
A Proof of Universal Orthogonality Lemma359

We first start by defining a sufficient condition for the notion of universal orthogonality of a loss360

function, as defined by [9]. A loss function L(⇡;h) = E[`(x,⇡(z);h(z))] is universally orthogonal361

with respect to h if for any ⇡ 2 ⇧:362

E[rh(z),⇡(z)`(x,⇡(z);h0(z)) | z] = 0 (20)

where h0 is the true value of the nuisance parameter h.363

Lemma 3. The loss function L(⇡;h) = �E[h✓DR(y, a, z),�(⇡(z), z)i] is universally orthogonal364

with respect to h = (✓,⌃).365

Proof. We show that the population loss function that corresponds to the doubly robust estimate,366

satisfies the universal orthogonality condition. For simplicity of notation let K(z) = ⌃(z)�1. Then367

the population loss is:368

V 0
DR(⇡; ✓̂,⌃

�1) = E
hD

✓̂(z) + ⌃�1(z)�(a, z) (y � h✓̂(z),�(a, z)i),�(⇡(z), z)
Ei

Let:369

�(a, z, ⇠,K) = ⇠ +K�(a, z) (y � h⇠,�(a, z)i)

Observe that:370

V 0
DR(⇡; ✓̂,⌃

�1) = E
hD

�(a, ✓̂(z),⌃�1(z)),�(⇡(z), z)
Ei

To show universal orthogonality it suffices to show that:371

E
⇥
r⇠,K�(a, z, ✓0(z),⌃

�1
0 (z)) | z

⇤
= 0

This follows easily by simple algebraic manipulations:372

E
⇥
r⇠�(a, z, ✓0(z),⌃

�1
0 (z)) | z

⇤
= E

⇥
I� ⌃�1

0 (z)�(a, z)�(a, z)T | z
⇤

= I� ⌃�1
0 (z)E

⇥
�(a, z)�(a, z)T | z

⇤
= I� ⌃�1

0 (z)⌃0(z) = 0

and373

E
⇥
rKij�(a, ✓0(z),⌃

�1
0 (z)) | z

⇤
= E [�j(a, z) (y � h✓0(z),�(a, z)i) | z]

Now observe that since ✓0(z) is the minimizer of the conditional squared loss, taking the first order374

condition implies:375

E[(V0(a, z)� h✓0(z),�(a, z)i)�(a, z) | z] = 0 ()

E[V0(a, z)�(a, z) | z] = E[h✓0(z),�(a, z)i)�(a, z) | z]

Moreover:376

E[y �(a, z) | z] = E[E[y | a, z]�(a, z)] = E[V0(a, z)�(a, z)]

Combining the two yields:377

E [�(a, z) (y � h✓0(z),�(a, z)i) | z] = 0

which implies orthogonality with respect to K.378

B Proof of Main Regret Theorem 1379

We first consider an arbitrary empirical loss minimization problem of the form:380

fn = argmin
f2F

En[f(x)] :=
1

n

nX

i=1

f(xi) (21)

where xi 2 X are i.i.d. drawn from an unknown distribution and X is an arbitrary data space.381

Throughout the section we will assume that: supf2F
|f(x)|  1. All the results can be generalized382
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to the case of supf2F
|f(x)|  R, for some arbitrary R, by simply first re-scaling the losses, and383

then invoking the theorems of this section.384

We will also make the following preliminary definitions. For any function f we denote with385

kfk2 =
p

E[f(x)2], the standard L2 norm and with kfk2,n =
p

En[f(x)2] its empirical analogue.386

The localized Rademacher complexity is the defined as:387

R(r,F) = E✏,x1:n

"
sup

f2F :kfk2r

1

n

nX

i=1

✏i f(xi)

#
(22)

where ✏i are independent Rademacher variables that take values {�1, 1} with equal probability.388

Furthermore, we define the empirical entropy of a function class H2(✏,F , n) as the largest value,389

over the choice of n samples, of the logarithm of the size of the smallest empirical ✏-cover of F on390

the samples with respect to the k · k2,n norm. Finally, we consider the empirical entropy integral391

defined as:392

(r,F) = inf
↵�0

(
4↵+ 10

ˆ r

↵

r
H2(✏,F , n))

n
d✏

)
, (23)

Throughout this section we will make the following benign assumption that essentially makes the393

problem learnable:394

ASSUMPTION 1. The function class satisfies that for any constant r, (r,F) ! 0 as n ! 1395

We will use the following theorems from the prior work of [9] as a starting point as they are formalized396

in manner convenient for our problem.397

Theorem 4 (Foster, Syrgkanis [9], Theorem 4). Consider any function class F : X ! [�1, 1] and398

let fn be the outcome of the constrained ERM. Pick any f⇤ 2 F and let r = supf2F
kf � f⇤k2.399

Then for some constants C1, C2 and for any � > 0, w.p. 1� �:400

E[fn(x)� f⇤(x)]  C1

 
R(r,F � f⇤) + r

r
log(1/�)

n
+

log(1/�)

n

!

 C1 C2

 
(r,F) + r

r
log(1/�)

n
+

H2(r,F , n)

n
+

log(1/�)

n

!
.

Lemma 5 (Foster, Syrgkanis [9], Lemma 4). Consider a function class F : X ! [�1, 1] and pick401

any f⇤ : X ! [�1, 1] (not necessarily in F). Moreover, let:402

Zn(r) = sup
f 2F :kf�f⇤k2r

|En[f(x)� f⇤(x)]� E[f(x)� f⇤(x)]| (24)

Then for some constant C3 and for any � > 0, w.p. 1� �:403

Zn(r)  C3

 
R(r,F � f⇤) + r

r
log(1/�)

n
+

log(1/�)

n

!

Our goal is to replace r in the latter Theorem with the worst-case variance of the functions f 2 F in404

a small “regret”-ball around the optimal. We will achieve this by considering a slight modification405

of the ERM algorithm. In particular, we will split the data in half, and we will use one half as a406

regularization sample and the other half as the training sample. In particular, we will find the optimal407

function on the training sample, within the class of functions that also have relatively small regret on408

the regularization sample.409

Out-of-Sample Regularized ERM Consider the following algorithm:410

• We split the samples S in two parts S1, S2 and let En1 [·] and En2 [·] denote the corresponding411

empirical expectations.412

• We run ERM over F on the first half and let f1 be the outcome.413

• Then we define the class of functions that have the constraint that they don’t achieve much414

worse value than f1 on the first half, i.e. we regularize policies based on their regret on the415

first half. More formally, for some constant µn to be defined later:416

F2 = {f 2 F : En1 [f(x)� f1(x)]  µn} (25)
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• Then we run constrained ERM on the second sample over the function space F2:417

f2 = arg min
f2F2

En2 [f(x)] (26)

Theorem 6 (Variance-Based Regret). Let f⇤ = argminf2F E[f(x)], r = supf2F
kfk2 and choose418

µn = C

✓
(r,F) + r

q
log(6/�)

n + H2(r,F,n)
n + log(6/�)

n

◆
, with C = 8max{C1C2, C3C2}. Then,419

w.p. 1� � over the sample S, the outcome f2 of the Out-of-Sample Regularized ERM satisfies:420

E[f2(x)� f⇤(x)] = O

 
(
p

V2,F⇤(µn)) +

r
V2 log(3/�)

n

!
(27)

with: F⇤(µn) = {f 2 F : E[f(x) � f⇤(x)]  µn} and V2 = supf2F⇤(µn) Var(f(x) �421

f⇤(x)). Moreover, the expected regret, in expectation over the samples S1, S2 is also of order422

O

✓
(
p
V2,F) +

q
V2
n

◆
.423

Proof. First we argue that w.p. 1� �/6, f⇤ 2 F2. By the choice of µn and Theorem 4, we know that424

w.p. 1� �/4 over the randomness of sample S1:425

E[f1(x)� f⇤(x)]  µn/2 (28)
Moreover, by Lemma 5, w.p. 1� �/6 over the randomness of sample S1:426

sup
f2F

|En1 [f(x)� f⇤(x)]� E[f(x)� f⇤(x)]|  µn/2

Combining the latter two properties we have, w.p. 1� �/3:427

|En1 [f⇤(x)� f1(x)]|  |E[f⇤(x)� f1(x)]|+ µn/2  µn

Thus in this event, f⇤ 2 F2.428

Applying Theorem 4 for the last stage of the algorithm with function space F2 and conditioning on429

the event that the first stage sample is such that f⇤ 2 F2, we have that with probability 1� �/3 over430

the randomness of the second sample:431

E[f2(x)� f⇤(x)] = C1 C2

 
(r2,F2) + r2

r
log(3/�)

n
+

H2(r2,F2, n)

n
+

log(3/�)

n

!

where r2 = supf2F2
kfk2. Thus by a union bound we get that with probability 1� 2�/3 over the432

randomness of both samples, the latter bound holds.433

Observe that for f 2 F2, by Lemma 5, w.p. 1� �/6 over the first sample:434

sup
f2F

|En1 [f(x)� f1(x)]� E[f(x)� f1(x)]|  2 sup
f2F

|En1 [f(x)]� E[f(x)]|  µn/2

Thus w.p. 1� �/6, F2 is a subset of the class:435

F
0
2 = {f 2 F : |E[f(x)� f1(x)]|  µn/2} (29)

Moreover, since f1 has small regret, we know by the triangle inequality, for all f 2 F
0
2 , w.p. 1� �/3:436

|E[f(x)� f⇤(x)]|  |E[f(x)� f1(x)]|+ |E[f1(x)� f⇤(x)]|  µn

Thus w.p. 1� �/3, F0
2 is in turn a subset of the function space:437

F⇤(µn) = {f 2 F : |E[f(x)� f⇤(x)]|  µn}

which is a space of policies with regret at most µn.438

Thus we have that w.p. 1� �/3 over the first sample:439

r22 = sup
f2F2

E[(f(x)� f⇤(x))
2]  sup

f2F⇤(µn)
E[(f(x)� f⇤(x))

2]

= sup
f2F⇤(µn)

�
Var(f(x)� f⇤(x)) + E[f(x)� f⇤(x))]

2
�

 sup
f2F⇤(µn)

Var(f(x)� f⇤(x)) + µ2
n
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We thus have that:440

r2 =
r

sup
f2F⇤(µn)

Var(f(x)� f⇤(x)) + 2µn =
p
V2 + 2µn (30)

Combining the latter with the regret bound for f2 (excluding lower order terms in n) we have that441

w.p. 1� �:442

E[f2(x)� f⇤(x)] = O

 
(
p
V2 + 2µn,F⇤(µn)) +

r
V2 log(3/�)

n

!

Moreover, using the concavity of the entropy integral with respect to its first argument, we have that:443

(
p
V2 + 2µn,F)  (

p
V2,F⇤(µn)) + 2µn

s
H2(

p
V2,F , n)

n
(31)

Since (r,F) ! 0, we have that µn = o(1) and H2(
p
V2,F , n) is a constant. Thus, the second term444

decays faster than 1/
p
n and hence is asymptotically negligible. Thus we get:445

E[f2(x)� f⇤(x)] = O

 
(
p

V2,F⇤(µn)) +

r
V2 log(1/�)

n

!

The expected regret bound follows by standard arguments by simply integrating the above high446

probability bound.447

Going back to our policy learning problem, let x = (y, a, z) and:448

vDR(x;⇡) = h✓DR(y, a, z),�(⇡(z), z)i (32)
be the doubly robust proxy value at every sample x and policy ⇡. Then we can apply this general449

theorem to the policy learning problem where, x = (y, a, z) and function space:450

F⇧ = {�vDR(·;⇡) : ⇡ 2 ⇧} (33)
Then Theorem 6 yields the following corollary:451

Corollary 7 (Variance-Based Policy Regret). Let ⇡⇤ = argmax⇡2⇧ E[vDR(x;⇡)], r =452

sup⇡2⇧

p
E[vDR(z;⇡)2], µn = ⇥

✓
(r,F⇧) + r

q
log(1/�)

n

◆
and453

V2 = sup
⇡2⇧:E[vDR(x;⇡⇤)�vDR(x;⇡)]µn

Var(vDR(x;⇡)� vDR(x;⇡⇤)). (34)

Then the policy ⇡2 returned by the out-of-sample regularized ERM, satisfies w.p. 1 � � over the454

randomness of S:455

E[vDR(⇡⇤)� vDR(⇡2)] = O

 
(
p
V2,F⇧) +

r
V2 log(1/�)

n

!
(35)

and expected regret O
✓
(
p
V2,F⇧) +

q
V2
n

◆
.456

To arrive at our final theorem, we also need to account for the difference between E[vDR(x;⇡)] and457

V (⇡). This difference essentially stems from the error in the nuisance estimates, which introduce an458

error in ✓DR(y, a, z), such that E[✓DR(y, a, z) | z] 6= ✓(z). However, we can invoke the orthogonality459

of the doubly robust estimator and the general theorem of [9] on generalization bounds of orthogonal460

losses to get:461

Lemma 8. For any policy ⇡0 2 ⇧, let ⇡̂ be the outcome of any possibly randomized algorithm that462

satisfies w.p. 1��/2 a regret bound on the doubly robust objective, i.e. E[vDR(x;⇡0)�vDR(x; ⇡̂)] 463

Rn,� . Moreover, suppose that the nuisance estimates satisfy a mean-squared error bound464

max
n
E[(✓̂(z)� ✓0(z))

2],E[k⌃̂(z)� ⌃0(z)k
2
Fro]

o
:= �2

n (36)

Then w.p. 1� � over the randomness of the policy sample:465

V (⇡0)� V (⇡̂)  O
�
Rn,� + �2

n

�
(37)
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Proof. By Lemma 3 we have that the loss function �E[vDR(x;⇡)] is universally orthogonal as466

defined in [9]. Moreover, the loss is smooth with respect to the outputs of the nuisance functions and467

hence the second order derivatives of the loss with respect to the outputs of the nuisance functions are468

bounded. Thus the lemma follows by Theorem 2 of [9].469

If we assume that the nuisance estimation algorithm guarantees that w.p. 1 � �, �2
n  h2

n,� then470

observe that combining Corollary 7 and Lemma 8, we get that for any policy ⇡0, the policy ⇡2 of the471

out-of-sample regularized ERM satisfies, w.p. 1� �:472

V (⇡0)� V (⇡2)  O

 
(
p

V2,F⇧) +

r
V2 log(1/�)

n
+ h2

n,�

!

Similarly, if we assume that the nuisance esitmation algorithm satisfies E[�2
n]  h2

n, then:473

E[V (⇡0)� V (⇡2)]  O

 
(
p
V2,F⇧) +

r
V2 log(1/�)

n
+ h2

n

!

We continue by proving the probabilistic regret bound of the theorem and the in-expectation bound474

follows analogously.475

Finally, we need to account for the error introduced by the nuisance errors on the quantity V2, so as476

to connect it with the semi-parametric efficiency variance of each policy, i.e.:477

Var(v0DR(x;⇡)) (38)

where v0DR(x;⇡) = h✓0DR(y, a, z),�(⇡(z), z)i, and ✓0DR(y, a, z) is the analogue of the doubly robust478

function, ✓DR(y, a, z), evaluated at the true nuisance functions. Moreover, we want our the “regret479

slice” to be with respect to the true regret, i.e. we want to depend on the variance of policies that480

satisfy:481

V (⇡0
⇤
)� V (⇡) := E[v0DR(x;⇡

0
⇤
)� v0DR(x;⇡)]  µ0

n (39)
where ⇡0

⇤
= argmax⇡2⇧ V (⇡). We prove such a property in the following lemma:482

Lemma 9. Consider the setting of Corollary 7. Suppose that the mean squared error of the nuisance483

estimates is upper bounded w.p. 1� � by h2
n,� and let ✏n = µn + h2

n,� . Then:484

V 0
2 = sup

⇡,⇡02⇧⇤(✏n)
Var(v0DR(x;⇡)� v0DR(x;⇡

0)) (40)

Then V2  V 0
2 +O(hn,�).485

Proof. First observe that by Lemma 8 with ⇡0 = ⇡⇤ and ⇡̂ = ⇡ (for any ⇡ 2 F
2
⇧), we have that:486

E[vDR(⇡⇤)� vDR(⇡)]  µn =) V (⇡⇤)� V (⇡)  µn +O(h2
n,�)

Similarly if we let ⇡0
⇤
= argmax⇡2⇧ E[v0DR(x;⇡)] := V (⇡), then observe that by definition of ⇡⇤:487

E[vDR(x;⇡0
⇤
)� vDR(x;⇡⇤)]  0. Thus applying again Lemma 8 with ⇡0 = ⇡0

⇤
and ⇡̂ = ⇡⇤:488

E[vDR(⇡
0
⇤
)� vDR(⇡⇤)]  0 =) V (⇡0

⇤
)� V (⇡⇤)  O(h2

n,�)

Let ⇧0
⇤
(✏) = {⇡ 2 ⇧ : V (⇡0

⇤
)� V (⇡)  ✏} and let ✏n = O(µn + h2

n,�). Thus we have that:489

V2  sup
⇡2⇧⇤(✏n)

Var(vDR(x;⇡)� vDR(x;⇡⇤))

Moreover, observe that ⇡⇤ 2 ⇧0
⇤
(✏n). Hence:490

V2  sup
⇡,⇡02⇧⇤(✏n)

Var(vDR(x;⇡)� vDR(x;⇡
0))

Moreover, by Lipschitzness of ✓DR(y, a, z) on the output of the nuisance functions, we also have491

that for any ⇡,⇡0
2 ⇧(✏n):492

Var(vDR(x;⇡)� vDR(x;⇡
0))  Var(v0DR(x;⇡)� v0DR(x;⇡

0)) +O(hn,�) (41)
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Hence, if we denote with:493

V 0
2 = sup

⇡,⇡02⇧⇤(✏n)
Var(v0DR(x;⇡)� v0DR(x;⇡

0))

Then we conclude that:494

V2 = V 0
2 +O(hn,�)

495

Invoking Lemma 9 and the concavity of the entropy integral function we get:496

V (⇡0
⇤
)� V (⇡̂)  O

 
(
q
V 0
2 ,F⇧) +

r
V 0
2 log(1/�)

n
+ h2

n,� + hn,�
1
p
n

!
(42)

Since hn,� = o(1), the last term is of lower order. This concludes the proof of the main regret497

Theorem 1.498

C Review of Semi-parametric Efficiency Bounds499

In this section, we review the theory of semi-parametric efficiency bounds studied in [16] and [3].500

C.1 Definitions501

Definition 1 (Mean Square Differentiability). Let f(x; ⌘) denote the probability density function502

of a random variable x where ⌘ 2 H is a finite dimensional parameter. f(x; ⌘)1/2is µ-mean503

square continuously differentiable with respect to ⌘ on H with derivative f⌘(x; ⌘) if for each ⌘ 2 H504 ´
kf⌘(x; ⌘)k2dµ is finite, and for every ⌘i ! ⌘ with

´
kf⌘(x; ⌘i)� f⌘(x; ⌘)k2dµ ! 0505 ˆ ⇣

f(x; ⌘i)
1/2

� f(x; ⌘)1/2 � f⌘(x; ⌘)
0(⌘i � ⌘)

⌘2
dµ/k⌘i � ⌘k2 ! 0

Definition 2 (Smoothness). f(x; ⌘) is smooth if (i) ⌘ 2 H , H is open; (ii) there is a measure µ506

dominating f(x; ⌘) for ⌘ 2 H such that f(x; ⌘) is continuous on H a.s. µ ; (iii) f(x; ⌘)1/2 is mean507

square differentiable.508

Definition 3 (Score and Information Matrix). For smooth f(x; ⌘) the score for ⌘ is defined as

S⌘(x; ⌘) := 2
f⌘(x; ⌘)

f(x; ⌘)

in the support of x and the information matrix is

I(⌘) =

ˆ
S⌘S

0

⌘f(x; ⌘)dµ.

Definition 4 (Regularity). A likelihood function f(x; ⌘), ⌘ 2 H , is regular if it is smooth and509

information matrix is non-singular in H . The efficiency bound of a regular model is given by510

Cramer-Rao bound and equals I(⌘)�1.511

Definition 5 (Linearity). Define a set T to be linear if as1 + bs2 2 T for all real scalars a and b512

and elements s1 and s2 of T .513

C.2 Derivation of the Efficiency Bound514

Let data (x1, . . . , xn) consist of i.i.d copies of the random vector (y, a, z). A semi-parametric model515

consists of a parameter vector ↵ and a set of restrictions on the joint behavior of observables. In our516

model, the restrictions are given by the first order conditions of the linear projection517

E [ (y � h✓0(z),�(a, z)i)�(a, z) | z] = 0

and the parameter is518

↵ =

ˆ
h✓(z),�(⇡(z), z)if(z)dz

where f(z) denotes the probability distribution function of z. First, we provide the definition of a519

parametric submodel.520
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Definition 6 (Parametric Submodel). For estimators with i.i.d data, a parametric submodel corre-521

sponds to a parameter vector ⌘ and a likelihood function `(x|⌘) for a single observation that satisfies522

the semi-parametric restrictions.523

A parametric submodel is a subset of the model distributions satisfying the semi-parametric assump-524

tions. The reason parametric submodels are useful in analyzing semi-parametric efficiency is that525

for parametric models, the Cramer-Rao bound gives the lower bound on the variance of estimators526

of a parameter under some regulatory conditions. Since semi-parametric models impose weaker527

restrictions than any parametric model, it is natural to expect that the asymptotic variance of a528

semi-parametric model is no smaller than the bound for the parametric model.529

In a parametric submodel, our parameter of interest can be written as530

↵ =

ˆ
h✓(z; ⌘),�(⇡(z), z)if(z; ⌘)dz (43)

Next, we define the semi-parametric efficient bounds.531

Definition 7 (Semi-parametric Efficiency Bound). The semi-parametric efficiency bound of a semi-532

parametric estimator is defined as the supremum of the Cramer-Rao bounds for all regular parametric533

submodels.534

This definition is intuitive because any semi-parametric estimator that is consistent and asymptotically535

normal cannot have a lower variance than the supremum of Cramer-Rao bounds. The regulatory536

conditions defined in Section C.1 guarantee that the Cramer-Rao bound is well-defined and gives an537

asymptotic efficiency bound.538

To be able to obtain the Cramer-Rao bound for the parameter of interest under a parametric submodel,539

the parameter must be pathwise differentiable.540

Definition 8 (Pathwise Differentiability). A parameter ↵ is pathwise-differentiable if ↵(⌘) is differ-541

entiable for all smooth parametric submodels and there exists q⇥ 1 random vector d such that E[d0d]542

is finite and for all regular parametric submodels543

@↵(⌘0)

@⌘
= E[dS0

⌘]

where ⌘0 denotes the true value of the parameter in the sense that `(x|⌘0) corresponds to the544

likelihood function that generates the data.545

Pathwise differentiability of a parameter is a weak condition because, by Riesz representation546

theorem, a parameter is pathwise-differentiable if it can be written as a functional that is mean-square547

continuous. From the definition of ↵ in Equation (43) it is easy to see that ↵ is pathwise-differentiable548

by Riesz representation theorem.549

For a pathwise-differentiable parameter, the Cramer-Rao bound can be written as a function of the550

pathwise derivative using the Delta method.551

Var(↵(⌘0)) =
@↵(⌘0)

@⌘
(E[S⌘S

0

⌘])
�1 @↵(⌘0)

@⌘

0

= E[dS0

⌘](E[S⌘S
0

⌘])
�1E[S⌘d

0]

We can write Var(↵(⌘)) as a second moment of a random variable as follows552

Var(↵(⌘0)) = E[dS0

⌘](E[S⌘S
0

⌘])
�1E[S⌘d

0]

= E
⇥
E[dS0

⌘](E[S⌘S
0

⌘])
�1S⌘S

0

⌘(E[S⌘S
0

⌘])
�1E[S⌘d

0]
⇤

= E[d⌘d0⌘]
Note that d⌘ is mean-zero since553

E[d⌘] = E
⇥
E[dS0

⌘](E[S⌘S
0

⌘])
�1S⌘]

⇤

= E[dS0

⌘](E[S⌘S
0

⌘])
�1E[S⌘]

= 0
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This is useful because the Cramer-Rao bound of ↵ under a parametric submodel equals the variance554

of d⌘ . Note further from the definition of d⌘ that it is the linear projection of pathwise-derivative d on555

score S⌘ . Therefore, the largest value of this projection can be obtained by considering the projection556

space as the scores corresponding to all parametric submodels. To formalize this, we next define the557

tangent set:558

Definition 9 (Tangent Set). Define the tangent set T to be the mean square closure of all q-559

dimensional linear combinations of scores S⌘ for smooth parametric submodels:560

T = {s 2 : E[ksk2]  1, 9AjS⌘j with lim
j!1

E[ks�AjS⌘jk
2] = 0}

The projection of d on the tangent set should have a larger variance than any particular submodel,561

suggesting that the projection should give the semi-parametric efficiency bound. The mathematical562

meaning of this projection on the tangent set is a least-squares projection in a Hilbert space of random563

vectors. This projection is defined as:564

� 2 T , E[(d� �)s] = 0 for all s 2 T

If T is linear, then � exists and unique. It is called the efficient score because it equals the efficient565

influence function in asymptotically linear estimators.566

Theorem 10 ([16], Theorem 3.1). Suppose that the parameter is differentiable, T is linear, and567

E[��0] is nonsingular, for the projection � of d on T . Then semi-parametric efficiency bound equals568

E[��0].569

D Proof of Theorem 2570

Proof. We follow the steps outlined in Section (C.2) to calculate the semi-parametric efficiency571

bound of the parameter of interest:572

↵ := E[h✓0(z),�(⇡(z), z)i] (44)
Let f(y, a | z) and f(z) denote the conditional distribution of (y, a) given z and the marginal573

distribution of z, respectively. The density of data (y, a, z) is then equal to:574

f(y, a, z) = f(y, a | z)f(z)

We consider a regular parametric submodel, parameterized by ⌘, to calculate the pathwise derivative575

of ↵(⌘):576

f(y, a, z; ⌘) = f(y, a | z; ⌘)f(z; ⌘)

The corresponding scores for the parametric submodel is given by:577

s⌘(y, a, z; ⌘) = s⌘(y, a | z; ⌘) + s⌘(z; ⌘)

where s⌘(y, a, z; ⌘) = 2
f⌘(y, a, z; ⌘)

f(y, a, z; ⌘)
, and other scores are defined similarly.578

Under the parametric submodel ↵ can be written as:579

↵(⌘) =

ˆ
h✓(z; ⌘),�(⇡(z), z)if(z; ⌘)dz (45)

The first step in semi-parametric efficiency bound derivation is to show that ↵(⌘) is pathwise580

differentiable, i.e. there exists d(y, a, z; ⌘0) such that581

@↵(⌘)

@⌘
= E[d(y, a, z; ⌘)S⌘(y, a, z; ⌘)]

Let ⌘0 denote the true parameter value in the sense that f(y, a, z; ⌘0) corresponds to the density of582

the data. To show pathwise differentiability, we differentiate Equation (45) under the integral sign583

and evaluate at ⌘ = ⌘0:584

@↵(⌘0)

@⌘
=

ˆ ⌧
@✓(z; ⌘0)

@⌘
,�(⇡(z), z)

�
f(z; ⌘0)dz +

ˆ
h✓0(z; ⌘0),�(⇡(z), z)i

@f(z; ⌘0)

@⌘
dz (46)

= E
⌧

@✓(z; ⌘0)

@⌘
,�(⇡(z), z)

��
+ E[h✓(z; ⌘0),�(⇡(z), z)is⌘(z; ⌘0)] (47)
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To calculate @✓(z; ⌘0)/@⌘ inside the expectations we use the first order conditions of the linear585

projection:586

E [ (y � h✓0(z),�(a, z)i)�(a, z) | z] = 0ˆ
(y � h✓(z; ⌘0),�(a, z)i)�i(a, z)f(y, a | z; ⌘0)dyda = 0

Taking the derivative under the integral sign and evaluating at ⌘0 for all i:587

E
⌧

@✓(z; ⌘0)

@⌘
,�(a, z)�(a, z)T

�
| z

�
+ E[(y � h✓(z; ⌘0),�(a, z)i)�(a, z)s⌘(y, a | z, ⌘0) | z] = 0

Solving for @✓(z; ⌘0)/@⌘588

@✓(z; ⌘0)/@⌘ = E
⇥
⌃(z)�1�(a, z)(y � h✓(z; ⌘0),�(a, z)i)s⌘(y, a | z; ⌘0) | z

⇤

Substituting this into Equation (47):589

@↵(⌘0)

@⌘
= E

⇥⌦
⌃0(z)

�1�(a, z)(y � h✓0(z),�(a, z)i),�(⇡(z), z)i
�
s⌘(y, a | z; ⌘0)

⇤
+ (48)

E[h✓0(z),�(⇡(z), z)is⌘(z; ⌘0)]
= E

⇥�
h✓0(z) + ⌃0(z)

�1�(a, z)(y � h✓0(z),�(a, z)i),�(⇡(z), z)i � ↵(⌘0)
�
(s⌘(y, a | z, ⌘0) + s⌘(z; ⌘0))

⇤

= E [d(y, a, z; ⌘0) (s⌘(y, a | z; ⌘0) + s⌘(z; ⌘0))]

= E [d(y, a, z; ⌘0) (s⌘(y, a | z; ⌘0))] (49)

The second line follows because:590

E[h✓0(z),�(⇡(z), z)is⌘(y, a | z, ⌘0)] = E[h✓0(z),�(⇡(z), z)iE[s⌘(y, a | z, ⌘0) | z]] = 0
591

E[↵(⌘0)s⌘(z; ⌘0)] = ↵(⌘0)E[s⌘(z; ⌘0)] = 0

and592

E[h⌃0(z)
�1�(a, z)(y � h✓0(z),�(a, z)i),�(⇡(z), z)is⌘(z; ⌘0)] = 0

Subtracting ↵(⌘0) in the second line makes the pathwise derivative mean zero, which will prove593

useful later when projecting d(y, a, z; ⌘0) on the tangent set.594

Since Equation (48) satisfies the condition given in the defition of pathwise differentiability, the595

pathwise derivative of ↵(⌘) is:596

d(y, a, z; ⌘0) =
�
h✓0(z) + ⌃0(z)

�1�(a, z)(y � h✓0(z),�(a, z)i),�(⇡(z), z)i � ↵
�

The semi-parametric efficiency bound for ↵ is the variance of the projection of d(y, a, z; ⌘0) onto the597

tangent space defined as the closed linear span of the scores:598

T = {s(y, a | z) + s(z)}

Note that the joint distribution is unrestricted so the only restrictions on the score functions are599

E[s(y, x | z) | z] = 0 and E[s(z)] = 0 and they are smooth.600

Next, we show that the pathwise derivative is already in the tangent set d(y, a, z; ⌘0) 2 T . To see601

this we can write d(y, a, z; ⌘0) as the sum of two functions:602

d(y, a, z; ⌘0) =
�
⌃0(z)

�1�(a, z)(y � h✓0(z),�(a, z)i),�(⇡(z), z)i
�
+
�
h✓0(z),�(⇡(z), z)i � ↵

�

The first component is mean independent of z:603

E[h⌃0(z)
�1�(a, z)(y � h✓0(z),�(a, z)i),�(⇡(z), z)i | z] = 0

The second component is function of only z and has zero mean:604

E[h✓0(z),�(⇡(z), z)i � ↵] = 0

Therefore, the pathwise derivative equals the sum of two functions that satisfy the restrictions on605

score functions in the tangent set, namely, E[s(y, x | z) | z] = 0 and E[s(z)] = 0. From this, we606
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conclude that d(y, a, z; ⌘0) is in the tangent set; so the projection of d(y, a, z; ⌘0) onto T is equal to607

itself.608

Therefore, the efficiency bound for ↵ is:609

Veff (↵) = V ar(d(y, a, z; ⌘0))

= V ar(vDR(y, a, z;⇡))

Therefore, the doubly robust estimator, vDR(y, a, z;⇡), achieves the semi-parametric efficiency610

bound. This result extends to the difference of value functions by linearity of pathwise derivative.611

To investigate the semi-parametric efficiency bound under the correct specification we use a result612

from [4] who shows that under the correct specification the efficiency bound is:613

V c
eff (↵) = V ar

�
h✓0(z),�(⇡(z), z)i

�

+ E
⇥
�(⇡(z), z)E[�(a, z)E[✏2 | a, z]�1�(a, z)0 | z]�1�(⇡(z), z)T

⇤

where ✏ = (y � h✓0(z),�(a, z)i) is defined as residuals.614

Under the homoskedastivity assumption, E[✏2 | a, z] = �2, this efficiency bound becomes:615

V c
eff (↵) = V ar

�
h✓0(z),�(⇡(z), z)i

�
+

�2E
⇥
�(⇡(z), z)E[�(a, z)�(a, z)0 | z]�1�(⇡(z), z)T

⇤

= V ar
�
h✓0(z),�(⇡(z), z)i

�
+ �2E

⇥
�(⇡(z), z)⌃0(z)

�1�(⇡(z), z)T
⇤

which is equal to the variance of the doubly robust estimator:616

Veff (↵) = V ar
�
h✓0(z),�(⇡(z), z)i

�
+

E
⇥
�(⇡(z), z)E[⌃0(z)

�1�(a, z)✏2�(a, z)0⌃(z)�1
| z]�(⇡(z), z)T

⇤

= V ar
�
h✓0(z),�(⇡(z), z)i

�
+

�2E
⇥
�(⇡(z), z)⌃0(z)

�1E[�(a, z)�(a, z)0 | z]⌃(z)�1�(⇡(z), z)T
⇤

= V ar
�
h✓0(z),�(⇡(z), z)i

�
+

�2E
⇥
�(⇡(z), z)⌃0(z)

�1⌃0(z)
�1⌃0(z)

�1�(⇡(z), z)T
⇤

= V ar
�
h✓0(z),�(⇡(z), z)i

�
+ �2E

⇥
�(⇡(z), z)⌃0(z)

�1�(⇡(z), z)T
⇤

= V ar(vDR(y, a, z;⇡))

617

E Double Robustness Property of Policy Estimator618

Theorem 11 (Double Robustness). VDR(⇡) is an unbiased estimate of V0(⇡(z), z) if for all z, either619

ES1⇠Dn/2 [✓̂(z)] = ✓0(z) or ES1⇠Dn/2 [⌃̂(z)�1] = ⌃0(z)�1, where expectation is taken over the620

randomness of the nuisance estimation sample S1.621

Proof. Let ✓̄(z) = ES1⇠Dn/2 [✓̂(z)] and ⌃̄�1(z) = ES1⇠Dn/2 [⌃̂(z)�1], be the expected value of the622

estimates at any input z, where the expectation is with respect to the randomness on the half-split of623

n/2 samples that were used for training the estimates. Due to sample-splitting and cross-fitting, the624

expected value of the doubly robust policy estimate can be written as:625

E[VDR(⇡)] = E
⇥⌦
✓̄(z) + ⌃̄(z)�1 �(a, z) (y � h✓̄(z),�(a, z)i),�(⇡(z), z)

↵⇤
(50)

where the random variables (y, a, z) are a fresh independent draw of the data generating process that626

generated the observational data.627

Observe that y is an unbiased estimate of V (a, z) conditional on z. Moreover, since ✓0(z) is the628

minimizer of the conditional squared loss, taking the first order condition implies:629

E[(V0(a, z)� h✓0(z),�(a, z)i)�(a, z) | z] = 0 ()

E[y �(a, z) | z] = E[h✓0(z),�(a, z)i)�(a, z) | z]
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Thus we can re-write the expected value of the doubly robust policy estimate as:630

E[VDR(⇡)] = E
⇥⌦
✓̄(z) + ⌃̄(z)�1 �(a, z) (Y � h✓̄(z),�(a, z)i),�(⇡(z), z)

↵⇤

= E
⇥⌦
✓̄(z) + ⌃̄(z)�1 �(a, z) h✓0(z)� ✓̄(z),�(a, z)i,�(⇡(z), z)

↵⇤

= E
⇥⌦
✓̄(z) + ⌃̄(z)�1 �(a, z)�(a, z)T (✓0(z)� ✓̄(z)),�(⇡(z), z)

↵⇤

= E
⇥⌦
✓̄(z) + ⌃̄(z)�1 E[�(a, z)�(a, z)T | z](✓0(z)� ✓̄(z)),�(⇡(z), z)

↵⇤

= E
⇥⌦
✓̄(z) + ⌃̄(z)�1 ⌃0(z)(✓0(z)� ✓̄(z)),�(⇡(z), z)

↵⇤

= E
⇥⌦
✓̄(z) + ⌃̄(z)�1 ⌃0(z)(✓0(z)� ✓̄(z)),�(⇡(z), z)

↵⇤

Hence we have:631

E[VDR(⇡)]� V0(⇡) = E
⇥⌦�

⌃̄(z)�1 ⌃0(z)� I
� �

✓0(z)� ✓̄(z)
�
,�(⇡(z), z)

↵⇤

The right hand side is zero if either ✓̄(z) = ✓0(z) or if ⌃̄(z)�1 = ⌃0(z).632

F Lipschitz Variogram Settings and Binary Treatment633

For simplicity of notation, we let v(x;⇡) = v0DR(x;⇡) and ⇡⇤ = ⇡0
⇤

throughout this section, as the634

results are not specific to the doubly robust value function. Suppose that the value function of the635

policy learning problem has the following self-bounded Lipschitz property:636

Var(v(x;⇡))� C Var(v(x;⇡⇤))  L |E[v(x;⇡)]� E[v(x;⇡⇤)]| = L(V (⇡⇤)� V (⇡))

for some constants C,L, i.e. if a policy has value close to the optimal policy, the it does not have637

much larger variance. Then we have that:638

sup
⇡,⇡02⇧⇤(✏n)

Var(v(x;⇡)� v(x;⇡))  sup
⇡2⇧⇤(✏n)

4Var(v(x;⇡))

 4C Var(v(x;⇡⇤)) + 4L sup
⇡2⇧⇤(✏n)

(V (⇡)� V (⇡⇤))

 4C Var(v(x;⇡⇤))| {z }
V⇤

+4L ✏n

Thus we get regret rates of the form:639

V (⇡⇤)� V (⇡2) = O

 
(2
p
C V⇤,F⇧) +

r
V⇤ log(1/�)

n
+ ✏n

1
p
n

!

= O

 
(2
p
C V⇤,F⇧) +

r
V⇤ log(1/�)

n

!

since ✏n = o(1).640

Example 3 (Binary Treatment). In the case of binary treatment considered in [1], the loss took the641

form:642

v(x;⇡) = �(z) · (2⇡(z)� 1) (51)
with ⇡ : Z ! {0, 1}. In this case observe that the self-bounded property is satisfied since:643

Var(v(x;⇡)) = E[v(x;⇡)2]� E[v(x;⇡)]2

= E[�(z)2(2⇡(z)� 1)2]� V (⇡)2

= E[�(z)2]� V (⇡)2

Where the latter property holds since (2⇡(z)� 1)2 = 1 irrespective of ⇡(z). Thus the first part in the644

variance is independent of the policy, which is the crucial special property of the binary treatment645

case. This leads to the fact that:646

Var(v(x;⇡))� Var(v(x;⇡⇤)) = V (⇡⇤)
2
� V (⇡)2  2 |V (⇡)� V (⇡⇤)| (52)

Hence, the self-boundedness property holds with C = 1 and L = 2. Thus for the binary treatment647

setting we can achieve a regret rate whose leading term only depends on the semi-parametric efficient648

variance of the optimal policy.649
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As a concrete example, consider the case when the class F⇧ is a VC-subgraph class of VC dimen-650

sion d, and let Sn = En[sup⇡ v(x;⇡)
2] = En[�(z)2]. Then Theorem 2.6.7 of [22] shows that:651

H2(✏,F⇧, n) = O(d(1 + log(Sn/✏))). This implies that652

(r,F⇧) = O

✓ˆ r

0

p
d(1 + log(Sn/✏))d✏

◆
= O

⇣
r
p

d
p
1 + log(S/r)

⌘
.

Moreover, by Markov’s inequality w.p. 1��, Sn  E[Sn]/� = E[sup⇡ v(x;⇡)2]/� = E[�(z)2]/� :=653

S/�. Hence, we can conclude that w.p. 1� �:654

V (⇡⇤)� V (⇡2) = O

 
r
p
1 + log(S/r)

r
d

n
+ r

r
log(1/�)

n
+

d(1 + log(S/r))

n

log(1/�)

n

!
.

Combining all the above we get a bound of the form (excluding lower order terms):655

V (⇡⇤)� V (⇡2) = O

 
p
V⇤(1 + log(S/V⇤))

r
d

n
+

r
V⇤ log(1/�)

n

!
.

which recovers the result of [1] up to constants.656

G Application: Costly Resource Allocation657

Motivated by a resource allocation scenario, we also analyze experimentally the special case where658

�(a, z) = a. Consider the case where we have p possible tasks to invest in, and we have investment659

costs. Each task yields a return on investment that is a linear function of the investment, but an660

unknown function ✓(z) of the context z. Moreover, to maintain an investment portfolio of ⇡(z) we661

need to pay a known cost C(⇡(z)). Given a policy space ⇧ : Z ! Rp, our goal is to optimize:662

sup
⇡2⇧

E [h✓(z),⇡(z)i � C(⇡(z))] (53)

This falls into our framework, if we treat the offset part as of the form h✓0(z), C(⇡(z))i but with a663

known ✓0(z) = 1. So in that case we simply consider ✓DR,0(z) = ✓0(z) = 1. Then applying our664

framework we optimize:665

sup
⇡2⇧

En [h✓DR(z),⇡(z)i � C(⇡(z))] (54)

In the case of quadratic costs C(⇡(z)) = �
2 k⇡(z)k

2
2, then this boils down to exactly optimizing a666

square loss objective, since:667

inf
A

En

⇥
k✓DR(z)/�� ⇡(z)k2

⇤
, sup

A
E [h✓DR(z),⇡(z)i]�

�

2
En

⇥
k⇡(z)k22

⇤
(55)

Thus policy optimization reduces to a multi-task regression problem where we are trying to predict668

✓DR(z)/� from z.6669

We can consider sparse linear policies:670

⇧ = {z ! Az : kAk11 :=
X

i

k↵ik1  s} (56)

where ↵i corresponds to the i-th row of matrix A. In this case our problem reduces to the MultiTask671

Lasso problem where the label is ✓(z)/�.672

Experimental Evaluation. For experimental evaluation we consider a model with two tasks, a1673

and a2:674

y = a(z)a1 + b(z)a2 + ✏

6The above reasoning extends to heterogeneous costs across tasks e.g. C(⇡(z)) =
P

i ci⇡i(z)
2. In this case

the label of the i-th task of the multi-task regression problem is ✓DR,i(z)/ci and we need to perform a weighted
multi-task regression where the weight on the square loss for task i is equal ci.
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Figure 2: Costly Resource Allocation: Each line shows the mean and standard deviation of regret
over 100 simulations.

We use the same distributions and functions, a(z) and b(z), given above for the pricing application.675

To estimate the optimal allocation and its regret, we run a 5-fold cross validated MultiTask Lasso676

algorithm and set � = 1. We report the distribution of return on investment obtained from different677

models in Figure (2). The results suggest that doubly robust method achieves a significantly lower678

regret than the direct method in both regimes and its performance is similar to the oracle method 7.679

H Doubly Robust Estimators in Pricing Experiment680

H.1 Linear Model681

We want to estimate some regression models of a(z) and b(z) in the demand model. For instance,682

if these fall in some high-dimensional linear function class, we can estimate a regression between683

demand and the linear function class. Moreover, we need to estimate the covariance matrix, which in684

this case takes the simple form:685

⌃0(z) =


1 E[p | z]

E[p | z] E[p2 | z]

�
(57)

whose inverse takes the form:686

⌃0(z)
�1 =

1

Var(p | z)


E[p2 | z] �E[p | z]
�E[p | z] 1

�
(58)

If for instance the observational policy was homoskedastic (i.e. the exploration component was687

independent of the context z), then Var(p | z) is a constant �2 independent of z. Moreover, we can688

write:689

E[p2 | z] = �2 + E[p | z]2 (59)

Thus we only need to estimate the mean treatment policy g(z) = E[p | z] and the variance �2. Then690

the doubly robust estimate of a(z) takes the form:691

aDR(z) = â(z) +

✓
1 + ĝ(z)

ĝ(z)� p

�̂2

◆
(d� â(z)� b̂(z) p)

bDR(z) = b̂(z) +
p� ĝ(z)

�̂2
(d� â(z)� b̂(z) p)

7For comparison, the value achieved by best-in-class policy is 22.2 in low dimensional regime and ? in high
dimensional regime. We omit the inverse propensity score regrets since they are too large to report together with
other estimates
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H.2 Quadratic Model692

In the case where we observe the revenue our model becomes quadratic in prices693

r = a(z)x� b(z)x2 + ✏
The covariance matrix takes the form:694

⌃0(z) =


E[p2 | z] E[p3 | z]
E[p3 | z] E[p4 | z]

�

whose inverse is:695

⌃0(z)
�1 =

1

E[p4 | z]E[p2 | z]� E[p3 | z]3


E[p4 | z] �E[p3 | z]
�E[p3 | z] E[p2 | z]

�

Let µk(z) denote E[pk | z]. If the observational policy was homoskedastic and none of the central696

moments of price depends on z, using the recursive structure, the nuisance functions in the covariance697

matrix can be written as698

µ2(z) = µc
2 + µ1(z)

2

µ3(z) = µc
3 + 3µ2(z)µ1(z)� 2µ1(z)

3

µ4(z) = µc
4 + 4µ3(z)µ1(z)� 6µ1(z)µ2(z) + 3µ1(z)

4

where µc
k denotes the k-th central moment of p. Therefore, we only need to estimate the mean699

treatment policy µ1(z) and the central moments µc
2, µc

3 and µc
4. Then, the doubly robust estimate of700

a(z) and b(z) take the form:701

aDR(z) = â(z) +

✓
µ4(z)p� µ3(z)p2

µ4(z)µ2(z)� µ3(z)2

◆
(d� â(z)p� b̂(z) p2)

bDR(z) = b̂(z) +

✓
µ2(z)p2 � µ3(z)p

µ4(z)µ2(z)� µ3(z)2

◆
(d� â(z)p� b̂(z) p2)

I Additional Experiment Results702
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(a) Policy Evaluation
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(b) Regret

Figure 3: Linear, High Dimensional Regime: (a) Black line shows the true value of the policy, and
each line shows the mean and standard deviation of the policy over 100 simulations. (b) each line
shows the mean and standard deviation of the value of the corresponding policy over 100 simulations.
We omit the results for the inverse propensity score method since they are too large to report together
with the other estimates in the high dimensional regime.
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(a) Policy Evaluation
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(b) Regret

Figure 4: Quadratic, Low Dimensional Regime: (a) Black line shows the true value of the policy,
each line shows the mean and standard deviation of the value of the corresponding policy over 100
simulations. (b) Each line shows the mean and standard deviation of regret over 100 simulations. We
omit the results for the inverse propensity score method since they are too large to report together
with the other estimates in the high dimensional regime.
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(a) Policy Evaluation

Figure 5: Quadratic, High Dimensional Regime: (a) Black line shows the true value of the policy,
and each line shows the mean and standard deviation of the policy over 100 simulations. (b) each line
shows the mean and standard deviation of the value of the corresponding policy over 100 simulations.
We omit the results for the inverse propensity score method since they are too large to report together
with the other estimates in the high dimensional regime.
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