
Cormorant: Covariant Molecular Neural Networks
Supplemental Material

Brandon Anderson∗‡, Truong-Son Hy∗ and Risi Kondor∗†]
∗Department of Computer Science, †Department of Statistics

The University of Chicago
] Center for Computational Mathematics, Flatiron Institute

‡ Atomwise
{hytruongson,risi}@uchicago.edu

brandona@jfi.uchicago.edu

1 Architecture

As discussed in the main text, our Cormorant architecture is constructed from three basic building
blocks: (1) an input featurization that takes (Zi, ri) and outputs a scalar, (2) a set of covariant CG
layers that update F si to F s+1

i , (3) a layer that takes the set of covariant activations F si , and construct
a permutation and rotation invariant regression target.

1.1 Notation

Throughout this section, we will follow the use the main text, and denote a SO(3)-vector at layer s
by F s = (F s0 , . . . , F

s
L) with maximum weight L. Each SO(3)-vector has corresponding type τs, and

lives in a representation space F s ∈ V s =
⊕Ls

`=0 V̄
τs
`

` , where V̄` = C(2`+1)×1 is the representation
space for irreducible representation of SO(3) with multiplicity 1. We will also introduce the vector
space for the edge network V sedge =

⊕Ls

`=0 Cτ
s
` .

See Table 1 for a more complete table of symbols used in the supplement and main text.

1.2 Overall structure

The Cormorant network is a function CORMORANT ({Zi, ri}) : ZN × RN×3 → R that takes a
set of N charge-positions {Zi, ri} and outputs a single regression target. The

CORMORANT ({Zi, ri}) = OUTPUT (CGNet (INPUT ({Zi, ri}))) (S1)

networks are constructed from three basic units:

1. INPUT ({Zi, ri}) : ZN × RN×3 → (V̄0)N which takes the N charge-position pairs and
outputs N sets of scalar feature vectors cin. (See section 1.3.)

2. CGNet ({Fi, ri}) : (V̄0)N × RN×3 →
⊕S

s=0 (V s)
N takes the set of scalar features from

INPUT ({Zi, ri}), along with the set of positions for each atom, and outputs a SO(3)-
vector for each level s = 0, . . . , S using Clebsch-Gordan operations. (See section 1.4.)

3. OUTPUT
(⊕S

s=0(V s)N
)
→ R takes the output of CGNet above, constructs a set of

scalars, and then constructs a permutation-invariant prediction that can be exploited at the
top of the network. (See section 1.5.)

This design is organized in a modular way to separate the input featurization, the covariant SO(3)-
vector layers, and the output regression tasks. Importantly, the INPUT and OUTPUT networks are

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Symbol Meaning
Zi Atomic charge of atom i (e.g., Hydrogen would be Zi = 1, and Carbon would be Zi = 6)
ri Position of atom i
rij Relative position of atoms i and j: rij = ri − rj
r̂ij Unit vector in the direction of rij
s Index of a CGLayer in Cormorant
S Top CGLayer
` Index of an irreducible representation of SO (3)
L Largest index in a representation
m Component m ∈ [−`, `] of a SO (3)-vector
τs Vector of multiplicities of a SO (3)-vector at layer s
nc Number of output channels of a CGLayer

V̄` Representation space for irrep with index ` and multiplicity τ` = 1: V̄` = C(2`+1)×1

V s Representation space for SO (3)-vector of type τs: V s =
⊕L

`=0 V̄
τs
`

`

V sedge Vector space for an scalar edge network at layer s: V sedge =
⊕L

`=0 Cτ
s
`

F si SO (3)-vector atom-activation at layer s for atom i
Y ` (r̂ij) Spherical harmonics of weight ` in the direction of r̂ij
Yij SO (3)-vector of spherical harmonics connecting atoms i and j: Yij =

⊕L
`=0 Y

` (r̂ij)
gsij Scalar edge activation layer s connecting atoms i and j
dsij Scalar matrix of dot products dsij = F si · F sj
ηsij Radial basis functions between atoms i and j
Gsij SO (3)-vector edge activation layer s connecting atoms i and j

W vertex
s,` Weight mixing matrix for component ` of atom SO (3)-vector activations at layer s
W edge
s,` Weight mixing matrix for component ` of scalar edge activations at layer s

Table 1: Table of symbols used in the main text and supplement.

different for GDB9 and MD17. However, the covariant SO(3)-vector layers CGNet were identical
in design and hyperparameter choice. We include these designs and choices below.

1.3 Input featurization

1.3.1 MD-17

For MD-17, the input featurization was determined by taking the tensor product F̃i = onehoti⊗ ~Zi,
where onehoti is a one-hot vector determining which of Nspecies atomic species an atom is, and
~Zi = (1, Z̃i, Z̃

2
i), where Z̃i = Zi/Zmax, and Zmax is the largest charge in the dataset. We then use

a single learnable mixing matrix to convert this real vector with 3×Nspecies elements to a complex
representation ` = 0 and Nc channels (or τi = (nc).)

We found for MD-17, a complex input featurization network was not significantly beneficial, and
that this input parametrization was sufficiently expressive.

1.3.2 QM-9

For the dataset QM-9, we used an input featurization based upon message passing neural networks.
We start by creating the vector F̃i = onehoti ⊗ ~Zi as defined in the previous section. Using this,
a weighted adjacency matrix is constructed using a mask in the same manner as in the main text:
µij = σ((rcut − rij)/w), with learnable cutoffs/width rcut/w and σ(x) = 1/(1 + exp(−x)) . This
mask is used to aggregate neighbors F̃ agg

i =
∑
j µijF̃j . The result is concatenated with F̃ , and

passed through a MLP with a single hidden layer with 256 neurons and ReLU activations with an
output real vector of length 2× nc. This is then resized to form a complex SO(3)-vector composed
of a single irrep of type τi = (nc).

2

1.4 Covariant SO(3)-vector layers

For both datasets, the central covariant SO(3)-vector layers of our Cormorant are identical. In both
cases, we used S = 4 layers with L = 3, followed by a single SO(3)-vector layer with L = 0. The
number of channels of the input tensors at each level is fixed to nc = 16, and similarly the set of
weights W reduce the number of channels of each irreducible representation back to nc = 16.

1.4.1 Overview

The algorithm can be implemented as iterating over the function

CGLayer
(
gsij , F

s
i , ri,

)
: (V sedge)

N×N × RN×N×3 × (V s)N → (V s+1
edge)N×N × (V s+1)N

where gsij ∈ (V sedge)
N×N and is an edge network at level s with cs channels for each ` ∈ [0, L], and

F si ∈ (V s)N is an atom-state vector that lives in the representation space at level s.

The function
(
gs+1
ij , F s+1

i

)
← CGLayer

(
gsij , F

s
i , ri

)
is itself constructed in the following way:

• gs+1
ij ← EdgeNetwork

(
gsij , rij , F

s
i

)
• Gs+1

ij ← Edge2Vertex
(
gs+1
ij , Y ` (r̂ij)

)
• F s+1

i ← VertexNetwork
(
F s+1
ij , F si

)
where:

1. EdgeNetwork
(
gsij , rij , F

s
i

)
: (V sedge)

N×N × RN×N×3 × (V s)N → (V s+1
edge)N×N is a

pair/edge network that combined the input pair matrix gsij at level s, with a position network
Fij,c = Fc (|rij |), and dij ∼ Fi ·Fj is a matrix of dot products, all of which will be defined
below. This output is then used to construct a set of representations that will be used as the
input to the VertexNetwork function below.

2. Edge2Vertex
(
gs+1
ij , Yij

)
: (V sedge)

N×N × (V)N×N → (V s)N×N takes the product
of the scalar pair network gs+1

ij , with the SO(3)-vector of spherical harmonics Yij =⊕L
`=0 Y

` (r̂ij), to produce a SO(3)-vector of edge scalar representations that will be con-
sidered in the aggregation step in VertexNetwork.

3. VertexNetwork
(
Gs+1
ij , F si

)
: (V s)N×N × (V s)N → (V s+1)N updates the vertex SO(3)-

vector activations by combining a “Clebsch-Gordan aggregation”, a CG non-linearity, a
skip connection, and a linear mixing layer.

1.4.2 Edge networks

Our edge network is an extension of the “edge networks” in Message Passing Neural Networks
Gilmer et al. [2017]. The EdgeNetwork function takes three different types of pair features, con-
catenates them, and then mixes them. We express write the edge network (Eq. (9)) in the main text)
with all indices explicitly included:

gs+1
`c,ij = ms

c,ij �
∑
c′

(⊕
c1

gs`c1,ij ⊕
⊕
c2

dsc2,ij ⊕
⊕
c3

η`c3,ij

)
c′

(
W edge
s,`

)
c′c

(S2)

where:

• W edge
s,` is a weight matrix at layer s for each ` of the edge network.

• gs`c1,ij is a set of edge activations from the previous layer.

• dsc2,ij =
⊕L

`=0 F
s
`c2i
· F s`c2j , is a matrix of dot products, where F`ci · F`cj =∑

m (−1)
m

(F`ci,mF`cj,−m).1

1Note that F`ci · F`cj =
∑

m (−1)m (F`ci,mF`cj,−m) is (up to a constant) just the CG decomposi-
tion C``0 (F`ci ⊗ F`cj). The specific matrix elements of the CG coefficients C``0 are 〈`m1`m2|00〉 ∝
(−1)m1 δm1,−m2 .

3

• ηs`c3,ij = ηs`c3 (|rij |) is a set of learnable basis functions. These functions are of the form
ηs`ck,n

(r) = r−k
(
sin (2πκs`nr + φs`n) + i sin

(
2πκ̄s`nr + φ̄s`n

))
, where κs`n, κ̄s`n, φs`n, and

φ̄s`n are learnable parameters, the list of channels c is found by flattening the matrix indexed
by c3 = (k, n), and i2 = −1.

• µs`c,ij is a mask that is used drop the radial functions smoothly to zero. This mask is
constructed through

µc,ij = σ
(
−
(
rij − rsc,soft

)
/wsc

)
,

where σ (x) is the sigmoid activation, rsc,soft is a soft cutoff that drops off with width wsc .

1.4.3 From edge scalar representations to SO(3)-vector

The functionGs+1
ij ← Edge2Vertex

(
gs+1
ij , Y ` (r̂ij)

)
will take the scalar output of the edge network

gs+1
`c,ij , and construct a set of SO(3)-vector representations using spherical harmonics through:

Gs+1
`c,ij = gs`c,ijY

` (r̂ij) (S3)

We note the normalization of the spherical harmonics here is not using the “quantum mechanical”
convention, but rather are normalized such that

∑
m

∣∣Y `m (r̂)
∣∣2 = 1. This is equivalent to scaling the

QM version by Y `m (r̂)→
√

2`+1
4π × Y

`
m (r̂).

1.4.4 Vertex networks

The function VertexNetwork is found by concatenating three operations:

F s+1
`,i =

(
VertexNetwork

(
Gs+1
ij , F si

))
`

(S4)

=
∑
c′

(⊕
c1

F s+1,ag
c1,i

⊕
⊕
c2

F s+1,nl
c2,i

⊕
⊕
c3

F s+1,id
c3,i

)
`,c′

(
W vertex
s,`

)
c′c

(S5)

where

1. F s+1,ag
i =

∑
j∈N(i)G

s+1
ij ⊗cg F

s
j is a CG-aggregation step and Gsij is the set of edge

representations calculated by Edge2Vertex.

2. F s+1,nl
i = F si ⊗cg F

s
i is a CG non-linearity.

3. F s+1,id
i = F si is just the identity function, or equivalently a skip connection.

4. W vertex
s,` is a atom feature mixing matrix.

1.5 Output featurization

The output featurization of the network starts with the construction of a set of scalar invariants from
the set of activations F si for all atoms i and all levels s = 0 . . . S. We extract three scalar invariants
from each activation F (dropping the i and s indices):

1. Take the ` = 0 component: ξ0(F) = F s`=0.
2. Take the scalar product with itself: ξ1(F) = Re[ξ̃1(F)] + Im[ξ̃1(F)] where ξ̃1(F) =∑`

m=−`(−1)mF s`,mF
s
`,−m.

3. Calculate the SO(3)-invariant norm: ξ2(F s) =
∑`
m=−` F

s
`,m

(
F s`,m

)∗
.

These are then concatenated together to get a final set of scalars: xi =
⊕S

s=0 ξ0(F si) ⊕⊕L
`=0(ξ1(F si)⊕ ξ2(F si)) and fed into the output network network.

1.5.1 MD-17

The output for the MD-17 network is straightforward. The scalars xi are summed over, and then a
single linear layer is applied: y = A (

∑
i xi) + b.

4

1.5.2 QM-9

The output for the QM-9 is constructed using two multi-layer perceptrons (MLPs). First, a MLP
is applied to the scalar representation xi at each site. The result is summed over all sites, forming
a single permutation invariant representation of the molecule. This representation is then used to
predict a single number used as the regression target: y = MLP2 (

∑
i MLP1(xi)). Here, both

MLP1 and MLP2 have a single hidden layer of size 256, and the intermediate representation has 96
neurons.

1.6 Weight initialization

All CG weights W ` were initialized uniformly in the interval [−1, 1], and then scaled by a factor of
W `
τ in
` ,τ

out
`
∼ Unif(−1, 1) ∗ g/(τ in` + τout`), where τ in` , τout` and g is the weight gain.

We chose the gain to ensure that the activations at each level were order unity when the network is
initialized. We found that if the gain was too low, the CG products in higher levels would not signifi-
cantly contribute to training, and information would only flow through linear (one-body) operations.
This would result in convergence to poor training error. On the other hand, if the gain is set too high,
the CG non-linearities dominate at initialization and would increase the change of the instabilities
discussed above.

In practice, the gain was hand-tuned by such that the mean of the absolute value of the CG activations
1/(NatomNc(2`+ 1))

∑
`,i,c,m |F s`,i,c,m| at each level was approximately unity for a random mini-

batch. For experimental results presented here, we used a gain of g = 5.

2 Experimental details

We trained our network using the AMSGrad [Reddi et al., 2018] optimizer with a constant learning
rate of 5 × 10−4 and a mini-batch size of 25. We trained for 512 and 256 epoch respectively for
MD-17 and QM-9. For each molecule in MD-17, we uniformly sampled 50k/10k/10k data points
in the training/validation/test splits respectively. In QM-9 the dataset was randomly split to 100k
molecules in the train set, with 10% in the test set, and the remaining in the validation set. We
removed the 3054 molecules that failed consistency requirements [Ramakrishnan et al., 2014], and
also subtracted the thermochemical energy [Gilmer et al., 2017] for the targets Cv , U0, U , G, H ,
ZPVE.

For both datasets, we used, S = 4 CGLayers with L = 3 and we used Nc = 16 channels at the
output of each CGLayer. This gave networks with 299808 and 154241 parameter respectively for
QM-9 and MD-17. Training time for QM-9 is takes roughly 48 hours on a NVidia 2080 Ti GPU.
Training time for MD-17 varies based upon the molecule being trained, but typically ranges between
26 and 30 hours.

2.1 Training instabilities

Training our Cormorant had several subtleties that we both believe are related to the nature of the
CG non-linearity. We found a poor choice of weight initialization or optimization algorithm will
frequently result in either: (1) an instability resulting in very large training loss (> 106), from
which the network will never recover, or (2) convergence to weights where the activation of CG
non-linearities in higher layers turn off, and the resulting training error is poor.

We believe these difficulties are a result of the CG non-linearity, which is quadratic and unbounded.
In fact, our network is just a high-order polynomial function of learnable parameters.2 For the
hyperparameters used in our experiments, the prediction at the top is a sixteenth order polynomial
of our network’s parameters. As a result, in certain regions of parameter space small gradient updates
can result in rapid growth of the output amplitude or a rapid drop in the importance of some channels.

These issues were more significant when we used Adam [Kingma and Ba, 2015] then AMSGrad, and
when the network’s parameters were not initialized in a narrow range. Using the weight initialization

2This is true for MD-17, although for QM-9, the presence of non-linearities in the fully-connected MLPs
adds a more conventional non-linearity.

5

scheme discussed in Sec. 1.6, we were able to consistently converge to low training and validation
error, provided we were limited to at most four CG layers.

References
J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum

chemistry. 70, 2017.
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015.
Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum chemistry

structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.
Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In Inter-

national Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
ryQu7f-RZ.

6

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ

	Architecture
	Notation
	Overall structure
	Input featurization
	MD-17
	QM-9

	Covariant SO(3)-vector layers
	Overview
	Edge networks
	From edge scalar representations to SO(3)-vector
	Vertex networks

	Output featurization
	MD-17
	QM-9

	Weight initialization

	Experimental details
	Training instabilities

