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A Preliminaries

Notations.

In the following, we denote the frequency matrix [diag(7)]P by F. The algorithm deals with N =
N[diag(m)]~z wherem = N 1,. We normalize N with /7 and define Q= n~2N|diag(m)] " z.
Martrix Q has a population counterpart Q = F[diag(7)]~'/2. The soft state aggregation assumption
implies that Q has a singular value decomposition Q = GXH", where G = [g1,82,...,8/] €
R;DXT, H = [hl,hg,...,h7-] S Rpxr’ Y = diag(al,ag,. ..,O’,-), o1 > 09 2 ... 2> 0p > 0.
Analogously, suppose that Q has singular values 61 > 02 > ... >0, > 0. Fori =1,2,...,p, g;
and ﬂi are respectively the left and right singular vectors associated with &;.

For any k € N, let S*~! denote the unit sphere in R* and I;, € R*** denote the identity matrix.

Assumptions.
In the paper, we propose the following regularity conditions:
Assumption 1 (Regularity conditions). There exists constants c1, C1, C1, ca, c3, Cy > 0 such that
1. the stationary distribution 7 satisfies
apt <m;<CipTt, forj=1.2,....p; (A.D)
2. the stationary distribution on meta-states satisfies
(UTTI')k <Cir Y, fork=1,2,...,m; (A.2)
3. the aggregation and disaggregation distributions satisfy
Amin (UTU) 2 eapr™, Anin (VTV) 2> eap™'r; (A3)
4. the first and second largest singular values of [diag(m)|P[diag(7)]~1/? satisfy
01— 02 > c3p” ¥ (A4

5. the ratio between the largest and smallest entries in an r-by-r matrix U PV satisfies

maxe (U PY)y g, (A 5)
ming,; (UTPV) 0l

We can rewrite (A3) into the following form, which is more convenient for our proofs:

Amin (UT [dlag(ﬂ-)]zU) > Cépilrila (A 6)
Amin (VT [diag(ﬂ')]_lV) > cyr. )

To see the equivalence between (A3) and (A .6), we note that under assumption (A .T)),

U ([diag(m)]*> — ¢ip~?1,)U = 0,
thus by (A .3),

U [diag(m)]?U = ¢2p 2UTU = Geop~ r ',

Similarly,

V' ([diag(m)] ™t — C; 'pL,) V = 0,
which implies

VT [diag(7)] "'V = C7'pV TV = C teor,.

For simplicity, we replace the parameter ¢} in (A .6) by ¢ in the subsequent discussions.



Preliminary lemmas.

We list some preliminary lemmas that will be used later, of which the proofs can be found in Appendix

El
Lemma A .1. Under assumptions (A1) and (A6),

cop ? <o, <oy <Cicy ipa. (A7)

Lemma A .2. Under assumptions (A1) and (A6), we have

lef G|, < ¢ 75 /P, (A .8)
e H||. < Clc_% T (A .9)
e H, 2 " \/TT

Lemma A 3. Let L € R"*" be the matrix defined by (E_4) and 1; € R" be the first column of L.
Under assumptions (A1), (A.6) and (A3)), there exist constants ¢ > 0 and C > 0 such that

1 11
e t<(k)<Crt fork=1,2,...,r and  c3\r < HL_lH2 < Cley 2y/r.

Lemma A .4. Under assumptions (A1), (A"2), (A6) and (A"3), there exist constants ¢ > 0 and
C > 0 such that for j = 1,2,...,p,

ey <h(j) <Cym,  0<g()) < Cmvp. (A .10)

B  Proof of Entry-wise Eigenvector Bounds

A building block of our method is to get a sharp error bound for each row of H= [i’\ll, RPN ﬁr] and
each entry of h;.

B .1 Deterministic Analysis

Lemma B .1 (A deterministic row-wise perturbation bound for singular vectors). For1 < s <t <,
denote H = [hs,hs+1, ceey ht] and H = [hs, hgiq,... ,ht]. Let

A= min{as,l — 05,04 — JtH,Jt},

where 0y = +00 and 0,41 = 0 for simplicity. Suppose that ||62 — QH2 < %, A > 0. Then there
exists an orthogonal matrix £2 € RU—stDX(=s+1) gych that

A 9 .
o] (O - B, <2[G7@ - Qe

40142 PN

12D o) Q- al, ®.1)
8 ~

+wla-all,

where H = [hy, ha, ... h,]and G = [gs,gsﬂ, e ,gt].

Proof. We apply a symmetric dilation to matrices Q and Q, so as to relate the singular vectors

H = [hs, heiq,..., ht] and H = [hs, hgiq1,..., ht] to the eigen vectors of some symmetric
matrices. Define N
S 0 Q 0 Q
Y=| o and Y = . B .2
o o] i @2

The symmetric matrix Y has eigen pairs (5, EZ) and (—a;, /E\_l) with

~ 1 [ g ~ 1 gi
-ln ™ e-g R



fori =1,2,...,p. Analogously,

1 i 1 i
G- B ] oG8

are eigen vectors of Y associated with o; and —o; fori = 1,2, ..., r. Define

== [617527"'767"757175*27""5*7”}’

then Y adimits an eigen decomposition
=0 =T
Y = E[diag(o1,09,...,0., —01,—0a,...,—0.) |2 .

Let £ = [ﬁs, . ,Et] = diag(ds,...,0¢) and & = [€,,...,&,]. Based on the Davis-Kahan
sin @ theorem [[1], we can estimate the difference between the subspaces spaned by the columns

~

of £ and 5. Denote k = t — s + 1. Suppose that the singular values of =T E are o1 (ETE) >
JQ(ETE) > >ak( =TE ) Then we call

G(é'7 =) = diag(arccos(al (E'Té')), . 7arccos(a;€ (ETé))>

the principal angles. According to ([1]], Proposition 4.1),

[1]

min ||._ f:'H —2Hsm( (2,
NecQkxk

)l 5

Denote by £2 the orthogonal matrix that achieves the minimum in (B3). Since sin (%) < % for all
0 € [0, Z], we have

o

=

(o s o . 2 =)
HSIH(§®(:,:) , S 7Hsm(®(.: =)
The Davis-Kahan sin 6 theorem further implies that
lsin(&(Z, &), < AH|(Y = Y)5]|,,
where A = min{G,_1 — 05,0, — G441 }. By Weyl’s inequality, A>A— HQ - QH2 > £ Hence,

|E2 - 2|, <2v2A7Y (Y - Y)E|, < 2v2A7YY - Y|, (B .4)
We next analyze row-wise errors HejT (En-5)
[S]], Lemma 3.2, we propose a matrix

—_— < x = . = ~—l~r
= = [557 £s+15 ce agk] with 61 =0, Y£17
and decompose the row-wise error as

lej (ER-=

||2 forj =1,2,...,p. Following the proof idea in

=), + o] (E2 - 2],

+ He?(é’ﬂ - )|,

[ ® 5

p—
)
o

I,

PN o1
By Weyl’s inequality, ming<;<¢ 0; > oy — ||Q — QH2 > %, thus HZ‘ H < 2A~1! The first term
== 2
in (B_.J) satisfies
S ~ a1
—|leJ (Y -v)EZ H
2

. i 2 o (B .6)
<llef (¥ -0)E,||E7||, < el (¥ -1)E,
where we used £ = YES . By (B_4),
lef (¥ = Y)E], = [le] (¥ - V)E 2|,
<lle] (¥ = Y)Z]|, + [|e] (¥ - Y)(E2 - 5)]],
B.7

<[lef (¥ =)=, +[IY - Y], [|E2 - =],

~ NG
<lle] (¥ —¥)=],+ 22 |¥ -]



Combining and (B7), we have

le; (

p

,_ = V2S
- = ||2<—He Y Y)E ||2 2HY7YH;'

(B .8)
Considering the second term in (B_.5), we find that
E=YEY = (EE'Y)EY =g(EYES )
and £ = E(E' Z). Therefore,
~ -1
le] (B2 -5)|,=|le/=E"YES 2-2"5)|
e et (B.9)
<[lef=|,[=T(YEE 2 - 5)|| <|e/=],|¥EE 2-5|,
where
|[y2z7e-z| -|@-¥-v)EET 23|,
~|2e-¥-vEE 2-2| <|Be-=|,+|¥-VES q],
_ = 1 -2(1+\f
<|&2-=|,+ ¥ -E|,|E7| £ v -,
Plugging (B8] and (B.9) into (B.3)), we have
~ _ 2 o _ 1+\f N
lej (B2 = E)||, <z llef ¥ =Y)=], + LD oTa), 7 - Y, ® 10
4\[ 2 .
2z 1Y =Yl

5 c1(7), - he(5)] 2
1
7%[h9(])3h9+1(])77ht(])} \[ j(HQ H)
e;—i—_](?_Y)E :% _;F(Q Q)TG where G = [g87gs+17"'7gt]7

¥ -, =Q-Qqls,
leves=ll = 75 116D B ). =G =] |, = V2

where H = [hl, h,,

L hy .
Hence, (B_.10) can be reduced to (B_.I).

O
Lemma B .2 (A deterministic entry-wise perturbation bound for the leading singular vector). Let
0 = o1 — 09. Suppose that HQ — QH2

K > 1,0 > 0. Then there exists w € {il} such that

[K/2]
whi() - ()] < Y (07 le/QT(QQT Q- Q)h|
k=1
+o7% gl (@ - Q)QTQ) e
B .11
+ ()] - (2K +1+2v2)57|Q - Ql, ®
2 -
+va(27 ) e w6 Q-

+ (2K + 8V2K)5%|Q - Q.

5



Proof. In the following, we use the same notations SA(, Y, Ei, & Eﬂ» and £_; as in the proof of
Lemma[B 1] and denote § = o1 — o2. Let

¥, = dia‘g((f?a 03y-.-50p, =02, =03,..., _0'7")’

E'J_ = [527537 cee 7€r7£—27£737 o 7571’]'

Then one has
Y=01£& —0& & +EDE]. (B .12)

Inspired by power iteration, we decompose the difference wgl — &, by
wé — &

=w 51 Y§101 ) (WYE131_1 - 51)

=w(Y — )5101 + (nglﬁfl 3

Y - Y)€101 +W(Y£181_1 - Y2£1371) + (WY25131_1 - 51)
=w(Y - Y)& o7 +wY (Y - Y)E,572 + (wY%E,57° — &) B.13)
. .
=woy ! Z Y Y)£1 (WY2£131_2 - 51)
k=0
K—1 . R R
=wdr' 3 (@Y) (Y - Y)& + (@Y 85" - &),
k=0
where we repeatedly used the fact that ?El o El.
Plugging into the second term in (B_.13) and using
£Tl 1= O EIEl = 02r—27
one obtains N -
wYRE o7 — & =((01/01)" (w€ &) —1)&,
+(=01/61) €€l (€ — &)
+8.(71'51) " ELwE - &),
Forafixed j = 1,2,..., 2p, it follows from (B_.13) that
K
~ RS o~
[w&1(7) — £0)] <07 (o1 /30 |e] (o7 %) (Y ~ V)&
k=1
+16.6)1 - I(ol/al)K(wﬁfél) -1 (B .14)

(01/01)K|£1 ||w£1 ‘51”2
+ (02/51) " e EL, w1 — &l
where we used }57 () |: |£ () ’

wé] €, and ||w£ 11— & ||2 in 7) represent the difference between &, and £;. According to the
Davis-Kahan sin 6 theorem,

sin(0(¢1,6,)) <6 'Y - Y|, =

where O(&,, El) denotes the principal angle between &, and El. It follows that there exists w € {£1}
such that

W&TEl ZCOb 51,51 \/1—8111 51, \/1_ 1||Q QH2 (B .15)
Similar as (B_.4), we also have
w€; — & |, <2v2571|Q - Q- (B .16)




We now focus on the terms involving 1. Note that forall K > 1 and z € [0, 5]
|(1+2)% =1 <2Klz|, |1+2)7 % —1| <2K]a].
By Weyl’s inequality, |31 — 01| < HQ — QHQ. Therefore, under the condition HQ - Q||2 < %»

01— 01

—k .
(o1/50)" = (1+ ) <1420 Q- Qf, <1+ 2K

fork=1,2,..., K,

(02/81)1( S (?)K S (0-2>K S ( 20’2 )K7
o1 —Q-Ql, o1 —6/2 g1+ 02 (B .17)

(01/31)" (w€] &) —1 < 2K571|Q - Q]|
(r1/7)" (w€1€) 12 (1-2k671 Q- Qll,) /1o [Q—Ql, -1
>(1-2K671Q-qf,)(1-57"|Q-Qll,) - 1> -2K + )5 '@ -Qq],
Consider the first term in the right hand side of (B_14). For k = 1,2, ..., K,
oref (o7 Y)Y - Y)E|

~

<or'le] (7'Y) (Y = V)& | +or e (071Y) THY - Y) (v, - )]

<or[e] (o7 ) (T - V)| + 0T - Y o - &L
and by (B_.16) and (B_17),
(@1/70)" o7 o] (07Y) T (Y - Y)E)|
<(1+2x5 Q- l,) o (Je] (oY) (¥ - V)& [+ 2v35 Q- Q)
<o7'[e] (o7 Y) " THY — Y)& | + (2K +2v2)5 | Q - Q|3 + 4v2 | Q - Ql;
<or'le] (07Y) Y~ Y)&| + (2K +4v2)57%|Q - Q[
R (B .18)
where we used 671 [|Q — Q||, < 5%
Plugging (B~16), (B.17) and (B_18) into (B.14) gives
’WE ' —51(')‘
<gllz‘ ) THY - Y)g |+ 2K2 + 4v2K)5 2| Q - Ql;
+1&:()]- 2K + 151 Q - qll,
+2v206,()|- (1 + 2657 Q - Q)| Q- @, ©.19)

%20 Koo
rava(=2 ) lej =07 [1Q - Qll,,

o1+ 09

_gllz\ ) THY = Y)& | + 166 (2K +1+2v2)07 1 |[@ - q

: ) A
w22 ) e =157 1@ @, + (25 + 53 @ - Q.

o1+ 02

Fork=0,1,...,K — 1, let

_1 k U1,k
(07'Y) epy; = [ Vot } , ULk, U2k € R



Since

o Q(QTQ)kzll

| Q7(QQ") = 0 ’

vk — if k is odd,
[(QQT)? 0 }
0 (Q'Q): |’
if k is even,

Vi = Ul_kQ(QTQ)Tej, vg ) =0, when £ is odd,
k .
vk =0, vap =0;"(QTQ)%ej, when k is even.

Recall the definitions of Y, Y, = and &.Forj=1,2,...,p, wereduce (B 19) into (B_11I). O

B .2 Markov Chain Concentration Inequalities

Lemma B .3 (Lemma 7 in [8], Markov chain concentration inequality). Suppose P € RP*? is an
ergodic Markov chain transition matrix on p states {1,--- ,p}. P is with invariant distribution
and the Markov mixing time

1
T(e) = min{k c max —|le/ P* -7 | < 5}-
1<i<p 2

Recall the frequency matrix is F = [diag(7)|P. Give a Markov trajectory with (n + 1) observable
states X = {Xo, X1, , X} from any initial state. Let 7. = 7(1/4). For any constant ¢y > 0,

there exists a constant C' > 0 such that if n > C1,p 10g2(n), then

P([ln"'N = |, = Cn ™2\ /s logi(n) ) < n™, (B 20)
]P’<||n*1m — oo > Cn7Y2\ )/ TmaxTs logZ(n)> <n~. (B .21)

Lemma B .4 (Row-wise Markov chain concentration inequality). Suppose 1 € RP? is a fixed unit
vector and K € QP*? is a fixed orthonormal matrix satisfying

max ||eiTKH2 < vv/s/p.

1<i<p

Under the same setting as in Lemma [B .3} for any cq > 0, there exists C' > 0 such that if n >
Cypr, log?(n), then

P(H"T (n'N — F) [diag(m)] K|, > C”_l/Q\/T*(Ws/p) 10g2(n)> <n~%,

P(HKT (n"'N —F) [diaug(ﬂ')]_%nH2 > Cn_l/Q\/T*('y%/p) log2(n)) <n~.

(B 22)

Proof. We follow the proof of Lemma 8 in [§]. For any ¢ > 0, let

Vet )
- 1
294/ +h

and ng = |n/a]. Without loss of generality, assume n is a multiple of «.. By definition,

o= T(ﬂ'min A

and



1 . 1
Sé) = nTeXkaJrlfle;—(kaJrl [dlag(ﬂ-)] 2 K.
We introduce the “thin” sequences as
Al l 1 (U l l
T, = T —E[T|Xg-nar)s 5P =80 —E[S{[Xe-var].

forl=1,...,a,k=1,...,ng, and apply the matrix Freedman’s inequality [[7] to derive concentra-
tion inequalities of partial sum sequences Y2 Tg) and >, Sg) for a fixed /.

Consider the predictable quadratic variantion processes of the martingales {22:1 ’i‘,(cl)} ’ and

t=1
{22:1 gl(cl) }": :

t t
X0 = S B[ F) X yand]s X0 = S E[ED) T e,

)

k=1 k=1
and
l : AOYON l : SO\ Tau
Zg)t = ZE[S?(S?) ‘X(kfl)aJrl}v Zé)t = ZE[(SI(C)) Si)‘X(kfl)aH}
k=1 k=1
fort =1,2,...,n9. Since

t t
IR0, < 3Bl ) o] < SR GO ]
=1 k=1

t
=Y B[ Xt 1ase] = X8
k=1

and HZgl)t H2 < Z(ll)t for the same reason, we only need to focus on Xgl)t and Zgl)t

Denote 7" = (P“’l)—rexwﬂ)QHA. By the definition of mixing time a,

1 _ cit
max S|l P =T < i 265

(k1)

Hence, 7; < + Tmin < 2m; fori =1,..., p. We have
E[(T) T | X are] < B[ T3 X 1as]
:]E|:||e;ku+l—1K||z(e;ka+l [diag(ﬂ-)]ién)Q‘X(kfl)a+l}

p
> P Xiaios = il X 0 tri] - P[Xiot = [ roei = 1] Km; 2
=1

e

s
Il
_

<
Il

e
NE

s
Il
-

<
Il

P p
RO P el Kl o < Y0 a(domii ) ni - s
=1 J=1 i=1

1 1

=29%sp7t, fork=1,... ng,

-

205 - ysp”

<.
Il
a



where weused w#'P =x ", >°P_ 1, P;; = 7;. Similarly,
SO (SONT D2
]E[S( '(s) ’X(k—l)aﬂ} = E[]|S,(€)||2’X(k_1)a+l}

(TI €Xpati— 1) He;r(kaH[dia‘g(ﬂ’)]iéKH;‘X(k—l)a+l:|

—

p
ZP Xpari—1 = 1| Xe—1ya+] - P[Xratt = §| Xnari—1 = i ||€3TK||27T_17IL2
=1

P p P
ZWZ(M)PUHeTKHzﬂ'_l 2 < ZZ (mi/75) Unz cy2spTt

1

§%

s
Il
—

<

M=

3

Il
fa
<

P
§2C’101_1 Z 7712 Z P - ysp~l = 2C101_1725p*1, fork=1,...,n9
i=1  j=1

Note that

T, < e mo el K, < /57 (ramp) < 1275,

1<i<p
[T (”|Xk vett] o < BT X -1)04] <c?vxf

)|| <2, ? fy\f Similarly, we have HS( [, < 2¢; 2 7\/5 The matrix Freedman’s

1nequa11ty [7] 1mp121

242
e
2noy2sp~t + nocy 2yty/s/3

¢ 3t?/8
(|5t $280, > £) < e - ),
2 2n0C1 ey ' y2sp=1 4 noe; 2yty/5/3

By union bound,

a no
_ . _1 _ t
P(“” 'K N{diag(m)]"5n —n7" ) E[Tzil)|X<k—1>a+l]H2 2 2>

and

=1 k=1
STl s ) o 0] >t
= { | 23] <2p (et 1,25 ~
(3w, = 5) < 3or (o 70, > 5 @2
1=1 k=1 =1 k=1
t? 8
<a(s+1)exp | — not’/ >
292sp~t + ¢y 7tf/3
Similarly,
- 1K _ t
(H” 'n " Ndiag(m)] 2K 12 E[S{ [ Xoe-nasd||, 2 2)
) (B 24)
t
<a(s+1)exp (— not’/8 — ) .
2C 1 'y2sp~t + ¢) ty/5/3

We next analyze the differences

no

ZZ [TV X (- 1)ass] — K Fldiag(m)] 27

and

3
S

E [Sl(cl) |X(k—1)a+l] - TITF[diag(ﬂ-)]_%K,

3
L
[M]=

N
Il
-
E
I
=

10



Since

it follows that
BT | X 1yard] - KTF[diagw-anz

p
*HZZ FED P KT e, n]H
i=1 j=1
P P
SZ ’Wz(k’l)—m|P”7r n]||e KH2
i=1 j=1
- kD)
SZ Z( 7T1|ZPZ]7Tm1n"y S/p
i=1
<[#ED — ], e FaE <
Therefore,
a no
[n 32 S BT Xk 1ya] — K Flding(m)]
1 k=1

1=
« no
Tty
=1 k=1
Symmetrically, we have

T [ X1y 1] — K Fldiag(m)]~4n|| <

Combining (B~23) and (B".23)), (B24) and (B_26)) yields

P(||n" 'K Nldiag(m)]~*n — K Fldiag(m)]*n|, > ¢)

t2/(8
<a(s+1)exp (— " /(_O:) ) ,
292sp~1 +¢; 2t\/s/3

and
IP’(Hn*lnTN[diag(w)]*%K - 17TF[dizaLg(71')]*%K||2 > t)

t2/(8
<a(s+1)exp ( nt’/( oz)il ) .
2C ¢ 'y2sp~t + ¢) 2 yt/5/3
For a fixed c¢g > 0, there exists a constant C’, C”" > 0 such that, by taking

t=C'n"2\/y2spLalog(n) + C'n~'/salog(n),

n > C"(aplog(n) V as),

11

(B .25)

(B .26)



one has
IP’<||n*1KTN[diag(7r)]*%n - KTF[diag(ﬂ')]*%nH2

>C'(1+ (C’”)fé)rf% 72$p—1ozlog(n)> <n~%,

According to Lemma 5 in [8],

7Tmin \/>t )
2 "5

where 7., = 7(1/4). Fix C’, when C” is sufficiently large,
< Yoot ¢ YL S
- 4fyf 2

In this case, a < 27, log, (n) Therefore, there exists a constant C' > 0 such that when n >

a< —T, logz(

Cpr, log?(n),
]P’(Hn_lKTN[diag(ﬂ')]_%n - KTF[diag(ﬂ)]_%nH2
1 (B 27)
<(Cn”:2 \/72519*17'* logz(n)) < np%,
Following the same analysis, one also has
IP’(Hn*lnTN[diag(ﬂ')]*%K — 77TF[diag(7'r)]*%KH2
o (B .28)
<Cn™ 2 \/nySp*lT* logQ(n)) <n7°,
when n > Cpr, log?(n) for some sufficiently large C' > 0. O

B .3 Adapting Markov Chain Concentration Inequalities to Our Settings

Corollary B .1. Under assumption (A1), for any co > 0, there exists a constant C' > 0, such that if
n > Cr.plog? (n), then

IP’(HQ —Q|,=Cn /1, logQ(n)> <n~%, (B .29)

Proof. Based on Lemma@ and the union bound, we know that for any fixed ¢y > 0, there exists a
constant Cjy > 0 such that with probability at least 1 — 2n~°°,

Hn_lN — F||2 < Con Y2\ TonaxTs logz(n)

(B .30)
and ||n " m — 7r||oo < Con ™2\ / TmaxTs log?(n)
hold simultaneously for n > Cy7.plog?(n).
We find that
1Q - Q|, = ||(n™'N)| dlag(n 'm)]~% — Fldiag(m)] "2, ® 30
<||(n”'N — F)[diag(m H2 + || (¢ *1N)[diag(n*1m)]*% - [diag(ﬂ')}*%)H?
Under condition (B~30), the ﬁrst term in (B_37) satisfies
I N - F) ding(m)] ¥, < 7 ] N - F
L1 (B .32)
<Con~ 12, | 227 log?(n) < C’OCf ¢, 2n~ Y2 /1 log? (n).

7TIIlll’l

We decompose the second term in (B_3T) into
[[(n~'N) ([diag(n~"m)] =% — [diag(m)]~2)]|,
<N e ) — [dingm)] 2]
1
S(”F”Q + HnilN - F||2) ) fgjafp| n- m]) P T 2|

12



Here, [|F|l2 < /Tmax by (EZ3). Notice that [z1/2 — 1| < |z — 1| for any # > 1. Taking
n > 4C§Clcf27*p log? (n), we have
1 1

|(n7 mj)7% —W;%} =’ (ﬂjlnflmj)fé — 1’

(B .33)
< % e inTimy — 1) < @ ¥
<m; |7rj n-m; — | < 2nT m— 7o
forj =1,2,...,p. It follows from condition (B .30) that
1 \=% _ T3 <3 ~1/2 2
11;1?%(10’(11 m;)" % =7 2| < Con TmaxT« 10g~ (1)
SCOCE c;%nfl/zp\/ 7. log?(n).
When n > Cyr.plog®(n), condition (B30) also implies
_1
Hn_lN — FH2 <Cy (COT*plogz(n)) 2\ Tmax T« logz(n)
1
< V C’O’n—maxpi1 < C‘02 Cl2p_l'
The second term in (B_31) then satisfies
[(n™"N) ([diag(n~'m)] "= — [diag(m)] %),
. » . (B 34)
<(CZ + CE)CoChe; 2n~ Y2 /7, log?(n).
Plugging (B~32) and (B_34) in (B31), we can conclude that, when n. > Cy,plog®(n),
]P’(HQ — QH2 > 6n_1/2\/710g2(n)) <2n=°
for some constant C' > 0. O

Corollary B .2. Under assumptions (A1) and (A"6), for any co > 0, there exists a constant C' > 0,
such that if n > Ct,p logz(n), then

P(HGT(Q — Q)ejH2 > Cn Y2/ 1.(r/p) 10g2(n)) <n~%, (B .35)

Proof. Recall that we have proved He;GHQ <cy %wj\/ﬁ in Lemma Lety = Cicy %. Then
max lef G, < y/r/p.

e;j and G satisfy the conditions in Lemma|[B~4] For a fixed ¢y > 0, Lemma[B 3|and [B".4]imply that

there exists a constant Cy > 0 such that when n > Cy7, p log? (n), by union bound, with probability
at least 1 — 2n—¢,

[ntm — 7|0 < Con™ Y24/ mmaxTs log? (n) (B .36)
and
max |G (n"'N — F)[diag(ﬂ')}*%ejH2 < C’on’l/z\/n(v?r/p) log®(n). (B .37)
1<j<p
Note that

|GT(Q - e, = || ((n"N) ding(n"m)] ~* — Fldiag(m)]~*)e; |
(B .38)

SHGT (n_lN — F) [diag(ﬂ')]_%ejﬂ2 + ‘(n_lmj)_% — w;% . HGT(n_lN)ejHT

The inequality (B_37) provides an upper bound for the first term in (B_38). In (B.33), there is an

estimate of ’(n’lmj)*% - ? |. We only need to analyze |G T (n"'N)e; ||2 in the following.
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We find that
16T Fe, |, = |G Qldiag() e, |, = v [|=H ey
<o/ H, < Cer by my /i
where we used (A~9) and (A~7).

Additionally, when n > CoT.plog®(n), (B-37) shows that

(B .39)

|GT(n"'N — Fe; |, =y [|GT (n !N — F)[diag(m)] " 2e;],
</7;Co(Corsplog®(n)) a: \/T* (v2r/p)log®(n) (B .40)
=Cip~t T < CECE ¢ Fp ik,
Combining (B~39) and (B_40) gives

|GT (0" 'N)ey||, < [|GTFey|, + |GT(n IN — F)e;]|, < Cp~3r3 (B .41)

for some constant C' > 0.

Plugging (B~36), (B_37), (B_33) and (B_4T) into (B_38), we complete the proof of Corollary[B~2]
L]

Corollary B .3. Suppose n € R? is a nonnegative unit vector. Under assumptions (A1) and (A_3)),
ifhin < ﬁp*% for some B > 0, then for any cy > 0, there exists a constant C > 0, such that when
n > Cr,plog? (n),

P(|g] (Q - Q)| > Cn~/2\/rp~tlog(n)) <m0, ® 42)

Symmetrically, ifn" g, < Bp~? then for any cy > 0, there exists a constant C' > 0, such that when
n > C1.p log2 (n),

IP’<|17T(Q — Q)h1| >COn~ /2 Tep L logQ(n)) < n~°, (B .43)
Proof. In Lemma we proved that 0 < h;(j) < C# /7; and 0 < gi(j) < c#wj\/ﬁ for
j = 1,2,...,p and some ¢*,C# > 0. Let y = CléC# vV Cic#, then |h1(j)| < ’yp’% and

|g1 (j )| < vp_%. Lemmaandm show that for any fixed ¢y > 0, there exists a constant Cy > 0
such that when n > CyT, p10g2(n), with probability at least 1 — 2n~ ¢,

|gf(n*1N — F)[diag(ﬂ')]*%n| < Confl/zy/T*nypfl logQ(n), (B .44)
|nT(n*1N - F)[diag(ﬂ')]*%hﬂ < C’onfl/zy/T*’yprl logQ(n), (B .45)

[n ' m — 7| 0o < Con™ 2/ TmaxTs log?(n). (B .46)
Note that
l&! (Q — Q)n| <|g{ (n"'N — F)[diag(m)] "% 1| ® 47)
+ gl (n™'N) ([diag(n~"m)] =% — [diag(m)]~%)n].
Since g1, N, > 0,
& (n'N) ([diag(n~"m)] =% — [diag(m)]~#)n|
S!gf(n’lN)[diag(fr)]’%n! : fg%xpl(”ilmi/ﬂi)ié -1 (B .48)

< (| (n™"N — B)[diag(m)]~ | + &) Qn) - max | v/~ Ty /w1,
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By (B-44), when n > Cy7p log? (n),
g (n”'N — F)[diag(m)] 27|

o - ; (B .49)
<Co(Coriplog®(n)) *y/my2p~tlog*(n) < Cgyp~ .

TOn— . hT ~3 5,1
g1 Qn = Ulh1 n < C’101 Bp~ ", (B .50)
where we used (A7) and condition h 7 < Sp~=. According to (B33), we have

max|\/n*1mi/7ri—1| gw;ilnnn_lmj—wﬂoo. B .51)

1<i<p

In addition,

Combining (B_47) - gives (B_42). We can prove in the same way.

B .4 Plugging Concentration Inequalities into Deterministic Bounds

Theorem B .1 (Theorem 2 in paper). Let H* = [hg, hs, ... 7hr] and H* = [ﬂg, }A137 .. ,ﬂr}.
Under assumptions (A 1), (A .6) and (A .4), for a fixed cq > 0, there exists a constant C > 0 and
an orthogonal matrix Q, € QU=VXC=1guch that if n > Cr,plog?(n),

P (s o] (e 0

(B .52)
> C(n_l/Q\/ Ter logQ(n) + n_lT*plogZ(n))> < npc,
Proof. According to Lemma , H* has a deterministic row-wise perturbation bound
- 2 ~ 4(1++2 ~
o] (L. —HL)[|, <2 [ 6T @ - Qe |, + "L ey, Q- @ -

8
+ WHQ -qll;

Here, G* = [gg,gg, e ,gr} and A* = min{oq — 0'2,0'7-}. We note that ||G*T(Q — Q)ejH2 <

HGT(Q - Q)e;j ’2. Based on Corollary and for a fixed ¢y > 0, there exists a constant
Cp > 0 such that when n > Cor*plog2 (n), by union bound, with probability at least 1 — 2n 0,

1Q - Q||, < Con™/?\/7.1og?(n), (B .54)

1GT(Q -~ Q)ej|, < Con™/2\/7.(r/p) log (n), (B .55)

forj =1,2,...,p. Recall that oy — o9 > c5p~ 2 by assumption (A~4), and o, > Cop™ 2 by Lemma
[A~T1l We have

A* > (ca Aes)p 2. (B .56)
Plugging (B~54), (B_33), (A~8) and (B36) into (B_33), we complete the proof of Theorem[B_1]
O

Theorem B .2 (Theorem 1 in paper). Under assumptions (A1), (A~4) and (A"3), for any constant
co > 0, there exists a constant C > 0 and w € {%1} such that ifn > C.p(log”(r) V 1) log®(n),

P( max |wf11(j) —hy(j)| 20(7171/2\/7'* (log?(r) v 1) log®(n)

1<j<p

+n ' rp(log?(r) v 1) logz(n))> <n~%.
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Proof. In Lemma[B_2] we take
o1 +oa\]
K= Hﬂog( ! 2)] log(r)-‘ V1,
20’2

209 K 1
()
o1+ 09

then

Fix ¢y > 0. According to Corollary there exists a constant Cy > ¢ such that when n >
Cot.plog?(n), with probability at least 1 — n =,

1Q - QJ, < Con™ "2/ log’(n). (B .57)

We further take n > C3cz 2 K27,plog?(n), then

— 01

~ 092
IQ-Qll, < 55—
By Lemma|[B 2] there exists w € {1} such that
jwhi () — b ()]
/2] - ~
<3 (o7™]e]QTQQTH@ - Q)| + 07 |5l (@ - Q)(QT Q)¢ ) .
k=1 :
()] (2K +1+2v2)571|Q - Q||, + 4v2r~2 e H| 671 Q - Q| ,
+ (2K +8v2K)5 [ Q - Q[f;-
Note that for k = 1,2, ..., [K/2],
U;2k+1e;QT(QQT)k—1g1 _ U;2k+le;QT(QQT)k—2QQTg1
:Ul—2l~c+2ejTQT(QQT)k—2th _ 0;2(k71)+1eJTQT(QQT)k—2g1

=0, 'e; Qg1 = e/ hy = hy(j),
where we used QT g1 = o1h; and Qh; = og; iteratively. Similarly,
070! (QTQ)*e; = g1(j).

Therefore, according to Lemmat there exists some constant C# > 0 such that Vi,2k—1 =
o7 2 T1Q(QTQ)F e satisfies

. _1
vigk-1 20, [vigk-ala=1 and vy g1 =hi(j) < CFpz,
and vg o) = 01_2k(QTQ)kej satisfies
) 1
ook >0, [vaokllz=1 and hjvso =gi(j) <CFp 2.

According to Corollary there exists a constant 5’0 > Cicy 2 such that when n >
CoK?7,plog®(n), with probability at least 1 — 2[ K /2]n~,

|UI2k71(Q - Q)hl‘ < 5071_1/2\/ r.p~!log?(n), (B .59)
|87 (Q — Q)uaat| < Con™/?\/up~log?(n), (B .60)

fork=1,2,...,[K/2].
Plugging (B_37), (B39), (B_.60) into (B~38) and using Lemma[A"2]and[A"4] we have

‘wfll(j) —hy(j)| §5(Kn’1/2\/7* log?(n) + Kzn’lnplogg(n))

for some sufficiently large C > 0. Notice that K has order log(r), we complete the proof of Theorem
B2l O
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C Proof of Statistical Guarantees

Define
err = i max Jubu () ~ (), €D
Err = min max Hﬂaj — dez' (C.2)

Qe0—Dx(r=1) 1<j<p

C.1 SCORE Normalization

The bound for err is shown in Theorem[B_.2] It remains to estimate Err.

Theorem C .1. Under assumptions (A1) - (A~3), for any ¢y > 0, there exists a constant C > 0
and an orthogonal matrix @ € QU =Y*=1) “such that ifn > Ct,p2 (log2 (r) Vv 1) log?(n),

]P’(lrgjaé(pnﬂaj —d; ||2 > C'(rfl/2 \/T*pr(logQ(r) V1) log®(n)

+nlrpire (logQ(r) V1) logQ(n))) <n~°.

Proof. By definition,
aj = [ﬂl(j)}ilHIeja fOI'j:].,Q,...,p,
where ﬁ* = [flz, ﬁ3, ceey flr] According to Theorem and for a fixed ¢y > 0, there

exists a constant Cy > 1, w € {#1} and 2, € RO"=1D>*("=1) guch that when n > COT*p(logQ(r) v
1) log®(n), with probability at least 1 — 2n~°,

|WIA11(j) —hy(j)| <Co <n71/2\/7* (log®(r) V 1) log®(n)
+n " trp(log?(r) v 1) 1og2(n))7

HejT (ﬁ*ﬂ* - H*) H2 <Cy (nil/Q\/T*rlog%n) + nilr*plog2(n)>, (C .4

forj=1,2,...,p.
Define Q2 = wQI. We find that

(C.3)

[d; —d]l,

:H [Wﬂl(j)]_lgjﬁjej - [hl(j)]_lH*TejHQ

<[ ()| le] (B2 ~H) (€5)
| lwhi ()] = ()] 7| fle Bl

| fwha ()] = ()] 7 [le] (L2 — HL),.

Since |z~ — 1| < 2|z — 1| forz > 3, if we take n > C#*r,p2 (logQ(r) V1) log®(n) for some large
enough C# > 0, then |wh (j) — hy (j)] < 3hy(j),
[wfn(j)] -t 1‘

hy (5)

_ 1‘ — Q[hl(j)}_ﬂwﬂﬂj) —hy(j)|

b ()]~ = ()| = M)

wh; ()
hy (5)

<2[hy(5)]

17



Using the fact in Lemma and that hy (j) > ¢#,/7; for some ¢# > 0 and ||e] H, ||, <
||ejTHH2 < C’lc;%\/wTr, we reduce into

|9d; — d;l, < € (012 /ropr(log?(r) v 1) log*(n)

+nirpire (logz(r) V1) logQ(n)),

where 5 > () is a constant.

C .2 Vertex Hunting

The estimated vertices {by,bs,..., b, } solves the following optimization problem:
mmlmlze{fnh...,ﬁ,}g{al,‘..ﬁp} fg@gp dj —

where S is the convex hull of Bl, Bg, ce BT. and P is the projection operator induced by Euclidean
norm. One can refer to [5] for further details of vertex hunting algorithms.

Theorem C .2 (Vertex hunting). Suppose that for each meta-state, there exists at least one anchor
state. Then there exist constants o, & > 0 such that if Err < o'\/T,

max ||Q2by, — by,

1<k<r H2 Sa-Brr

where S is the orthogonal matrix that achieves the minimum in the definition of Err.

Proof. Inspired by the proof of Lemma 3.1 in [5], we define a mapping R that maps a weight vector
in the standard simplex S,._; C R" to a vector in the simplex S(bl, bo,..., br).

w =% [bi,ba,...,b,]w.
To begin with, we prove that the mapping R has the following properties:
1. RWJ‘ :djforj: 1,2,...,}7

2. There exist constants C* > 0, ¢* > 0 such that for any two weight vectors w,w’ € S,._1,
Vrlw—wl, < [[Rw - Rw'[], < C*Vr|jw — w'l],. (€6

3. R is a bijection.
1. & 3. are obvious, we only need to show 2. Note that
L (L I P ey
RW Rw )=\ b ... b, )WV
According to Lemma there exist constants ¢* > 0 and C* > 0 such that B =

1.1 ) .
( b; ... b, ) = L [diag(1;)] " satisfies

71(B) < L2 min L(k) ™ < C*Vr,

B) > |[L7Y|, " (max L(k) ' > VT

1<k<r

Hence,
Vrllw = wl|, < [Rw = Rw'[|, < C*Vr|[w — w'|[,.

It what follows, we first show that

max dist (dJ,S(bl, by, ... ,b,.)) < 2Err, .7
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Here, dist denotes the distance function yielded by the Euclidean norm. Let a) € [p] denote an
anchor state associated with meta-state k. For j = 1,2, ..., p,

d; = wi(k)by = w;(k)da,.
k=1 k=1

Let € be the orthogonal matrix that achieves the minimum in the definition of Err. Then
|a =Y wikds,
k=1

In other words,

, < lld; —djll, + 3 wy(k)]|Qda, — da, ||, < 2B
k=1

~

max dist <aj,8(da1,aa2, ey aar)) < 2Err.

1<j<p
Our algorithm guarantees that

max dist<aj,$(gl,32,...,gr)> < max dist(aj,S(aal,aa2,...7aar)),

1<j<p 1<j<p

therefore, we have (C_.7).

Let jj, € [p] be the index such that by, = ajk. We next consider

1— max w;, (k)

fork=1,2,...,r. Foranyn € S,_1,

T T
1- lrgfgrwjz(k) <1- ;mwﬁ(k) < Hek - ;Ulez ’2»

According to property 1, Rw;, = d;,, Rey, = by, = d,,,
O S I s
1=1 1=1
Rwak - Z ansz
1=1
dak - Z mdjz
=1

Hak — ZTHBZHQ + ZETT).
=1

@(C*)_lr_%

9 = (C*)_lr_% da, — Zmdjz
=1

2

e

+ QErr)
2

e

we have
1-— max wj, (k) < (¢*)"'r—2dist (aak,S(Bl, by,..., Bk)> +2(c*) T B,
It follows from (C.7) that
_ _ -1 -1
1 1rgla§xrwjl(k) <A4(c*)"'r 2Err. (C.8)

When Err < 8 1c*\/r, for each k, there is only one [ that attains the maximum in (C_8). Based on
(CR), fork=1,2,...,r

(i 1951 = bl = min |90 — b, < i [ty — i, + Brr

- ca )
B lr%lllgTHijl - RekHQ s C*\/;lrélllngwjz - ekHQ + Err
SO*\/;lrélligHle - ekHl TS C*‘/;E?TQO - Wj (k)) + Err

<20*/r(1 - [max w;, (k) + Err < (8C*(¢*)™ ' + 1) Err.
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C .3 Error Decomposition

Theorem C .3. Under assumptions (A1) - (A_3), there exist constants ¢* > 0 and C* > 0 such

that if Err < c*,
max HWJ — WJH1 < C*.Err.
1<5<p

If we further have ||n_1m — 7r||oo < cip7l, then

p
U = Viewll, < 0 (Brr+ v -err 4 pllnm - w])-
k=1

(C.9)

(C.10)

Proof. Suppose that w € {1} and @ € O ~D*("=1) achieve the minima in definitions (C_1I) and

We first focus on the differences between vAv;‘ and w; for j = 1,2,...,p. Note that
N 1 1
w;=B"! ~ ], w-:B1< )

! < d, ) ! d;
where

~ 1 . 1

B:<961 QBT>’

1 ... 1
B= ( b; ... b, ) = LT[dlag(ll)] )

195 = will, <|[B

1 1 S5-1 1
2 (Qaj>_(dj> 2+HB (da')_wj
=[|B~"||,[ld; — |, + [[B~"Bw; — w,,
<|[B7Y||,||d; — dy|, + [|B|,]|(B - B)w;

2

>

where

Hﬂd —-d < Err,

ill,
and

1B =B)w;|, = ) (2 — by

2

SZWJ )[90b1 = bi], < max [|2by, — by,

Here we used w; > Oand Y, _, w;(k) = 1.

We now derive an upper bound for Hﬁ_l H 1- According to Lemma

[SIE

B, =[[diag@)IL™ "], < ool L7 l2 < Cr=
for some constant C' > 0. In addition,
B~ =B, =B (B-B)B |, < [B'[,[B|,|B B,
<(|B7,+ B~ =B7(,) BB - B,
LemmalC .2|shows that if Err < o/ /7,

1I£1]§L§T’|Qbk — ka2 <a-Err,

20
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therefore,
HB BH2 < \flrgai( Hﬂb;.C - b’“”z < oa/r- Err.
The inequality (C.13) can be reduced to
B'-B! < aC - Err)||B™' - B! + aC?r~2 . Err.
| > 2

Under condition Err < %a‘lé —1, we further have

Hﬁ_l - _1H < 2aC? 72 - Err,
1 1 1_pg-1 ~, . —L (C.14)
HB ||2 HB H2+ HB ”2 <2077z,
Plugging (C .14) into (C_.T1) gives
%% —wyll, < C'r=% - Brr (C.15)
for some constant C” > 0.
Recall that L
W = [vAvl,...,vAvp]T
with
w; =%, %3],
‘We have R N . .
W = willy <[[w; = W51 01 + (195 ] —wall,
<Ll ] s, o
SZH [W;]Jr _WJ'H1 < QHW; - WJ'Hl
SQ\/;H\/R\’; — ij2 <20 - Err.
Define R . L
Ve = [diag(why)][diag(n ™ m)]2 W,
and

Ve = [diag(hy)][diag(m)] 2 W = V[diag(l,)].

We calculate the row-wise ¢;-distance between Ve and Ve,

lej (Vo= Vo), :wall(j)\/”‘lmj "W — hl(j)\/7?j~ij1
§|wi\11(]) - hl(])’ Y n_lmj : HV/GJHl (C A7)
+ Q)] - [yt = v |- W),
+ ()] v/ - 5 = w]-
Because |/z — 1| < |z — 1| forz > 0,
‘\/”*1%‘ - W’ = \/F‘\/”*lmj/ﬂj - 1’
<@ (n"tmy; /7)) —1|—7r ‘n Ymy — ;.

Under the condition Hn_ m— TI'HOO <ciph,

\/nTimy </ A+ ‘ n~tm; — /7| < 2/7;.
We apply Hv’\\/]Hl =1, |wﬁ1( —hy(j )| < err, (A10) and (C .16) to (C .17), and obtain
He;r (\70 — Vo) H1 <2/mj -err + C#Hn_lm - 7r||oo + 25’C#wj - Err. (C.138)
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Here, C# > 0 is the constant in Lemma

In the last step, we normalize each column of Ve to get V. We find that for k = 1,2,...,7,

H(‘Af - V)ek||1 =

Vo]l Ve = [[Voer]| Voer||
Lo -1 o -1 \7o o -1 o o
<[ Voeul; ! = Vel [Voen]l, + [[Voerlly - [V = Vo)ex,
AO o o -1 [e] - AO o
=[I¥=eull, = [Voexll| - [Voer]" + [Voer]" (V2 = Ve,
<[[Voer = Voer |, - [[Voer], "+ [[Voer], " H(VE = Ve)ex],
=2[Veex[|, " [[(V° = V)er].
Since by Lemma |[Veex||, = Li(k) > c#r~ for some constant ¢# > 0,
9 = V), < 26 (97 = Ve
We further derive from (C_.I8) that

1, ~ r .
r ZH(V - V)ekHl < 2(6#)_1 ZH (VO - V°)ekH1
k=1 k=1

p
=2(c#)7! E:He;r (‘70 - Vo), < 6’”(\/}3. err+p|ln~'m— ||+ Err)
j=1

for some constant C* > 0. O

C .4 Main Results

Theorem C .4 (Statistical error bounds for V, Theorem 3 in paper). Under assumptions (A_1) -

(A~3), for any co > 0, there exists a constant C > 0 such that if n > CT*p%r(logQ(r) V1) log?(n),
then

P(i ZH(\Af - V)ekHl > C(Tfl/z\/npr(logQ(r) V1) log?(n)
k=1
+nlnpire (logz(r) V1) logz(n))> <n~ %,

Proof. According to Lemmal[B 3} [B".2|and[C .1} for a fixed ¢y > 0, there exists a constant Cy > 0,
w e {£1} and Q € OC~D*("=1) such that, when n > CoT.p? (logz(r) V1) log?(n), with
probability at least 1 — 3n=,

Err < gggp\!ﬂﬁj —d;,

(C.19)
<Cy (n_l/Q\/T*pr(log2(r) V1) log?(n) + nlrpire (logz(r) V1) logz(n)),
< = . _ .
err < fgf‘;‘p’“hl(]) hy ()| <0

<Cy (n_1/2 \/T* (logQ(r) V1) log?(n) + n_lT*p(logQ(r) V1) 1og2(n))7

[n~'m — 7|0 < Con™Y/2\/7up~1log?(n). (C.21)

We can take Cy > Cj such that when n > éoT*p%T(IOgQ(T‘) Vv 1) log?(n),

Err <c*, ||n*1m—11'||OO <c*pt.

Here, ¢* is the constant in Theorem|[C .3] Then plugging (C_19), (C_20) and (C_21) into (C_10), we

complete the proof.

O
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Theorem C .5 (Statistical error bounds for U, Theorem 4 in paper). Under assumptions (A1) -

(A~3), for any co > 0, there exists a constant C > 0 such that if n > CT*p%r(logz(r) V1) log?(n),
then

p
B Xlle] (0= U], = € (7172l () v 1) o)
T (€ 22)

+nlrpire (logQ(r) V1) logQ(n)>> <n~.
Remark. Write for short

err, = C’(n_l/2 \/T*pr(logz(r) vV 1) log?(n) + n_lT*p%r% (logQ(r) Vv 1) 10g2(n)).

Below are a few alternative expressions for (C.22):

With probability at least 1 — n =,

o pz||U-U|, < Vr-err,

~ 2
. \/p =1 |0yl Sreerry,

_ ~ 3
o p ! §:1||uj fujHl <rz-erry,.

Proof. By definition,

~

[diag(n™'m)] " (n ' N)V(VTV)
[diag(w)]'FV(VTV)~L

U
8]

We need some preparations. First, consider the diagonal matrix [diag(n~'m)]~!. The assumption

(A1) guarantees 7; > ¢;p~*. By (B_21), with probability 1 —n=, |n~'m — 7|0 < Cp~ 172 -
erry. It follows that n=tm; > 7m; — [[n"'m — 7||oo > c1p~1/2. Therefore,

[[diag(m)] ||, < Cp,  ||[diag(n™"N)]7*||, < Cp, (C 23)
and
[[diag(n~'N)]~* — [diag(m)] "],
<||[diag(LN)] 7|, ||diag(2N) — diag(m) |, ||[diag(m)] !

<Cpr7 - érry,. (C.24)

Second, consider the matrix 7~ 'N. By (B_21), with probability 1 — n~°,
In "N = F|y < Cp~r~% - érr,. (C .25)
Additionally, by (E_3), ||F|l2 < Cp~!. Combining it with (C_.23) gives
[Flo<Cp™', [ln "N < Op . (C 26)

Next, consider the matrix V. By and the assumption (A1), [le/ V||, < Cp~'rforalll < j <
p. It follows that ||V]|; = maxi<k<, [|[Verll1 = 1, and | V] o = maxi<;<p ||ejTV||1 < Cplr.

As a result,
1 1
IVll2 < VIV Ve < Cp™2r2. (C.27)

By Theorem with probability 1 — n=, > | H(V —V)egll1 < Cr - érry,. It immediately
gives

IV -V]: = 11;13;||(V—V)ek||1 < Cr-errp. (C .28)
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We then bound ||V — V/|os. Let V° and V° be the same as in (C_18). We have seen in (C_I8) that,

with probability 1 — n™, ||e;»'— (VO —V°)|; < Cp~terr,. It follows that

Z||voerv e, = ZHe (V° = VO)||; < Cérry,.
j=1

(C 29)

Additionally, by Lemma[A 3] [Voey |y = Li(k) > C~'r s as aresult, [Voer|r > [Voey|s -

Cerr, > C~'r~! Itis seen that, foreach 1 < j < p,

el (V = V)ey| = ]||v°ek||;1e;\7°ek - HVoekH;le;rVOek‘
SMW"%HT - HV"ekalﬂ e Voer| + [[Voer], - lef (Vo = Vo)ex
=HV°ekHIl\||V°ekH1 - HV"ekHl\ ([ Voerll, ef Vo],

+[[veoer], " fef (Vo= Vo)exl

<Cr- ||\A/'°e;€ - V"ekH1 -COr - ||e]-T\A/'°||1 +Cr- ]e;—(\A/'O - Vo)ek‘.

Summing over k on both sides gives

le] (V= V)[|, <Cr?[lef Vo, - > [[Voer = Voer||, + Cr - [le] (Vo = V),
k=1
r2. HejT\A/'OHl -Cerry, + Cr-p~terr,,

where the last inequality is from (C_T8) and (C_29). Since V° = V[diag(l, )], we have [e] V°||;
le] V[1][11[loc. By LemmalA 3} 1o < Cr~'; by (E-9) and the assumption (A_T), e V|

Cp~1r . Hence, ||eTV°||1 < Cp~1L. Plugging it into the above inequality gives

el (V-V)|, <Cp 7?2 érry,.
lej (V=V)[|,

It follows that R
[V =Vl < Cplr?-err,.

Combing (C_28) and (C_30) gives
1

IV = Vil < IV = VILIV = Vi|w < Cp bk - e,

Last, we study the matrix (VT V)~1. Since (VT V — VT V) is a symmetric matrix,
VIV -VIV[ < [VTV - VTV,
<IVIV =Vl + IV = V)TV + (V= V)TV = V)
VIV = Vil + [V = Vilso|[ VI3 + [V = V]|V = Vs
<(Cp~'r)(Cr-erry) + (Cp~ Y% -err,) - 14 (Cr - err,) (Cp~'r? - erry)

<Cp~'r?.err,.

ININ

(C.30)

(C 31)

By the assumption @ Amin(VTV) > C~1p~lr. It further implies that )\min(vT\A/') >

Amin(VTV) — ||VTV VV|y>Clp~lr.In other words,
IVTV)L, < oprt, [[(VT9)Y, < Cpr
Furthermore,
||(VTV)—1 _ ({/T{,—)—1H2
VTV LIV = VIV [[(vTV) T,
<Cp-erry,.
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We now proceed to proving the claim. Using the triangular inequality,
T~ Ul
<||[diag(n~"N)} " — [diag(m)] ||, In"Nll2[[ V|2 ]| (VTV) 7,
+ [[[diag(m)] =, In "N — B2 VI[2[|(VTV) 72,
+ [[[diag(m)] =, [F 2V = V]2 (VTV) ],
+ [|[diag(m)] ML IF [ V][ [(VTV) T = (VTV)
11 -1

§C’(pr_% erry) -p t-pTEr: -pr

+ Cp . (p71r7% é—fr\}n) .piér% .pril

+Cp-p~t(p Ericir,) - prot
+Cp-p~tpTEirs . (perry,)

It follows that

P
P Y le] (U -V =p~ [T U} <p7 - (20)- [T - UJ < O i,

Jj=1

O

Theorem C .6 (Recovery of anchor states, Theorem 5 in paper). Let N be the set of non-anchor
states. Denote

0= TN max Pxo~m (Ze =k | Xip1 = 3)-

Under conditions (A1) - (A~3), for a fixed co > 0, there exist constants ¢ > 0 and C' > 0 such that
when §y < ¢(1 — ¢) and

n > CéaQT*p%r(logQ(r) v 1) log*(n),
co

we can successfully identify the anchor states with probability at least 1 — n~

Proof. Define
¢; = 7r;1 [diag(UTﬂ')]VTeJ—, i=12...,p.
Then fork =1,2,...,r,
Ci(k) =Pxoun(Ze =k | Xiy1 =)

We first present a useful fact that, for any two vectors x, x’ in the r-dimensional standard simplex
Sr—1, by triangle inequality,

%" — x|, = [x'(k) — x(k)| + Z}x'(Z) —x(1)|
14k

>|x/ (k) — x(k)| + ] Y () - x(l))‘ = o (k) —x(k)|, k=1,2... 7
£k

(C 34)

If x = ey, then the equality holds. According to (C.34), the parameter ¢ in the theorem can be
equivalently defined as

o .
1— ¢ =min min (1-¢;(k)=3min min [|¢; ~e],.

Denote
A = [diag(U )] [diag(1y)] "
Since )
wj = m; *[h(j)] ! [diag(L)]V ey,
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we have ¢; = ||Aw; ||;1ij forj =1,2,...,p. By (EXB), Lemmaand assumption (A~2),
there exist constants ¢ > 0 and C' > 0 such that the diagonal entries of A satisfies

c<(UTn), k)] <C, fork=1,2,...,r

We first derive a lower bound for ij — ekHl, j € N, using ¢. For any w,w’ € S,_1, let
¢ = ||AWH;1AW, ¢ = HAW’H;lAW/. Because w,w’ € Sp_1,
law], =2 [[AwW], 22 [[A(w-w)||, < Olw—w],.
We find that
[¢=¢ll =|[lAw]; " Aw — || aw|| " Aw||

<[[Awll, A (w = W)+ [[lAw] - aw] |- aw],

Here, the second term
awll;" = [aw/[] - [ aw'], <[[aw], - [Aw],|- |aw] ;"
-1
<[l awll A (w - w)]],.

Therefore,

¢~ ¢l < 2awl A(w - W), <20 w—w],, €39
and
. . 1~ . . ~ 1~
%3\1}1?z§§||wj — ek”1 > §C 10%% 1r§nkl£1r||cj — ekH1 =C 1c(l — ). (C .36)

We now consider the perturbation bound for w;. According to Lernma for a fixed ¢y > 0, there
exists a constant Cy > 0 such that if n > Cor,p? (logQ(r) V 1) log?(n), with probability at least
1—n7¢,

Err < Cy (n_l/Q\/T*pr(logQ(r) Vv 1) log?(n)
+n trpire (logQ(r) V1) logZ(n)>.

We further take n > (c*)~2(C7 + 1)7lCoT*p%r(log2(r) Vv 1)log?(n), then Err < c*, where ¢* is
the constant in Theorem [C 3] Theorem[C .3|then implies that

max HVAV] — ijl <C*-Err.
1<j<p

There exists a constant Cy > (C*)’z(CO% +1)71Cy such that when
n > 6’050_27'*])%7“(10g2(r) V1) log?(n),
we have
&%vaj —wjl|, < 26. (C 37)

Suppose that j is an anchor state for meta-state k. Then w; = e;. Under (C_37), we use (C_.34) and
obtain

N . Ly

WJ(]C) =1- (1 - W](k‘)) =1- iHW] —Wjul Z 1-— 50.
Consider the case where j € A. Suppose that §, < 4~'C~'¢(1 — ¢). Then by (C.36), for
k=1,2,...,r,

1 1~
L—=wj(k) = 5[lw; —ex]|, > 5C7Te(1 = ¢) > 26,
It follows from (C_.37) that
W;(k) <1— (1 —w;(k)) + |W; (k) — w; (k)]

<1—256)+ %Hv?zj —w,|, <1—4d.
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D Explanation of Main Algorithm

In this section, we explain the rationale of Algorithm 1, especially for:

e Why the SCORE normalization [3]] produces a simplex geometry.
e How the simplex geometry is used for estimating V.
Without loss of genrality, we assume that all entires of the stationary distribution 7w € RP are positive.
The normalized data matrix
N ~ n%diaug(ﬂ')P[diag(ﬂ')]_l/2 =n2Q. (D.1)
The matrix Q can be viewed as the “signal” part of N. Let hy, ..., h, be the right sAingular vectors

of diag(7)P[diag(7)]~'/2. They can be viewed as the population counterpart of hy, ..., h,. We

define a population counterpart of the matrix D produced by SCORE:

D = [diag(hy)] ‘[hy,...,h,] = [dy,ds, ..., d,] . D .2)

From now on, we pretend that the matrix Q is directly given and study the geometric structures
associated with the singular vectors and the SCORE matrix D.

D .1 The Simplex Geometry and Explanation of Steps of Algorithm 1
When P = UV, the matrix Q, defined in (D .I)), also admits a low-rank decomposition:

Q=U"(v")",
where
U* = [diag(w)]U, V* = [diag(w)]"Y/?V.
The span of the right singular vectors hy, ..., h, is the same as the column space of V*. It implies
there exists a linear transformation L € R"*" such that

H=[hy,....h]= VL. (D 3)

Since V* is a nonnegative matrix, each row of H is an affine combination of rows of L. Furthermore,
if j is an anchor state, then the j-th row of V* has exactly one nonzero entry, and so the j-th row of
H is proportional to one row of L. This gives rise to the following simplicial-cone geometry:

Proposition 1 (Simplicial cone geometry). Suppose P = UV, each meta-state has an an-
chor state, and rank(U) = r. Let H = [hy,..., h,] contain the right singular vectors of
Q = diag(w)P[diag(w)]~'/2. There exists a simplicial cone in R, which has v extreme rays,
such that all rows of H are contained in this simplicial cone. Furthermore, for all anchor states j of
a meta-state, the j-th row of H lies exactly on one extreme ray of this simplicial cone.

Remark. Similar simplicial-cone geometry has been discovered in the literature of nonnegative
matrix factorization [2]. The simplicial cone there is associated with rows of the matrix that admits
a nonnegative factorization, but the simplicial cone here is associated with singular vectors of the
matrix. Since SVD is a linear projection, it is not surprising that the simplicial cone structure is
retained in singular vectors.

However, in the real case, we have to apply SVD to the noisy matrix, then the simplicial cone is
corrupted by noise and hardly visible. We hope to find a proper normalization of H, so that the
normalized rows are all contained in a simplex, where all points on the extreme ray of the previous
simplicial cone (these points do not overlap) fall onto one vertex of the current simplex (these points
now overlap). Such a simplex geometry is much more robust to noise corruption and is easier to
estimate.

How to normalize H to obtain a simplex geometry is tricky. If all entries of H are nonnegative,
we can normalize each row of H by the /!-norm of that row, and rows of the resulting matrix are
contained in a simplex. However, H consists of singular vectors and often has negative entries, so
such a normalization doesn’t work.

By Perron-Frobenius theorem in linear algebra, the leading right singular vector h; have all positive
coordinates. It turns out that normalizing each row of H by the corresponding coordinate of h; is a
proper normalizaiton that will produce a simplex geometry. This is the idea of SCORE [3| 4, 5]]. See
Figure 2 in the paper for illustration.
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Proposition 2 (Post-SCORE simplex geometry). In the setting of Proposition|l| additionally, we
assume hy have all positive coordinates (e.g., Q" Q is an irreducible matrix). Consider the px (r—1)
matrix D = [diag(h;)] " t[he, ..., h,]. Then, there exists a simplex Si C R"~1, which has r vertices
b1,..., by, such that all rows of D are contained in this simplex. Furthermore, for all anchor states
J of a same meta-state, the j-th row of D falls exactly onto one vertex of this simplex.

Proposition [2|explains the rationale of the vertex hunting step. The vertex hunting step we used was
borrowed from [4} 5]; see explanations therein.

Let by, ..., b, be the vertices of the simplex S;. By vertex hunting, we obtain estimates of these
vertices. The next question is: How can we recover V from the simplex vertices by, ..., b,.?

Let d;r be the j-th row of D, for j € [p]. By the nature of a simplex, each point in it can be uniquely

expressed as a convex combination of the vertices. This means, for each j € [p], there exists a weight
vector w; from the standard simplex such that

d; =Y w;(k)by.
k=1

The next proposition shows that we can recover V from wq,..., w

sy Wpe

Proposition 3 (Relation of simplex and matrix V). In the setting of Proposition[2} each row of D
is a convex combination of the vertices of 8§, i.e., for each j € [p], there exists W in the standard
simplex such that d; = >, _, w;(k)by. Furthermore, consider the matrix W € RP*", whose j-th
row equals to W]-T. Then, W and 'V are connected by

[diag(hy)][diag(m)]'*W = V[diag(L)],

where 1y is the first column of L as defined in (D .3).
By Proposition 3} each column of the matrix
[diag(hy)][diag(m)]"/*W

is proportional to the corresponding column of V. Since each column of V has a unit ¢!-norm, if we
normalize each column of the above matrix by its #!-norm, we can exactly recover V.

Once we have obtained V, we can immediately recover U from (P, V') by the relation:
U=UV'V)(VTV)l=PVVTV)L
The above gives the following theorem:

Proposition 4 (Exact recovery of U and V). In the setting of Proposition 2} if we apply Algorithm 1
to the matrix [diag(m)|P[diag()]~ /2, it exactly outputs U and V.

D .2 Proof of propositions

Proposition|[I| follows from and definition of simplicial cone. Proposition[d]is proved in Section
1.1. We now prove Propositions Recall that by (D_3)), for k € [r],

h;, = V¥,

where 1, is the k-th column of L. When all the coordinates of h; are strictly positive, the matrix D
is well-defined. Additionally, for an anchor state j of the k-th meta state, hi (j) = V}} 11 (k), where

Vi > 0. Therefore, 11 (k) > 0 for k € [r]. We define a matrix

B = [diag(l,)] '[l2, . .., 1,].

By definition,
[1,D] = [diag(h;)]'H, (D .4)
and
1, B] = [diag(L)] 'L (D .5)
Combining them with (D_3) gives
[1, D] = [diag(hi)] "' V*[diag(11)][1, B]. (D .6)

28



Let

The (D_.6) implies
1=W1, D= WB.

Since W is a nonnegative matrix, the first equation implies that each row of W is from the standard
simplex, and the second equation implies that each row of D is a linear combination of the r rows of
B, where the combination coefficients come from the corresponding row of W. This has proved the
simplex geometry stated in Proposition 2]

W = [diag(h;)] "' V*[diag(1;)].

Note that the j-th row of D is located on one vertex of the simplex if and only if the j-th row of W
is located on one vertex of the standard simplex. From the way we define W, its j-th row equal to

w] = W[vﬂhu»vﬂh@),.--,vjrh(r)].

Since hy, 1; and 7 are all positive vectors, w is located on one vertex of the standard simplex if and
only if exactly one of Vj1, ..., Vj, is nonzero, where the latter is true if and only if j is an anchor
state. This has proved Proposition 2]

Furthermore, from the way W is defined above, using the fact that V* = [diag(7)]"'/?V, we
immediately find that

W = [diag(hy)] " [diag(m)]~/* V[diag(L)],
which is equivalent to
[diag(hy))[diag(m)]'*W = V [diag(l1)].
This has proved Proposition 3]

E  Technical Proofs
Proof of LemmalA 1] Since 7 is a stationary distribution, the frequency matrix F satisfies
P P
i=1 i=1

forj =1,2,...,p. Because ) F_, P;j = 1fori=1,2,...,p,

p p
ZFij :Z’/Tipij = ;. (E 2)
j=1 i=1
It follows that
IF|: = rgaé( ZF” = Max T, = Tmax, |Flle = max ZF’J = max T; = Tmax,

1<j<p 1<i<p

which further 1mpl1es

IFll2 < VIFloIFll1 = Tmax < C1p~ " (E .3)

o1 = Q|2 = ||Fldiag(m)] "% |, < Inln||F||2 < C101 3.

Therefore,

As for the smallest singular value o,., by definition,

o = IG%LHIHQ x| = xrexéirllH[diag(ﬂ')]*%VUT[diag(ﬁ)]tz.

Since
| [diag(7r)]~ VU [diag(n x|, = omin ([diag(w)] - 2V) )||UT [diag(m)]x]|,
and
HU—r diag(m xH2 > Jmm(UT[dlag( )])HXHQ7

we have )

o >omin([diag(7r)]_§V)Umin( T[diag(ﬂ')])

A2, (VT [diag(m)]""V) A2, (UT [diag(m)]2U) > cop~3,

where the last inequality holds due to (A .06) O
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Proof of Lemma[A~2] We first consider the rows of right singular matrix H. The columns of

[diag(7r)] =2 V and H span the same linear space. Hence, there exists a nonsingular matrix L € R™*"
such that .
= [diag(w)] "2 VL. (E 4

We plug (E_4) into H'H = I, and obtain LT VT [diag(7)] "' VL = I,.. Multiplying L on the left
and LT on the right gives LTV T[diag(7)] "!VLLT = LL". Because LL " is non-singular,
LLT = (VT [diag(m)]~'V) .
As a result, )
ILl|s = Apt/? (VT [diag(7)] ' V) < ¢y 2r7 3, (E .5)

min

which implies that for any j = 1,2,...,p,

e B, = o] g+ VL, < 75 o] VI L1 &6
_1 1 .

<m; * HejTVH1HLH2 <ep 27Tj o HeJ‘TVHr
It only remains to estimate ||ejTV||1.

Note that the invariant distribution 7 satisfiesw ' P =7 '.Forj =1,2,...,p,

mj= (7 Pej=mUVTe; = (UTm)i(V e > [le] V]|, - min. (U'n),. €D
k=1 - =

Under assumption (A~6),
Zw % = e, (U [diag(m)]*U)ex > cop™'r 1, fork=1,2,...,r.

It follows that
P
= Uik > Toas ZWQ > O tepr™t. (E .8)
=1
Plugging (E"8) into (E.7) yields
He;»'—VH1 < Clcglﬂ'jr. (E .9
We can further derive from (E~6) an upper bound for ||e] H]|,.

As for the left singular matrix G, we can estimate HejTGH , in a similar way. Analogous to the
definition of L, there exists a nonsingular matrix R € R"*" such that G = [diag(w)]UR. and

Rz = A5 (U [diag(w)]“U) < & pr. It follows that
IR|l> = Ay * (UT [diag(m)]?U) < ¢, * /b7
He;-'—GHQ = ||e;r[diag(1r)]UR||2 = ﬂ—jHe;URHQ
_1
<m|le] U|,IIR |2 < m]je] Ul|,[IR]l2 = c5 * 7 /T,

where we used HejTUH1 =

Proof of LemmalA 3] We first show that 1; is the leading eigen vector of matrix
© = (U [diag(w)]*U) (V' [diag(w)] "' V).

Note that by definition, Q = [diag(w)]UV T [diag(ﬂ')]_%, thus Q" Q and @ share the same eigen
values. Recall that h; is the leading right singular vector of Q,

= Q' Qhy = [diag(w)]" 2 VU [diag(m)]2UV " [diag(w)] 2 h. (E .10)
Plugging h; = [diag()]~2 V1, into (E.10) and multiplying V' [diag(7)] "2 on the left, we have
oV [diag(m)] 'Vl = V' [diag(m)] 'V (U [diag ()] U) V" [diag(m)] ' V1;.

30



It can be reduced to
Ol = (U [diag(m)]*U) (V  [diag(m)] ' V)1 = oil;.
The entries of ® are lower bounded by

n2 ot nlglln[(UTU)(VTV)]kl: 2 et mln(UTPV)

min ‘' max min’' max kl’
and upper bounded by
2 -1 T T 2 -1 T
T axTmin H’?;ELIX[(U U (v V)] 1 = MmaxTmin maX(U PV)

)

Condition (A_3) ensures that UTPV is a positive matrix, hence © is also positive. According to
Perron-Frobenius Theorem, all components of 1; are non-zero and have the same sign. Without loss
of generality, we assume that the entries of 1; are all positive. Accoring to Theorem 3.1 in [6],

{@sk} o Mmaxg O < T2 ax Timin maxy, ; (UT PV)
(CH mink,l O — ﬂ-rzninﬂ-méx mka (U PV)

maX1Sk§,« 11 (k)

- < m.
mlnlgkgr 11 (k)

KL< C3c73Cy,
kl

(E.11)

1
where we used assumptions (]E[) and @) Recall that in (EZ3), [[Li]l2 < [|Ll2 < ¢y 2r7 2,
therefore, miny <j<, Iy (k) <72 ||Iy[|2 < ¢; 271, (E-TI) then implies

max 1y (k) < C3¢;®Cy min 14 (k) < Cr—!
1<k<r 1<k<r

for some constant C' > 0.

Consider ||[L~!||,. Since [diag()] "2V = HL~! and H is orthonormal,

HL_lH = max HL_le = max HHL_le
2 xeSr—1 2 xeSr—1 2

:xrens%§1||[diag(7r)r%VxH2 = ||[diag(m)] "2V,

By (E9), 0 < [diag(w)]'V1, < Cic; 'r, thus
|V T [diag(m)] V||, = ||V " [diag(w)] "' V1,
SC’lc;erVTlpHDO = C’102717"||1T||oo = C’lc;lr.

‘We have

L2, = ||[diag(m)] "3 V]|, < [V [diag(m)] " V||? < Cfe, 2 v

_ 11
Therefore, |1 |2 > HL*1H2 '> Cy 2cZr~= and

1 _1 1
L (k) > r 2||ly]|s > O 2e2r7 L.
max Li(k) 2 r72|[lifls 2 € Zedr

We can conclude from (E-TT) that
min 1;(k) > C73cC max (k) >ar!

1<k<r 1<k<r
for some ¢ > 0. O
Proof of Lemma/A Recall that by definition
hy = [diag()] " V1,
and Lemma[A 3| provides an estimate of the entries in 1;. Therefore,
_1
et el VI <) < 0t e V[,

where ¢, C' > 0 are the constants in Lemma[A~3]
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Note that in (E9), there is an upper bound for ||e] V||, Hence,

Nl

h;(j) < C7rj_ rt -Clcglﬂjr = CClcgl,/wj. (E .12)
We now derive a lower bound for HejTVH1 using assumption (A.2)). Because the stationary distribu-
tion 7 satisfies m'P = 7 |, foreach j = 1,2, ..., p we have
T
T = ﬂTPej = ﬂ'TUVTej = Z(UTﬂ')k(e;V)k
k=1

<Cyr—t Z(e;V)k = C’lr*1||e;rVH1.
k=1

It follows that

_1 _1 _ _
hy (j) > em; 27”_1He;rVH1 > cm; zp—l. Cfler = Cflc./wj. (E .13)

As for g1, by the definition of singular value decomposition,

g1 =0, 'Qhy,

thus g; is nonnegative. Forany j = 1,2,...,p,
g1(j) = o7 'e] Qhy = o7 'e] Fldiag(m)]2hy.
By (E_12). [diag(w)]"2hy < CCyc;'1,, thus
g1(j) < CCicy ‘o7 'e/ F1, = CCicy oy ' ;. (E .14)

Here, we used F1, = . Since ||[diag(m)] 21, = /S0, m = 1,

o1 = max||Qx|, > || QUing(m)] 1, ||, = [[FL ||, = Iwlle > p~Hwlh =p72. & .15)

Plugging (E_.T3) into (E .14), we obtain an upper bound for g (7). O

F Numerical Experiments

F .1 Explanation of Simulation Settings

We test our new approach on simulated sample transitions. For a p-state Markov chain with r meta-
states, we first randomly create two matrices U,V € Rﬁw such that each meta-state has the same
number of anchor states. After assembling a transition matrix P = UV T, we generate random walk
data { Xy, X1, ..., X, }. For each data point in the figures, we conduct 5 independent experiements
and plot their mean and standard deviation.

In Figure 3 (a), we run experiments with p = 1000, » = 6 and the number of anchor states equal
to 25, 50, 75, 100 for each meta-state. When p is fixed and n varies, the log-total-variation error in
V scales linearly with log(n), with a fitted slope ~ —0.5. This is consistent with conclusion of
Theorem 3 in paper which indicates that the error bound decreases with 7 at the speed of n~'/2. In
Figure 3 (b), we carry out experiments with n/p = 1000, » = 6 and the number of anchor states
equal to [0.025p], [0.050p], [0.075p], [0.100p| for each meta-state. When both (n, p) vary while

~

n/p is fixed, the the log-total-variation error in V remains almost constant, with a fitted slope = 0.

This validates the scaling of y/p/n in the error bound of V. In both figures, we observe that having
multiple anchor states per each metastate makes the estimation error slightly smaller.

In Figure 3 (c), we consider estimating the transition matrix P by UVT, and compare it with the the
spectral estimator in [8]]. Our method has a slightly better performance. Note that our method not
only estimates P but also estimates (U, V'), while the spectral method cannot estimate (U, V).
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F .2 More Results on Manhattan Taxi-trip Data

Distributions of Pick-up and Drop-off Locations.

10°%

1.5

Figure F.1: Distributions of pick-up (L) and drop-off (R) location, illustrated as heatmaps.

Columns of Singular Vectors.
~ 1
We conduct SVD to matrix N = N|diag(N"1,)] *. Denote the right singular vectors as

ﬁl, 1A12, ce ﬁr and singular values 1,09, ...,0,. In the following, we illustrate ﬁl, HQ, ce ﬁr
with heat maps. It turns out that the figures do not have clear patterns.
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Figure F.2: Singular vectors of N illustrated as heat maps.

Aggregation and Disaggregation Distributions.

We apply state aggregation learning to N with the number of meta-states equal to » = 10. The
columns of estimated U and V are illustrated as heat maps. We can tell from the figures that
aggregation likelihoods and disaggregation distributions have practical meanings in real life. For

example, the heat map of V has two red points which correspond to New York Penn. Station & New
York Ferry Waterway. It reveals the behavior of a certain group of passengers.

¢

(770), = 0.0770
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Right: The two red points correspond to New York Penn. Station & New York Ferry Waterway.
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Figure F.3: Columns of U and V illustrated as heat maps.
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Anchor Regions and Partitions for Different r.

Figure F.4: Partition of New York City by rounding the estimated disaggregation distributions to the
closest vertices in the low-dimensional simplex.
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