
Supplementary Material
Learning Erdős-Rényi Random Graphs via Edge Detecting Queries

Zihan Li, Matthias Fresacher, and Jonathan Scarlett (NeurIPS 2019)

All citations below are to the reference list in the main body.

A Proof of Lemma 1 (High Probability Typicality)
To prove that there exists a sequence εn → 0 such that P[G ∈ T (εn)]→ 1 as n→∞, it suffices to
show that P[G ∈ T (ε)]→ 1 as n→∞ for arbitrarily small (but fixed) ε > 0.

Since q = Θ(n−2(1−θ)) for some θ ∈ (0, 1), the average number of edges k = q
(
n
2

)
must grow

unbounded as n → ∞. Hence, the fact that P[(1 − ε)k ≤ k ≤ (1 + ε)k] → 1 follows via basic
binomial concentration (e.g., Chernoff bound). The bound on the degree is also easy to handle:

• For θ > 1
2 , the per-node degree follows a binomial distribution with mean (n− 1)q = Θ(nc)

for some c > 0. Hence, by the multiplicative form of the Chernoff bound [36, Sec. 4.1], the
probability of the degree exceeding 2nq (which exceeds double the average) behaves as e−Ω(nc).
By a union bound over the n nodes, we find that the probability of any node’s degree exceeding
2nq is at most ne−Ω(nc) → 0.
• For θ ≤ 1

2 , it suffices to consider the case θ = 1
2 , for which the probability of the maximal

degree exceeding log n is clearly highest. In this case, a given node’s degree follows a binomial
distribution with n − 1 trials and success probability Θ

(
1
n

)
, so the mean behaves as Θ(1).

Therefore, the probability of the degree exceeding log n equals the probability of being at least a
factor 1 + ∆ higher than the mean (n− 1)q, for some ∆ = Θ(log n). By a standard form of the
Chernoff bound [36, Sec. 4.1], this occurs with probability at most e−(n−1)q[(1+∆) log(1+∆)−∆],
which behaves as e−Ω(logn·log logn) since (n − 1)q = Θ(1). By a union bound over the n
nodes, the probability of any degree exceeding log n is at most ne−Ω(logn·log logn) → 0.

By far the most challenging event to handle in the typical set is the final one, (1− ε)(1− e−ν) ≤
PG[Y = 1] ≤ (1 + ε)(1− e−ν). The intuition behind the analysis is as follows:

• In generic notation, let A1, . . . , AN be independent events each occurring with probability r.
Then P

[⋃N
i=1Ai

]
= 1− (1− r)N , which behaves as (1− e−Nr)(1 + o(1)) as N →∞ with

r = Θ
(

1
N

)
.

• Letting Sj =
∑

1≤i1<...<ij≤N P[Ai1∩. . .∩Aij], we know from the Bonferroni inequalities [25]
that

P
[N⋃
i=1

Ai

]
≤
jmax∑
j=1

(−1)j+1Sj (11)

for odd jmax, and the inequality is flipped for even jmax.
• In the special case of independent events and N → ∞ with r = Θ

(
1
N

)
, assuming that

jmax = O(1), we have

jmax∑
j=1

(−1)j+1Sj =

jmax∑
j=1

(−1)j+1

(
N

j

)
rj (12)

= −
jmax∑
j=1

1

j!
(−Nr)j(1 + o(1)), (13)

since
(
N
j

)
= N !

j!(N−j)! = 1
j!N

j(1 + o(1)). Due to the limit
∑∞
j=1

1
j! (−Nr)

j = e−Nr − 1, (13)
is arbitrarily close to 1− e−Nr for large jmax, regardless of whether jmax is even or odd. As
one should expect, this matches the probability computed directly in the first dot point above.

• For the graph learning problem, we do not have independent events, but we will still show
similar behavior to (13) to deduce the precise probability of a positive test given G.

12

We now proceed with the formal argument.

High-probability counting event. Fix an arbitrary integer jmax > 0, and for each j = 1, . . . , jmax

and ` = 1, . . . , 2j − 1, let Uj,`(G) be the number of sets of exactly j edges in G that collectively
consist of exactly ` nodes.6 We define the following typicality event for a graph G:

Uj,`(G) ≤ 1

δ

(
n

`

)((`
2

)
j

)
qj , ∀j = 1, . . . , jmax, ` = 1, . . . , 2j − 1. (14)

We claim that the probability (with respect to G ∼ ER(n, q)) of this occurring is at least 1−O(δ),
where the implied constant depends on jmax.

To see this, first note that any fixed collection of j node pairs are all edges with probability qj . The
number of such collections satisfying the condition defining Uj,`(G) is at most

(
n
`

)((`2)
j

)
, i.e., first

choose ` nodes from n, and then choose j edges from the corresponding
(
`
2

)
possibilities. Hence,

E[Uj,l(G)] ≤
(
n

`

)((`
2

)
j

)
qj , (15)

and the 1 − O(δ) probability claim follows from Markov’s inequality, a union bound over j =
1, . . . , jmax and ` = 1, . . . , 2j − 1, and the assumption that jmax is finite.

Analysis of PG[Y = 1] with respect to a random test. Let G = (V,E) be a fixed graph whose
number of edges k and maximal degree d satisfies the typicality bounds in (4), and that also satisfies
the high-probability counting event (14). We write

P[Y = 1] = P
[⋃
e∈E

Ae

]
, (16)

where Ae is the event that both nodes from e are in the test (and hence P[Ae] = p2), and here and
subsequently we implicitly condition on G being the graph (i.e., we write P[·] in place of PG[·]). The
Bonferroni inequality therefore states that

P[Y = 1] ≤
jmax∑
j=1

(−1)j+1Sj (17)

for odd j (or the reverse for even j), where

Sj =
∑

1≤i1<...<ij≤k

P
[
Ae(i1) ∩ . . . ∩Ae(ij)

]
, (18)

and where Ae(i) is the i-th edge for some arbitrary but fixed ordering of the k edges.

We proceed by characterizing Sj for fixed j, assuming jmax = O(1) throughout. We will show that
the summation in (18) is asymptotically equivalent to the restricted summation in which the j edges
are disjoint, i.e., share no nodes in common. First note that for disjoint e(i1), . . . , e(ij), we have
P
[
Ae(i1) ∩ . . . ∩ Ae(ij)

]
= p2j . Since there are trivially at most

(
k
j

)
ways of choosing j disjoint

edges, it follows that∑
1≤i1<...<ij≤k

edges disjoint

P
[
Ae(i1) ∩ . . . ∩Ae(ij)

]
≤
(
k

j

)
· p2j (19)

=
(1

j!
· kj · p2j

)
(1 + o(1)), (20)

since k!
(k−j)! = kj(1 + o(1)) as k →∞ with j = O(1).

We now seek a matching lower bound to (20). The number of unordered sequences of j disjoint
edges is equal to 1

j! times the number ordered sequences of j disjoint edges, and to count the

6For some combinations of j and ` we trivially have Uj,`(G) = 0, but there is no need for us to explicitly
account for this.

13

latter, we consider a sequential selection of nodes. Whenever a node is selected, at most d + 1
nodes are ruled out due to being its neighbor (or itself), so the number of selections is at least
k(k − (d+ 1))(k − 2(d+ 1)) . . . (k − (j − 1)(d+ 1)). But since j = O(1) and d = o(k) (see (6)),
this simply behaves as kj(1 + o(1)), and we deduce that∑

1≤i1<...<ij≤k
edges disjoint

P
[
Ae(i1) ∩ . . . ∩Ae(ij)

]
≥
(1

j!
· kj · p2j

)
(1 + o(1)). (21)

We now show how to use (20) and (21) to deduce upper and lower bounds on Sj . In fact, the lower
bound is trivial, since we can simply drop any remaining terms (i.e., those with non-disjoint edges)
in (18) by lower bounding the summand by zero. For the upper bound, however, some additional
effort is required. We let N(i1, . . . , ij) denote the number of nodes that the edges e(i1), . . . , e(ij)
collectively contain, and write

Sj =

2j∑
`=1

∑
1≤i1<...<ij≤k
N(i1,...,ik)=`

P
[
Ae(i1) ∩ . . . ∩Ae(ij)

]
. (22)

We bound the inner summand separately for each `. Note that ` = 2j corresponds to the disjoint case
that we already handled, so we proceed by assuming that ` < 2j.

For each ` < 2j, the summand in (22) is equal to p`, and according to the high-probability event in
(14), the number of such summands is at most Uj,` ≤ 1

δ

(
n
`

)((`2)
j

)
qj , which we can crudely further

upper bound as

Uj,` ≤ O
(1

δ

)
· n`qj , (23)

since j and ` are both O(1). Since ` < 2j, or equivalently ` ≤ 2j − 1 or j ≥ `+1
2 , we can write

qj ≤ q`/2 · q1/2 (note that q < 1), which implies

Uj,` ≤ O
(1

δ

)
· n`q`/2q1/2, (24)

and hence ∑
1≤i1<...<ij≤k
N(i1,...,ik)=`

P
[
Ae(i1) ∩ . . . ∩Ae(ij)

]
≤ O

(1

δ

)
· n`q`/2q1/2p` (25)

≤ O
(q1/2

δ

)
· k`/2p`, (26)

where we have used k =
(

1
2qn

2
)
(1 + o(1)). Now observe that if we choose δ to tend to zero at a

strictly slower rate than q1/2, the O(·) term in (26) behaves as o(1). Since kp2 = Θ(1) by our choice
of p, and ` = O(1) by assumption, we conclude that overall (26) vanishes as n→∞, for any ` < 2j.
In contrast, the term (21) corresponding to ` = 2j behaves as Θ(1). Since there are only a finite
number of ` values, we deduce that the overall outer sum (22) is asymptotically equivalent to its first
term characterized in (20)–(21):

Sj =
(1

j!
· kj · p2j

)
(1 + o(1)). (27)

By identifying this asymptotic expression with (13), with N = k and r = p2, we conclude that the
following holds as jmax →∞:

P[Y = 1] =
(
1− e−kp

2)
(1 + o(1)) = (1− e−ν) · (1 + o(1)), (28)

since p2 = ν
k

= ν
k (1 + o(1)). In other words, by choosing jmax sufficiently large, we can ensure that

under the high-probability event in (14) and the high-probability bounds on k and d in (4), it holds
that (1− e−ν)(1− ε) ≤ P[Y = 1] ≤ (1− e−ν)(1 + ε) for arbitrarily small ε > 0 and sufficiently
large n. This completes the proof of Lemma 1.

14

B Proof of Theorem 1 (Converse Bound)
We use a conditional form of Fano’s inequality (e.g., [39, Thm. 3]) with conditioning on the event
that the number of edges k in G satisfies (1 − ε)k ≤ k ≤ k(1 + ε) for small ε > 0. Denoting this
event by A, and using the usual notation H(X), H(Y |X), I(X;Y), etc. for entropy and mutual
information, Fano’s inequality gives

Pe ≥ P[A]
H(G|Ĝ,A = true)− log 2

log |GA|
(29)

= P[A]
H(G|A = true)− I(G; Ĝ|A = true)− log 2

log |GA|
, (30)

where GA is the set of graphs such that (1− ε)k ≤ k ≤ k(1 + ε).

Note that the preceding condition on k is a standard notion of typicality for collections of independent
random variables (in this case, edges). Using standard properties of typical sets [41, App. C], we have
P[A] = 1 − o(1), log |GA| =

(
n
2

)
H2(q)(1 + o(1)), and H(G|A = true) =

(
n
2

)
H2(q)(1 + o(1)),

where H2(q) = q log 1
q + (1 − q) log 1

1−q is the binary entropy function. In addition, the data

processing inequality [21, Sec. 2.8] gives I(G; Ĝ|A = true) ≤ I(G;Y|A = true), and since
Y ∈ {0, 1}t, this mutual information is further upper bounded by t log 2. Substituting the preceding
findings into (30) yields

Pe ≥
(

1− t log 2(
n
2

)
H2(q)

)
(1 + o(1)). (31)

Since we consider the regime q → 0, we have H2(q) =
(
q log 1

q

)
(1 + o(1)), and hence

Pe ≥
(

1− t log 2
1
2qn

2 log 1
q

)
(1 + o(1)). (32)

Since k = 1
2qn

2(1 + o(1)), we conclude that achieving Pe → 0 requires (7).

C Proof of Theorem 2 (COMP Upper Bound)
Since the random graph is in the typical set (4) with probability approaching one, it suffices to
establish that the number of tests (8) yields asymptotically vanishing error probability conditioned on
an arbitrary typical graph G ∈ Tn(εn), with εn = o(1) due to Lemma 1. We implicitly condition on
such a graph throughout the analysis.

Let (i, j) be a given non-edge of G. A particular test fails to identify this non-edge if either (i) i
and/or j are not included in the test; or (ii) i and j are both in the test, but there is also an edge
covered by the test. Hence, the probability that a given test fails to identify (i, j) as a non-edge is

p0 := (1− p2) + p2P
[
Y = 1

∣∣ {i, j} ⊆ L], (33)

where we recall that L is the set of nodes in the test. Note that to obtain Y = 1, we need the test to
include either a node with an edge connected to i or j, or two separate nodes with an edge between
them. Denoting these two events by A1 and A2, we have

P
[
Y = 1

∣∣ {i, j} ⊆ L] ≤ P
[
A1

∣∣ {i, j} ⊆ L]+ P
[
A2

∣∣ {i, j} ⊆ L] (34)

≤ 2dp+ P[Y = 1], (35)

where the first term follows because there are at most 2d nodes connected to i or j, and the second term
uses the fact that A2 is independent of the event {i, j} ⊆ L and in itself implies Y = 1. Substituting
P[Y = 1] = (1 − eν)(1 + o(1)) in accordance with (4), recalling from (6) that 2dp = o(1), and
returning to (33), we obtain

p0 ≤ 1− p2 + p2
(
(1− eν)(1 + o(1)) + o(1)) (36)

= 1− p2e−ν(1 + o(1)), (37)

15

since ν is constant. Hence, the probability that all t tests fail to identify (i, j) as a non-edge is

pt0 =
(

1− p2e−ν(1 + o(1))
)t

(38)

≤ e−tp
2e−ν(1+o(1)), (39)

since 1− α ≤ e−α. Substituting p2 = ν
k (1 + o(1)) and setting ν = 1, we obtain

pt0 ≤ e−
t
ek (1+o(1)), (40)

and by a union bound over at most
(
n
2

)
≤ n2 non-edges, it follows that

P[error] ≤ n2e−
t
ek (1+o(1)). (41)

Re-arranging, we deduce that P[error]→ 0 as long as

t ≥
(
2e · k log n

)
(1 + η) (42)

for arbitrarily small η > 0. Since k = k(1 + o(1)) for all typical graphs, and the probability that G is
typical tends to one (see Lemma 1), we obtain the condition in (8).

D Proof of Theorem 3 (DD Upper Bound)
Since the random graph is in the typical set (4) with probability approaching one, it suffices to
establish that the number of tests (9) yields vanishing error probability conditioned on an arbitrary
typical graph G ∈ Tn(εn), with εn = o(1) due to Lemma 1. We implicitly condition on such a graph
G throughout the analysis.

D.1 First Step
The first step of DD gives a set of “possible edges” PE that may contain non-edges. Let H0 be the
total number of non-edges in PE, and let H1 be the number of non-edges in PE such that at least one
of its two nodes forms part of at least one true edge. Since the total number of non-edges is less than
n2, we have from (40) that

E[H0] ≤ n2e−
t
ek (1+o(1)). (43)

Similarly, since the total number of non-edges sharing a node with a true edge is at most 2kd (and
also trivially less than n2), we have

E[H1] ≤ min{2kd, n2}e− t
ek (1+o(1)). (44)

By Markov’s inequality, it follows for any ξ0 > 0 and ξ1 > 0 that that

P[H0 ≥ n2ξ0] ≤ n2(1−ξ0)e−
t
ek (1+o(1)) (45)

P[H1 ≥ n2ξ1] ≤ min{2kd, n2}n−2ξ1e−
t
ek (1+o(1)). (46)

Re-arranging, we deduce that these two probabilities both vanish as n→∞ as long as

t ≥
(

2(1− ξ0)ek log n
)

(1 + η), (47)

t ≥ (1 + η)ek log n×


2(1− ξ1) 3

4 ≤ θ < 1

4θ − 1− 2ξ1
1
2 < θ < 3

4

2(θ − ξ1) 0 < θ ≤ 1
2

(48)

for arbitrarily small η > 0; here, the first case uses the n2 term in the min{·} in (46), the second
case uses the 2kd term and the fact that k = Θ(n2θ) and d = Θ(nq) = Θ(n2θ−1) for θ > 1

2 , and the
third case uses k = Θ(n2θ) and d = O(log n) for θ ≤ 1

2 .

It will shortly prove convenient to ensure that H0 = o(k) and H1 = o(
√
k) (with high probability).

We achieve this by setting ξ0 to be arbitrarily close to (but still less than) θ, and similarly ξ1 arbitrarily
close to θ/2, so that the above requirements simplify to

t ≥
(
2(1− θ)ek log n

)
(1 + η), (49)

t ≥ (1 + η)ek log n×


2− θ 3

4 ≤ θ < 1

3θ − 1 1
2 < θ < 3

4

θ 0 < θ ≤ 1
2

(50)

for arbitrarily small η > 0.

16

D.2 Second Step
We condition on the above-mentioned high-probability events from the first step holding: H0 = o(k)

and H1 = o(
√
k). In addition, we may assume that the number of positive tests T+ satisfies

T+ = t(1− e−ν)(1 + o(1)), (51)

as this occurs with probability approaching one as t → ∞ in accordance with (28) and standard
concentration (e.g., Hoeffding’s inequality). We henceforth condition on any such T+ = t+, as well
as a set PE = peh0,h1

that yields H0 = h0 = o(k) and H1 = h1 = o(
√
k).

For a given true edge (i, j), let Ti,j be the number of tests containing (i, j) and no other edges from
PE. We claim that the distribution of Ti,j given t+ and peh0,h1

is

(Ti,j | t+,peh0,h1
) ∼ Binomial

(
t+,

qi,j
q+

)
, (52)

where qi,j is the conditional probability (given PE = peh0,h1
) of a given test including (i, j) and no

other pairs from PE, and q+ = (1 − e−ν)(1 + o(1)) is the unconditional probability of a positive
test. While the distribution (52) is intuitive, its derivation is somewhat tedious, so it is postponed to
the end of this appendix (Section D.4).

We proceed by lower bounding qi,j . For a given random test, let A1 be the event that the test includes
a pair in PE connected to either i or j, and let A2 be the event that the test includes a pair in PE
connected to neither i nor j. Given that (i, j) is in the test (which occurs with probability p2), (i, j)
fails to be the unique PE in the test only if either A1 or A2 occurs, so

qi,j = p2 ·
(
1− P[A1 ∪A2 |peh0,h1

, {i, j} ⊆ L]
)

(53)

≥ p2 ·
(
1− P[A1 |peh0,h1

, {i, j} ⊆ L]− P[A2 |peh0,h1
, {i, j} ⊆ L]

)
(54)

≥ p2 ·
(
1− (2d+ h1)p− P[A2 |peh0,h1

, {i, j} ⊆ L]
)

(55)

= p2 ·
(
1− o(1)− P[A2 |peh0,h1

, {i, j} ⊆ L]
)
, (56)

where the (2d+ h1)p term in (55) arises from at most 2d true edges connected to i or j and at most
an additional h1 non-edges in PE connected to i or j, and (56) follows from the fact that p = Θ

(
1√
k

)
along with d = o(

√
k) and h1 = o(

√
k).

To characterize the probability of A2 in (56), we write A2 = A′2 ∪ A′′2 , where A′2 is the event that
the test includes a true edge connected to neither i nor j, and A′′2 is the event that the test includes a
non-edge in PE connected to neither i nor j. We have

P[A2 |peh0,h1
, {i, j} ⊆ L] ≤ P[A′2 |peh0,h1

, {i, j} ⊆ L] + P[A′′2 |peh0,h1
, {i, j} ⊆ L] (57)

= P[A′2] + P[A′′2 |peh0,h1
, {i, j} ⊆ L] (58)

≤ P[Y = 1] + h0p
2 (59)

= (1− e−ν)(1 + o(1)), (60)

where (58) uses the fact that A′2 is independent of all events being conditioned on (since A′2 concerns
only true edges separate from {i, j}), the first term in (59) uses the fact that the event A′2 implies
Y = 1, the second term in (59) uses the fact that there are at most h0 possible pairs each included
with probability p2, and (60) uses P[Y = 1] = (1 − e−ν)(1 + o(1)) along with h0 = o(k) and
p2 = Θ

(
1
k

)
.

Substituting (60) into (56) gives

qi,j ≥ p2e−ν(1 + o(1)) (61)

=
νe−ν

k
(1 + o(1)), (62)

recalling that p2 = ν
k (1 + o(1)). Returning to (52), we find that

Ti,j ∼ Binomial
(
t+,

ν

k
· e−ν

1− e−ν
· (1 + o(1))

)
, (63)

17

and since t+ = t(1 − e−ν)(1 + o(1)) and a Binomial(N, r) random variable equals zero with
probability (1− r)N ≤ e−Nr, it follows that

P[Ti,j = 0] ≤ exp

(
− t

k
· νe−ν · (1 + o(1))

)
, (64)

and hence

P
[⋃

(i,j)∈E

{Ti,j = 0}
]
≤ k exp

(
− t

k
· νe−ν · (1 + o(1))

)
. (65)

Re-arranging, setting ν = 1, and writing log k = (2θ log n)(1 + o(1)), we find that the second step
of DD succeeds as long as

t ≥
(
2θek log n

)
(1 + η) (66)

for arbitrarily small η > 0.

D.3 Combining and Simplifying

To complete the proof of Theorem 3, we only need to show that given the requirements (49) and (66),
the additional requirement (50) is redundant (recall also that k = k(1 + o(1)) for any typical graph
G). We handle the three cases separately:

• For the first case 3
4 ≤ θ ≤ 1, observe that the coefficient 2 − θ ≤ 1.25 in (50) is strictly less

than the coefficient 2θ ≥ 1.5 in (66).
• For the second case 1

2 < θ < 3
4 , observe that the coefficient 3θ − 1 < 2θ − 0.25 in (50) is

strictly less than the coefficient 2θ in (66).
• For the third case 0 < θ ≤ 1

2 , observe that the coefficient θ ≤ 1
2 in (50) is strictly less than the

coefficient 2(1− θ) ≥ 1 in (49).

D.4 Derivation of the Conditional Distribution (52)

The derivation of (52) is based on multinomial conditioning, and bears similarity to an analogous
conditional distribution for standard group testing [6, Sec. A.3]. To derive the conditional distribution
given t+ and peh0,h1

, we first need to consider certain unconditional distributions (though still with
implicit conditioning on a given typical graph G). We define the following random variables:

• T− is the number of negative tests, T̃i,j is the number of tests covering a given true edge
(i, j) ∈ E but no other true edges, and T̃extra is the number of tests covering two or more
true edges.

• Ti,j is the number of tests covering a given true edge (i, j) ∈ E and no other pairs from PE.

Since the tests are independent, (T−, {T̃i,j}(i,j)∈E , T̃extra) has a multinomial distribution with t
trials; the corresponding probability parameters are denoted by (q−, {q̃i,j}(i,j)∈E , q̃extra).

We now consider conditioning on T− = t− and PE = peh0,h1
. Under such conditioning, we can

characterize the joint distribution of ({Ti,j}(i,j)∈E , {T̃i,j − Ti,j}(i,j)∈E , T̃extra) via the following
lemma from [6], stated in generic notation.

Lemma 2. [6, Lemma C.1] Fix the integers ` and m, and let (W0, {Wi}`i=1,W`+1) have a multi-
nomial distribution with m trials and probabilities (r0, {ri}`i=1, r

′). Associate an observation
(W0, {Wi}`i=1,W

′) = (w0, {wi}`i=1, w
′) with an unordered list of m class labels (class 0, class

i = 1, . . . , `, or class ` + 1), and suppose that each label in class i = 1 . . . ,m is independently
changed to some class i′ with probability γi ∈ [0, 1], and to some class i′′ with probability 1 − γi
(where γi may depend on w0). Then, conditioned on W0 = w0, the corresponding random variables
({W ′i}`i=1, {W ′′i }`i=1,W`+1) counting the transformed class labels have a multinomial distribution
with m− w0 trials and the following probability parameters:({ riγi

1− r0

}`
i=1

,
{ri(1− γi)

1− r0

}`
i=1

,
r′

1− r0

)
. (67)

18

To apply this result, we associate (T−, {T̃i,j}(i,j)∈E , T̃extra) with (W0, {Wi}`i=1,W`+1), and asso-
ciate ({Ti,j}(i,j)∈E , {T̃i,j − Ti,j}(i,j)∈E , T̃extra) with ({W ′i}`i=1, {W ′′i }`i=1,W`+1). Conditioning
on T− = t− amounts to conditioning on W0, and conditioning on PE = peh0,h1

only amounts to
changing the value of γi, since PE is determined entirely by the negative tests. Notice that any test
contributing (i.e., adding one) to T̃i,j further contributes to Ti,j independently with probability γi,j ,
defined to be the conditional probability that some non-edge in peh0,h1

is covered by the test given
that (i, j) is the unique true edge covered. Hence, given T− = t− and PE = peh0,h1

, Lemma 2
implies that the random variables ({Ti,j}(i,j)∈E , {T̃i,j − Ti,j}(i,j)∈E , T̃extra) have a multinomial
distribution with t+ = t− t− trials and the following probability parameters:

• For (i, j) ∈ E, the parameter for Ti,j is q̃i,jγi,j
1−q− ;

• For (i, j) ∈ E, the parameter for T̃i,j − Ti,j is q̃i,j(1−γi,j)
1−q− ;

• The parameter for T̃extra is q̃extra
1−q− .

We conclude by showing that (52) follows from the first of these dot points, with the marginal
distribution of a multinomial distribution being binomial. The denominator 1− q− is trivially equal
to q+, and the numerator q̃i,jγi,j equals the product of two terms. To understand these terms, let
B̃i,j be the event that a given test covers (i, j) but no other true edge, and let Bi,j be the event that it
covers (i, j) but no other pair from PE. Then, the previous definitions can be written as

q̃i,j = P[B̃i,j], γi,j = P[Bi,j |peh0,h1
, B̃i,j]. (68)

In addition, we have P[B̃i,j] = P[B̃i,j |peh0,h1
], since B̃i,j is independent of PE (note that PE is

determined entirely by the negative tests, and B̃i,j only concerns true edges). As a result, we have

q̃i,jγi,j = P[B̃i,j |peh0,h1
]P[Bi,j |peh0,h1

, B̃i,j] (69)

= P[B̃i,j ∩Bi,j |peh0,h1
] (70)

= P[Bi,j |peh0,h1
], (71)

where (71) follows since Bi,j implies B̃i,j , because all true edges are in PE with probability one (i.e.,
the first step of DD has no false negatives). Finally, (71) coincides precisely with the definition of
qi,j stated following (52), and this completes the derivation of (52).

E Proof of Theorem 4 (SSS Lower Bound)
Since the random graph is in the typical set (4) with probability approaching one, it suffices to
establish that the number of tests (10) yields error probability tending to one conditioned on an
arbitrary typical graph G ∈ Tn(εn), with εn = o(1) due to Lemma 1. We implicitly condition on
such a graph G throughout the analysis.

Let Mij be the event that edge (i, j) is masked, i.e., whenever its nodes both appear in a test, the
nodes of some different edge are also included in the test. In this case, there exists a satisfying set (of
edges) of cardinality k − 1, so the algorithm will fail to output the true edge set. Hence,

Pe ≥ P
[⋃

(i,j)∈E

Mij

]
(72)

≥
∑

(i,j)∈E

P[Mij]
2∑

(i′,j′)∈E P[Mij ∩Mi′j′]
, (73)

where (73) is an application of de Caen’s bound [22].

We proceed by bounding the individual and pairwise masking probabilities. For a given edge (i, j) to
be masked, for each of the t tests we need either i or j to be excluded, or for the nodes of some other
edge to be included. Letting A(ij)

1 be the event that some other node connected to i or j is included,
and A(ij)

2 the event that two connected nodes distinct from i and j are included, the associated
masking event for a single test has probability

p
(ij)
1 = (1− p2) + p2P[A

(ij)
1 ∪A(ij)

2 | {i, j} ⊆ L]. (74)

19

We lower bound p(ij)
1 by ignoring the event A(ij)

1 :

p
(ij)
1 ≥ (1− p2) + p2P[A

(ij)
2 | {i, j} ⊆ L] (75)

= 1− p2 + p2P[A
(ij)
2], (76)

since A(ij)
2 is independent of whether {i, j} ⊆ L. Now observe that the unconditional probability of

a positive test satisfies

P[Y = 1] = P
[
{{i, j} ⊆ L} ∪A(ij)

1 ∪A(ij)
2

]
(77)

≤ P
[
{i, j} ⊆ L

]
+ P

[
A

(ij)
1

]
+ P

[
A

(ij)
2

]
(78)

≤ p2 + 2dp2 + P
[
A

(ij)
2

]
, (79)

and hence
P
[
A

(ij)
2

]
≥ PY (1)− ξ, (80)

where PY (1) is a shorthand for P[Y = 1], and ξ = (1 + 2d)p2. Substitution into (76) gives

p
(ij)
1 ≥ 1− p2(1− PY (1) + ξ). (81)

Next, we upper bound p(ij)
1 . Applying the union bound in (74), we obtain

p
(ij)
1 ≤ (1− p2) + p2

(
P[A

(ij)
1 | {i, j} ⊆ L] + P[A

(ij)
2 | {i, j} ⊆ L]

)
(82)

≤ (1− p2) + p2
(
2dp+ P[A

(ij)
2]

)
(83)

≤ 1− p2
(
1− PY (1)− ξ′

)
(84)

where (83) uses P[A
(ij)
1 | {i, j} ⊆ L] ≤ 2dp and the fact that A(ij)

2 is independent of whether
{i, j} ⊆ L, and (84) uses P[A

(ij)
2] ≤ PY (1) (see (77)) and defines ξ′ = 2dp.

Now, for the masking event Mij to occur, the probability-p(ij)
1 masking event needs to occur for all

tests, yielding P[Mij] = (p
(ij)
1)t. Moreover, for both Mij and Mi′j′ to occur, the case (i, j) = (i′, j′)

is handled trivially, whereas for (i, j) 6= (i′, j′) the associated events for (i, j) and (i′, j′) need to
occur simultaneously for each test. Since the complementary event (i.e., the edge is the only one
covered by the nodes included in the test) can only occur for one of (i, j) or (i′, j′), the associated
probability p(ij ∩ i′j′)

1 of both masking events occurring for a single test satisfies

1− p(ij ∩ i′j′)
1 = (1− p(ij)

1) + (1− p(i′j′)
1), (85)

i.e., P[A ∪B] = P[A] + P[B] for disjoint events A and B. Hence, from (84),

p
(ij ∩ i′j′)
1 ≤ 1− 2p2

(
1− PY (1)− ξ′

)
. (86)

Taking the intersection over the t tests gives P[Mij ∩Mi′j′] = (p
(ij ∩ i′j′)
1)t for all (i, j) 6= (i′, j′),

and substituting the preceding findings into (73) gives

P[error] ≥
∑

(i,j)∈E

(
pij1
)2t(

pij1
)t

+
∑

(i′,j′)6=(i,j)

(
p

(ij ∩ i′j′)
1

)t (87)

≥
∑

(i,j)∈E

(
1− p2(1− PY (1) + ξ)

)2t(
1− p2(1− PY (1)− ξ′)

)t
+
∑

(i′,j′) 6=(i,j)

(
1− 2p2(1− PY (1)− ξ′)

)t (88)

≥
k
(
1− p2(1− PY (1) + ξ)

)2t(
1− p2(1− PY (1)− ξ′)

)t
+ k
(
1− 2p2(1− PY (1)− ξ′)

)t , (89)

since |E| = k (in the denominator, we upper bound k − 1 ≤ k).

20

We upper bound the terms in the denominator in (89) using 1 − α ≤ e−α, and characterize the
numerator using 1− α = e−α+O(α2) as α→ 0 (recall that p2 = Θ

(
1
k

)
= o(1) and PY (1) = Θ(1)):

P[error] ≥ ke−2t
(
p2(1−PY (1)+ξ)+O(p4)

)
e−tp2(1−PY (1)−ξ′) + ke−2tp2(1−PY (1)−ξ′) (90)

≥ ke−tp
2(1−PY (1))

1 + ke−tp2(1−PY (1))
· e
−2t(p2ξ+O(p4))

e2tp2ξ′
. (91)

Since the converse bound we are proving is of the form t = Ω(k log n), we can assume without loss
of generality that t = Θ(k log n), as additional tests can only help the SSS algorithm.7 In addition, we
can assume without loss of generality that p2 = Θ

(
1
k

)
, since if p2 behaves as o

(
1
k

)
or ω

(
1
k

)
then the

probability of a positive test tends to 0 or 1 as n→∞, and it follows from a standard entropy-based
argument that ω(k log n) tests are needed [7, Lemma 1]. We claim that these conditions imply that

e−2t(p2ξ+O(p4))

e2tp2ξ′
→ 1. (92)

This is seen by noting that tp2 = Θ(log n) by the above-mentioned behavior of t and p2, whereas
the terms ξ = (1 + 2d)p2, ξ′ = 2dp, and O(tp4) all behave as O(n−c) for sufficiently small c. This
behavior is easy to see for the O(tp4) term by the above-mentioned behavior of t and p2, and is seen
to also hold for ξ and ξ′ by noting that dp = Θ

(
d√
k

)
, along with d = O(max{log n, nq}) (see (5)),

√
k = Θ(n

√
q), and the behavior of q in (3).

Substituting (92) into (91), we have

P[error] ≥ 1

1 + ketp2(1−PY (1))
(1 + o(1)), (93)

and substituting p2 = ν
k and 1− PY (1) = e−ν(1 + o(1)), we deduce that P[error]→ 1 whenever

t ≤ k log k

νe−ν
(1− η) (94)

for arbitrarily small η > 0. Since the function νe−ν is maximized at ν = 1, we deduce that
P[error]→ 1 whenever

t ≤
(
ke log k

)
(1− η). (95)

The proof is completed by recalling that for any typical graph, k = k(1 + o(1)) and log k =
(2θ log n)(1 + o(1)) (since k = Θ(n2θ)).

F Missing Details in the Proof of Theorem 5 (Sublinear-Time Decoding)
F.1 Details of Step 1 – Bundles of Tests
Recall that we form a number B of “bundles” of tests, where each node is placed in each bundle with
probability r ∈ (0, 1). For a given bundle, consider the probability pone of a given edge (i, j) being
the only edge among its nodes. Letting A1 be the event that some other node connected to i or j is in
the bundle, and letting A2 be the event that two different edge-connected nodes are in the bundle, we
have

pone = r2 · P[Ac1 ∩Ac2] (96)

≥ r2 ·
(
1− P[A1]− P[A2]

)
(97)

≥ r2 ·
(
1− 2dr − kr2

)
, (98)

where (98) uses the fact that there are at most 2d nodes connected to i or j, and at most k other edges
separate from i and j. Setting r = 1√

2k
gives

pone ≥
1

2k

(
1− 2d√

2k
− 1

2
· k
k

)
(99)

=
1

4k
(1 + o(1)), (100)

7If an incorrect set is satisfying with respect to a certain number of tests, it remains satisfying after removing
any subset of those tests. Hence, removing tests cannot decrease the error probability.

21

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Number of tests

Su
cc

es
s

pr
ob

ab
ili

ty
LP
DD
COMP

n = 80

n = 100

n = 120

n = 140

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Normalized number of tests

Su
cc

es
s

pr
ob

ab
ili

ty

LP
DD
COMP

n = 80

n = 100

n = 120

n = 140

Figure 3: (Left) Number of tests for COMP, DD, and LP under four different (n, k) pairs: n ∈
{80, 100, 120, 140} and k = n

10 . (Right) Normalized number of tests after division by k log 1
q , where

q is the probability of each edge in the graph.

since d�
√
k (see (6)) and k = k(1 + o(1)). Hence, the probability of (i, j) being the unique edge

in some bundle satisfies

pany = 1−
(

1− 1

4k
(1 + o(1))

)B
≥ 1− e−

B
4k

(1+o(1)),

and by a union bound over the k = k(1+o(1)) edges, we find thatB =
(
4k log k

)
(1+o(1)) bundles

suffice to ensure that every edge is the unique one in at least one bundle.

F.2 Details of Step 4 – Total Number of Tests and Decoding Time
The number of tests used is asymptotically dominated by that of the location tests, and recalling that
B =

(
4k log k

)
(1 + o(1)), we find that t = 4k(log k)(log2 n)2(1 + o(1)). We briefly mention that

this can be significantly reduced when adaptivity is allowed, similarly to standard group testing [18],
but our focus in this paper is on the non-adaptive setting.

For the decoding time, we notice that each multiplicity test takes O(logB) time (i.e., the same as
the number of tests used), whereas for the location test we can actually make the decoding time less
than the number of tests due to the fact that we don’t end up making use of most test outcomes.8
Specifically, each iteration from ` = 1, . . . , L observes at most 3 test outcomes and runs in O(1) time,
so the overall time per location test is O(L). Since the decoder makes use of B multiplicity tests
and k location tests (assuming no errors occur), the total runtime is O(B logB + O(kL)), which
simplifies to O(k log2 k + k log n).

G Additional Numerical Experiments
In order to demonstrate that the empirical performance of our algorithms is in agreement with our
theory, we plot the success probability as a function of the number of tests for various (k, n) pairs,
and then re-plot them with the number of tests normalized by k log 1

q (e.g., see Theorem 1; similar
normalization is also used in Figure 1). The results, averaged over 1000 trials, are shown in Figure 3.

As predicted by our theory, the resulting curves for each algorithm are in general agreement after
performing the normalization, with slight deviations due to noise and non-asymptotic considerations.
Moreover, according to the sparse regime of Figure 1, our theory suggests (for sufficiently sparse
settings) an asymptotic threshold of roughly 1 for the optimal algorithm (which LP approximates),
roughly 2 for DD, and slightly over 2 for COMP. The above figure is consistent with these numbers,
though they are slightly increased because of the penalty incurred for finite n (as opposed to n→∞),
and possibly also the choice k = n

10 (as opposed to k ∼ n2θ).
8We still need to perform such tests, because a priori we don’t know which O(L) size subset of the O(L2)

relevant tests performed will end up being useful.

22

H Results for General Edge and Degree Bounded Graphs
Since the assumption of independent edges is not always appropriate for modeling real-world
applications, there is substantial motivation to develop performance bounds that hold with high
probability for any given graph in a deterministic graph class.

An impossibility result of [1] shows that if one only fixes the number of edges to k, then achieving
t = O(k log n) scaling is not possible in the worst case. A natural question is then whether fixing
the number of edges k and maximum degree d results in t = O(k log n) scaling under suitable
assumptions on d. In this section, we argue that the answer is affirmative as long as d = o(

√
k).

Indeed, an inspection of our analysis reveals that the condition d ≤ dmax in the typical set (4)
was not used directly, but rather, was only used to establish (6). On the other hand, the condition
PG[Y = 1] = (1− e−ν)(1 + o(1)) played a significant role in our analysis, and it is unclear whether
it can be deduced from the condition d = o(

√
k) alone.

However, while exactly characterizing PG[Y = 1] for an arbitrary edge-bounded and degree-bounded
graph G may be difficult, we can easily find upper and lower bounds. First, by the union bound, we
have

PG[Y = 1] ≤ kp2 = ν, (101)

under the choice p =
√

ν
k . As for the lower bound, applying de Caen’s bound [22] and letting

A1, . . . , Ak be the events of the k edges having both their nodes included in the test, we have

PG[Y = 1] = PG
[⋃
i=1,...,k

{
Ai
}]

(102)

≥
∑

i=1,...,k

PG[Ai]
2

PG[Ai] +
∑
j 6=i PG[Ai ∩Aj]

. (103)

Note that PG[Ai] = p2 for all i, since the two nodes of the edge need to be included.

Among the terms
∑
j 6=i PG[Ai ∩Aj], there are at most 2d terms for which the two associated edges

share a node (d per node times two nodes), and for those terms we have PG[Ai ∩Aj] = p3. All other
terms (of which there are at most k) have PG[Ai ∩Aj] = p4, and hence

PG[Y = 1] ≥ kp4

p2 + 2dp3 + kp4
(104)

=
ν

1 + ν
(1 + o(1)), (105)

where we have used p =
√

ν
k and dp� 1.

With the above upper and lower bounds on PG[Y = 1] in place, upon fixing ν ∈ (0, 1) (e.g., ν = 1
2),

the rest of the analysis of COMP, DD, and SSS proceeds similarly to that done for the graphs
in the typical set (4),9 and yields analogous results with O(k log n) scaling, albeit slightly worse
constant factors. For GROTESQUE, the extension is even more immediate, since we did not use any
characteristics of PG[Y = 1] in its analysis.

I Challenges in the Analysis Compared to Standard Group Testing
Recall that the standard group testing problem concerns recovering a defective set S ⊆ {1, . . . , N}
of cardinality K from a set of N items, using a sequence of tests in groups of items [8, 23]. Each test
returns one if there is at least one defective item in the test, and zero otherwise. In this section, we
highlight some of the main challenges arising in our analysis of COMP, DD, SSS, and GROTESQUE
compared to their counterparts for standard group testing [6, 18, 19].

An immediate challenge is that in contrast with group testing, the analysis is not symmetric with
respect to graphs having a given number of edges (e.g., the degree of each node also plays a major
role). Related to this issue is the fact that the events associated with including two different edges in

9For SSS, we need to slightly strengthen the assumption d = o(
√
k) to d = o

(√
k

logn

)
; see the part of the

proof following (92).

23

a given test are not independent if those edges have a node in common. As a a result, we frequently
need to distinguish between error events for neighbors vs. non-neighbors of a given node pair (i, j).

For the COMP algorithm (cf., Section 4.1), our analysis closely follows that of group testing after
Lemma 1 (establishing the asymptotic behavior of PG[Y = 1]) is established. However, as seen in
Appendix A, the proof of that lemma was in itself highly non-trivial.

For DD (cf., Section 4.2), in addition to Lemma 1, additional effort is needed to handle the fact that
different graphs lead to different probabilities of the key error events, which is not the case in group
testing. The first step (Section D.1), distinguishes between the total number of non-edges in PE, and
the number that actually share a node in common with a true edge, leading to several conditions on
t in (49)–(50) that luckily end up simplifying in Section D.3. This also impacts the analysis of the
second step (Section D.2), where we require a careful analysis in (53)–(60) to characterize the key
“success event” of including a given edge and no other pairs from the set PE.

For SSS, (cf., Section 5), we face similar difficulties in bounding the individual and pairwise events
in (73), with a more delicate analysis leading to the remainder terms ξ and ξ′ in (80) and (84). To
complete the analysis after (91), it is essential that these remainder terms not only behave as o(1), but
decay to zero sufficiently fast.

For GROTESQUE (cf., Section 6), the multiplicity test (cf., Section 6.2) is a fairly straightforward
extension of that of standard group testing. However, the location test (cf., Section 6.3) is more novel.
In group testing, each item can be assigned a unique length-L binary string, and the single defective
item under consideration can trivially be identified using one test per bit. In our setting, we need
to design tests that simultaneously identify two nodes, and when the two bits of the corresponding
strings differ, we need to ensure that the bit assignments are done in a consistent manner across the L
indices (cf., Step 3(b) in Section 6.3).

24

	Proof of Lemma 1 (High Probability Typicality)
	Proof of Theorem 1 (Converse Bound)
	Proof of Theorem 2 (COMP Upper Bound)
	Proof of Theorem 3 (DD Upper Bound)
	First Step
	Second Step
	Combining and Simplifying
	Derivation of the Conditional Distribution (52)

	Proof of Theorem 4 (SSS Lower Bound)
	Missing Details in the Proof of Theorem 5 (Sublinear-Time Decoding)
	Details of Step 1 – Bundles of Tests
	Details of Step 4 – Total Number of Tests and Decoding Time

	Additional Numerical Experiments
	Results for General Edge and Degree Bounded Graphs
	Challenges in the Analysis Compared to Standard Group Testing

