈ Rd×d,1118

(1− ε)‖A−AP‖2F ≤ ‖SA− SAP‖2F + c ≤ (1 + ε)‖A−AP‖2F
where c ≥ 0 is some fixed constant independent of P (but may depend on A and SA).1119

Proof. To demonstrate that SA is a PCP, we show that the conditions of Lemma 10 of [CEM+15]1120
hold, which imply this result. Our result follows directly from Theorem 12 of [CEM+15]. Note1121
that all that is needed (as discussed below the theorem) for the proof is that S is an ε-subspace1122
embedding for a fixed k-dimensional subspaces, and that S satisfies the (ε/

√
k) approximate matrix1123

product property. By Lemma D.3, we have both ε-subspace embedding for S as well as a stronger1124
(ε/k) approximate matrix product property. Thus Theorem 12 holds for the random matrix S when1125
k1 = k2 = · · · = kq = Θ(qk2/ε2), which completes the proof.1126

1127
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E Entry-wise Norm Low T-rank Approximation1128

We now demonstrate our results for low trank approximation of arbitrary input matrices. Specifi-1129
cally, we study the following problem, defined in [VL00]: given A ∈ Rn2×n2

, the goal is to output1130
a trank-k matrix B ∈ Rn2×n2

such that1131

‖B −A‖ξ ≤ α ·OPT . (1)

for some α ≥ 1, where OPT = mintrank−k A′ ‖A′ − A‖ξ,, where the trank of a matrix B is1132
defined as the smallest integer k such that B can be written as a summation of k matrices, where1133
each matrix is the Kronecker product of q matrices with dimensions n × n: B =

∑k
i=1 Ui ⊗ Vi,1134

where Ui, Vi ∈ Rn×n.1135

Using Lemma B.2, we can rearrange the entries in A ∈ Rn2×n2

to obtain A ∈ Rn2×n2

, where the1136
(i+n(j−1))’th row of Ā is equal to vec((A1)i,jA2), and also vectorize the matrix Ui ∈ Rn×n and1137

Vi ∈ Rn×n to obtain vectors ui ∈ Rn2

, vi ∈ Rn2

. Therefore, for any entry-wise norm ξ we have1138
∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi −A
∥∥∥∥∥
ξ

=

∥∥∥∥∥
k∑

i=1

uiv
>
i −A

∥∥∥∥∥
ξ

Lemma E.1 (Reshaping for Low Rank Approximation). There is a one-to-one mapping π : [n] ×1139
[n]×[n]×[n]→ [n2]×[n2] such that for any pairs (U, u) ∈ Rn×n×Rn2

and (V, v) ∈ Rn×n×Rn2

,1140
if Ui1,j1 = ui1+n(j1−1) and Vi1,j1 = vi1+n(j1−1), then we have for i1, i2, j1, j21141

(U ⊗ V )i1+n(i2−1),j1+n(j2−1) = (u · v>)π(i1,i2,j1,j2)

where U ⊗ V ∈ Rn2×n2

and uv> ∈ Rn2×n2

.1142

Proof. We have1143

(U ⊗ V )i1+n(i2−1),j1+n(j2−1) = Ui1,j1Vi2,j2

= ui1+n(j1−1) · vi2+n(j2−1)

= (uv>)i1+n(j1−1),i2+n(j2−1)

where the first step follows from the definition of ⊗ product, the second step follows from the1144
connection between U, V and u, v, the last step follows from the outer product.1145

Therefore, instead of using trank to define low-rank approximation of the⊗ product of two matrices,1146
we can just use the standard notion of rank to define it since both B and A′ can be rearranged to1147
have rank k.1148

Definition E.2 (Based on Standard Notion of Rank). Given two matrices A1, A2 × Rn×n, let A ∈1149
Rn2×n2

denote the re-shaping of A1 ⊗A2. The goal is to output a rank-k matrix B such that1150

‖B −A‖ξ ≤ αOPTξ,k

where OPTξ,k = minrank−k A′ ‖A
′ −A‖ξ.1151

In other words, B can be written as B =
∑k
i=1 uiv

>
i where ui, vi are length n2 vectors.1152

Combining the low-rank reshaping Lemma E.1 with the main input-sparsity low-rank approximation1153
of [CW13], we obtain our Frobenius norm low rank approximation result.1154

Theorem E.3 (Frobenius norm low rank approximation, p = 2). For any ε ∈ (0, 1/2), there is1155
an algorithm that runs in n2 poly(k/ε) and outputs a rank-k matrix B such that ‖B − A‖F ≤1156
(1 + ε) OPTF,k holds with probability at least 9/10, where OPTp is cost achieved by best rank-k1157
solution under the `p-norm.1158

Similarly, using the main `p low rank approximation algorithm of [SWZ17], we have1159

Theorem E.4 (Entry-wise `p-norm low rank approximation, 1 ≤ p ≤ 2). There is an algorithm that1160
runs in n2 poly(k) and outputs a rank-k matrix B such that ‖B − A‖p ≤ poly(k log n) OPTp,k1161
holds with probability at least 9/10, where OPTp is cost achieved by best rank-k solution under the1162
`p-norm.1163
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Applying the bi-criteria algorithm of [CGK+17] gives us:1164

Theorem E.5 (General p > 1, bicriteria algorithm). There is an algorithm that runs in poly(n, k)1165
and outputs a rank-poly(k log n) matrix B such that ‖B − A‖p ≤ poly(k log n) OPTp holds with1166
probability at least 9/10, where OPTp,k is cost achieved by best rank-k solution under the `p-norm.1167

Finally using the low-rank approximation algorithm for general loss functions given in [SWZ18],1168
we obtain a very general result. The parameters for the loss function described in the following1169
theorem are discussed in Section F.1170

Theorem E.6 (General loss function g). For any function g that satisfies Definition F.1, F.2, F.3,1171
there is an algorithm that runs in O(n2 · Treg,g,n2,k,n2) time and outputs a rank-O(k log n) matrix1172

B ∈ Rn2×n2

such that1173

‖B −A‖g ≤ atig,k ·mong · regg,k ·O(k log k) ·OPTg,k,

holds with probability 1− 1/ poly(n).1174

Hence, overall, the strategy is to first reshape A = A1 ⊗A2 into Ā, then compute B̄ =
∑k
i=1 uiv

>
i1175

using any of the above three theorems depending on the desired norm, and finally reshape ui and1176
vi back to Ui ∈ Rn×n and Vi ∈ Rn×n. It is easy to verify that the guarantees from Theo-1177
rems E.6, E.4, E.3 are directly transferable to the guarantee of the trank−k approximation shown1178
in Eq 1.1179

F Properties for General Loss Functions for Low trank Approximation1180

We re-state three general properties (defined in [SWZ18]), the first two of which are structural1181
properties and are necessary and sufficient for obtaining a good approximation from a small subset1182
of columns. The third property is needed for efficient running time.1183

Definition F.1 (Approximate triangle inequality). For any positive integer n, we say a function1184
g(x) : R → R≥0 satisfies the atig,n-approximate triangle inequality if for any x1, x2, · · · , xn ∈ R1185
we have1186

g

(
n∑

i=1

xi

)
≤ atig,n ·

n∑

i=1

g(xi).

Definition F.2 (Monotone property). For any parameter mong ≥ 1, we say function g(x) : R →1187
R≥0 is mong-monotone if for any x, y ∈ R with 0 ≤ |x| ≤ |y|, we have g(x) ≤ mong ·g(y).1188

Definition F.3 (Regression property). We say function g(x) : R → R≥0 has the1189
(regg,d, Treg,g,n,d,m)-regression property if the following holds: given two matrices A ∈ Rn×d1190
and B ∈ Rn×m, for each i ∈ [m], let OPTi denote minx∈Rd ‖Ax − Bi‖g . There is an algorithm1191
that runs in Treg,g,n,d,m time and outputs a matrix X ′ ∈ Rd×m such that1192

‖AX ′i −B‖g ≤ regg,d ·OPTi,∀i ∈ [m]

and outputs a vector v ∈ Rd such that1193

OPTi ≤ vi ≤ regg,d ·OPTi,∀i ∈ [m].

The success probability is at least 1− 1/ poly(nm).1194

34


