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A Useful Properties

Fact A ([2]). For β1, . . . , βk such that
∑k
i=1 β

2
i = 1, we have

Hn

(
k∑
i=1

βixi

)
=

∑
n1+...+nk=n

n!

n1! · · ·nk!

k∏
j=1

β
nj
j Hnj (xj).

Lemma A. For any w, we have

Ez∼N (0,Id)

[
ReLU(w · z)2

]
=
‖w‖2

2
and Ez∼N (0,Id) [ReLU(w · z)] =

‖w‖√
2π
.

Proof. Observe that for z ∼ N (0, Id), w · z ∼ N (0, ||w||2), thus we have

Ez∼N (0,Id)

[
ReLU(w · z)2

]
= Eg∼N (0,||w||2)

[
ReLU(g)2

]
=

1√
2π||w||

∫ ∞
0

g2e
− g2

2||w||2 dg

=
||w||2

2

The last follows from observing that the integral is 1/2 of the variance of a N(0, ||w||2) variable.
Similarly, we have

Ez∼N (0,Id) [ReLU(w · z)] = Eg∼N (0,||w||2) [ReLU(g)]

=
1√

2π||w||

∫ ∞
0

ge
− g2

2||w||2 dg

=
||w||√

2π
.

Here the last equality follows from standard computation of mean of the absolute value of a Gaussian
random variable.
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B Background on Statistical Query (SQ) Learning

SQ Model. A SQ algorithm is a learning algorithm that succeeds given only estimates of
Ex,y∼D[q(x, y)] for query functions of the learner’s choosing to an oracle up to a fixed tolerance
parameter (see for example [5, 3]). We restrict ourselves to queries that are either correlation queries,
that is, Ex,y∼D[y · g(x)] for any function g, or queries that are independent of the target, that is,
Ex,y∼D[h(x)] for any function h. For example, the ith coordinate of the gradient with respect to w of
the quantity (ReLUw(x)−y)2, i.e. 2 ·1+(w ·x) ·(ReLUw(x)−y) ·xi can be simulated by a correlation
query g(x) = −2 · 1+(w · x) · xi and query h(x) = 2 · 1+(w · x) · ReLUw(x) · xi independent of the
target. Therefore queries with sufficiently small tolerance allow us to simulate gradient descent for
the loss function L(w) = Ex,y∼D[(ReLUw(x)− y)2] 1.

SQ Dimension. We define the inner product of two functions f(x), g(x) with respect to a distri-
bution D to be 〈f, g〉D := Ex∼D[f(x)g(x)]. The norm of a function f is just

√
〈f, f〉D and two

functions f 6= g are said to be orthogonal if 〈f, g〉D = 0. The SQ dimension of a function class F is
the largest number of pairwise orthogonal functions that belong to the function class. The following
theorem from [6] gives a lower bound on the number of statistical queries needed to learn the function
class in terms of its SQ dimension.

Theorem A (Restatement of Theorem from [6]). Let F be a concept class and let s be the SQ
dimension of F with respect to D. Then any learning algorithm that uses tolerance parameter lower
bounded by τ > 0 and has access to an oracle that returns τ -approximate expectations (with respect
to D) of unit norm correlation queries and queries that are independent of the target, requires at
least (sτ2 − 1)/2 queries.

C Omitted Proofs

Proof of Claim 1. For i ≥ 2,

R̂eLUi =
1√
2π

∫ ∞
−∞

ReLU(x)Hi(x)e−
x2

2 dx

=
1√
2πi!

∫ ∞
0

xHi(x)e−
x2

2 dx

=
1√
2πi!

∫ ∞
0

(Hi+1(x) + iHi−1(x))e−
x2

2 dx

=
1√
2πi!

(Hi(0) + iHi−2(0))

Here we used the additional property on the recurrence of H , that is, Hn+1(x) = xHn(x) −
nHn−1.

Proof of Claim 2. Since
∑
i∈S

(
1√
k

)2

= 1 using Fact A, we have

ReLU

(∑
i∈S zi√
k

)
=

∞∑
n=0

R̂eLUn√
n!
·Hn

(∑
i∈S zi√
k

)

=

∞∑
n=0

R̂eLUn√
n!
·

 ∑
n1+...+nk=n

n!

n1! · · ·nk!

k∏
j=1

1

knj/2
Hnj (zj)


=

∞∑
n=0

R̂eLUn√
n!
·

 1

kn/2
·

∑
n1+...+nk=n

n!

n1! · · ·nk!

k∏
j=1

Hnj (zj)


1Feldman et. al. [4] have shown that a broad class of first order convex optimization methods including

gradient descent – but excluding stochastic gradient descent – can be simulated using statistical queries
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=

∞∑
n=0

R̂eLUn√
n!
·

 1

kn/2

∑
n1+...+nk=n

n!

n1! · · ·nk!

k∏
j=1

√
nj !H̄nj (zj)


=

∞∑
n=0

R̂eLUn
kn/2

·
∑

n1+...+nk=n

(
n!

n1! · · ·nk!

)1/2 k∏
j=1

H̄nj (zj)

Proof of Claim 3. Since j ∈ S, removing index j, Ezj [χS(z)|z−j ] = 0. Thus, for the input, the label
is a Bernoulli random variable with probability 1/2. Thus we have,

errDj (ReLUw)

= Ez∼N (0,Id)[(ReLU(w · z−j)− y′)2]

=
1

2

(
Ez−j∼N (0,Id−1)

[
(ReLU(w · z−j)− 1)

2
]

+ Ez−j∼N (0,Id−1)

[
(ReLU(w · z−j))2

])
= Ez−j∼N (0,Id−1)

[
ReLU(w · z−j)2

]
− Ez−j∼N (0,Id−1) [ReLU(w · z−j)] +

1

2

=
||w||2

2
− ||w||√

2π
+

1

2

Here the third equality follows since j ∈ S and not in z−j therefore, the label is random for the
ReLU. The last equality follows from Lemma A. Note that, for any ReLU, the minimum error is
achieved when ||w|| = 1√

2π
. Thus when j 6∈ S the best ReLU achieves error at least 1

2 −
1

4π .

Proof of Claim 4. Since j is not a relevant variable S ⊆ [d] \ {j}, from Theorem 1, we know that
there exists ReLUwS with ||wS || = 1/

√
2π dependent only on variables in S correlated with χγS ,

errDj (ReLUwS )

= Ez∼N (0,Id)[(ReLU(wS · z)− y′)2]

= (1− η)Ez∼N (0,Id)

[(
ReLU(wS · z)−

∏
i∈S sign(zi) + 1

2

)2
]

+ ηEz∼N (0,Id)

[(
ReLU(wS · z)−

1−
∏
i∈S sign(zi)

2

)2
]

= Ez∼N (0,Id)

[
ReLU(wS · zS)2

]
− (1− 2η)Ez∼N (0,Id)

[
ReLU(wS · z)

∏
i∈S

sign(zi)

]

− Ez∼N (0,I) [ReLU(wS · z)] +
1

2
Ez∼N (0,Id)

[∏
i∈S

sign(zi)
2

]

=
||wS ||2

2
− ||wS ||√

2π
+

1

2
− (1− 2η)Ez∼N (0,Id)

[
ReLU(wS · z)

∏
i∈S

sign(zi)

]

≥ ||w
∗||2

2
− ||w

∗||√
2π

+
1

2
− 2−O(k)

1− 2η
=

1

2
− 1

4π
− 2−O(k)

1− 2η

Proof of Theorem 4. Define the problem of ‘restricted k-sparse parities’ as the problem of learning
an unknown parity function χS over set S, where S contains k out of the first d variables over D with
input distribution Db ×N (0, Id)+. Here Db is the uniform distribution on {±1}d and the labels y(x)
are given by χS(x). It is easy to see that Theorem A implies that we require dΩ(k) unit norm queries
to learn this function class from queries to an oracle O with tolerance 1/poly(d, 2k).
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We give a proof by contradiction. Suppose we can agnostically learn ReLUs with respect to Gaussian
marginals using an SQ algorithm A with do(log 1

ε ) queries to the corresponding oracle with tolerance
1/poly(d, 1

ε ). We will show how to use A to design an SQ algorithm for the problem of learning
restricted k-sparse parities using do(k) queries contradicting Theorem A.

We essentially use the same approach as in Theorem 3. In order to learn the parity func-
tion, the reduction requires us to use an SQ learner to solve d different ReLU regression prob-
lems. Consider the mapping ν that takes as input x = (x1, . . . xd, g1, . . . , gd) and returns
x′ = (x1g1, . . . , xdgd). Using this transformation, the ReLU regression problems we need to
minimize are E(x,y)∼D

[(
ReLUw(ν(x)−i)− y+1

2

)2]
up to an additive ε = 2−ck. Observe that for

(x, y) ∼ D, (x′, y′) = (ν(x), (y+ 1)/2) is distributed according to someD′ where the distribution on
ν(x) isN (0, Id). Thus we can useA on this distribution to solve the optimization problem. However,
in order to run A, we need to simulate the queries A asks its oracle using O. To do so, for any
correlation query function g that A chooses, that is, query E(x′,y′)∼D′ [g(x′) · y′] we use correlation
query function g′ = 1

2g ◦ ν to O and for any query h that A chooses that is independent of the target,
we query function h′ = 1

2h ◦ ν.

Since for k = Θ(log 1
ε ), such an algorithm would solve the problem of ‘restricted k-sparse parities’

using do(k) queries of tolerance 1/poly(d, 2k). This contradicts the dΩ(k) lower bound on the number
of queries required to solve k-SPLN of tolerance 1/poly(d, 2k) we get from Theorem A.

Proof of Theorem 5. Let w∗ = arg min‖w‖=1 err(ReLUw) and so, err(ReLUw∗) = opt. Define
the Sgood to be the set of points that are α-close to the optimal ReLU, i.e. Sgood = {x : |y −
ReLUw∗(x)| ≤ α}. By Markov’s inequality,

Pr[x 6∈ Sgood] = Pr[|y − ReLUw∗(x)| ≥ α] ≤ opt

α2
.

This implies that all but an opt
α2 fraction of the points are α-close to their corresponding y’s. In the

first step of Algorithm 2, the labels become Boolean. Define the 0/1 error of the vector w as follows,
err0/1(w) = E[sign(y − α) 6= sign(w · x)]. Let w† be the argmin of err0/1(w) over all vectors w
with ‖w‖2 ≤ 1. Since for all elements in Sgood\{v : w∗ · v ∈ (0, 2α)}, sign(y − α) = sign(w∗ · x),

err0/1(w∗) ≤ Pr[x 6∈ Sgood\{v : w∗ · v ∈ (0, 2α)}]
≤ Pr[x 6∈ Sgood] + Pr[x ∈ {v : w∗ · v ∈ (0, 2α)}]

≤ opt

α2
+

1√
2π

∫ 2α

0

e−g
2/2dg ≤ opt

α2
+ 2α.

We now apply Theorem 8 from [1] which gives an algorithm with polynomial running time in d and
1/ε that outputs a w such that ‖w‖ = 1 and ‖w− w†‖ ≤ O(

(
opt
α2 + 2α

)
) + ε. For unit vectors a,b,

θ(a,b) < C Pr[sign(a · x) 6= sign(b · x)] for some absolute constant C where θ(a,b) is the angle
between the vectors (see Lemma 2 in [1]). The triangle inequality and the fact that ‖a− b‖ ≤ θ(a,b)
implies that if err0/1(a), err0/1(b) < η then ‖a − b‖ ≤ C Pr[sign(a · x) 6= sign(b · x)] ≤ O(η).
Applying this to w† and w∗ yields ‖w†−w∗‖ < O( opt

α2 +2α). Since the ReLU function is 1-Lipschitz,
we have

err(ReLUw) = E[(y − ReLU(w · x))2]

≤ 2E[(y − ReLU(w∗ · x))2] + 2E[(ReLU(w∗ · x)− ReLU(w · x))2]

≤ 2opt + 2E[((w∗ − w) · x)2]

= 2opt + 2‖w∗ − w‖2 ≤ O

(
opt +

(opt
α2

+ 2α
)2

+ ε

)
Setting α = opt1/3 and rescaling ε we have err(ReLUw) ≤ O(opt2/3) + ε.
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