
A Justification for using Ambiguity Sets with a Fixed Mean Vector

We provide some empirical evidence to justify the ambiguity sets with a fixed mean vector used
in Sections 2 and 3. Towards this end, we first fix a matrix A ∈ Rn×n, where each element is
drawn independently from a standard Gaussian distribution, and set Σ , AA>. We then generate
N ∈ {20, . . . , 100} i.i.d. samples x̂1, . . . , x̂N from the Gaussian distribution Q = N (0,Σ), and
compute the empirical mean µ̂N and the empirical covariance matrix Σ̂N as

µ̂N =
1

N

N∑
i=1

x̂i and Σ̂N =
1

N − 1

N∑
i=1

(x̂i − µ̂N )(x̂i − µ̂N )>.

We now construct two probability distributionss based on µ̂N and Σ̂N , that is, we set

P̂N,0 = N (0, Σ̂N ) and P̂N,Σ = N (µ̂N ,Σ).

Notice that P̂N,0 has the same mean as the unknown probability distribution Q that generates the
data, while P̂N,Σ has the same covariance matrix as Q. In the following, we define the mean vector
estimation error δN,mean and the covariance matrix estimation error δN,covariance as

δN,mean = ϕ(P̂N,Σ,Q) and δN,cov = ϕ(P̂N,0,Q),

respectively, where ϕ(·, ·) is a dissimilarity measure for distributions that can be set either to the
Fisher-Rao metric (see Section 2) or to the Kullback-Leibler divergence (see Section 3).

Figure A.1 shows the average estimation error for different sample sizes N , where the average is
taken over 500 independent simulation runs. We observe that the error in estimating the covariance
matrix is one order of magnitude higher than the error in estimating the mean vector under both the
KL divergence and the FR metric.
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Figure A.1: Average estimation error for different sample sizes N using the KL divergence or the FR
metric as a dissimilarity measure.

B Optimistic Likelihood Estimation with Ambiguous Mean Vector

We now consider the FR and KL ambiguity sets for the family of Gaussian distributions with a fixed
covariance matrix Σ̂ ∈ Sn++. We thus consider the manifold Θ = Rn of the mean vector θ = µ. The
FR distance induced by the FR metric on this manifold is denoted by d̄(·, ·) and is again available in
closed form.
Proposition B.1 (FR distance between Gaussian distributions [2]). If N (µ0, Σ̂) and N (µ1, Σ̂) are
Gaussian distributions with identical covariance matrix Σ̂ ∈ Sn++ and mean vectors µ0, µ1 ∈ Rn, we
have

d̄(µ0, µ1) =

√
(µ0 − µ1)>Σ̂−1(µ0 − µ1).
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Similarly, the KL divergence between two distributions with the same covariance matrix admits a
simple analytical expression.

Proposition B.2 (KL divergence between Gaussian distributions). For any Σ̂ ∈ Sn++ and µ0, µ1 ∈
Rn, the KL divergence from P0 = N (µ0, Σ̂) to P1 = N (µ1, Σ̂) amounts to

KL(P0 ‖ P1) =
1

2
(µ0 − µ1)>Σ̂−1(µ0 − µ1).

Throughout this section, we denote by P̂ = N (µ̂, Σ̂) and P = (µ, Σ̂) two Gaussian distributions
with the same covariance matrix Σ̂ ∈ Sn++ but different mean vectors µ̂, µ ∈ Rn, respectively.
Propositions B.1 and B.2 imply that the FR distance and the KL divergence of P̂ and P satisfy the
relation1 2 KL(P̂ ‖ P) = d̄2(µ̂, µ).

With the Fisher-Rao distance as our dissimilarity measure ϕ and given the observations xM1 , the
optimistic likelihood problem (2) becomes

min
µ

{
1

M

M∑
m=1

(xm − µ)>Σ̂−1(xm − µ) + log det Σ̂ : (µ− µ̂)>Σ̂−1(µ− µ̂) ≤ ρ2

}
. (A.1)

Problem (A.1) is already a finite convex program but can be further simplified to a univariate convex
optimization problem and therefore solved in quasi-closed form.

Theorem B.3 (Optimistic likelihood with mean ambiguity set). For any µ̂ ∈ Rn, Σ̂ ∈ Sn++ and
ρ > 0, the optimal value of problem (A.1) is given by

1

M

M∑
m=1

(xm − µ?)>Σ̂−1(xm − µ?) + log det Σ̂,

where µ? = (1 + γ?)−1 (x̄+ γ?µ̂), and γ? solves the univariate convex optimization problem

min
γ≥0

γ
(
ρ2 − µ̂>Σ̂−1µ̂

)
+

(x̄+ γµ̂)
>

Σ̂−1 (x̄+ γµ̂)

1 + γ
(A.2)

with x̄ = M−1
∑M
m=1 xm.

Proof. As Σ̂ is constant, the minimizers of (A.1) also solve

min
µ

{
M−1

M∑
m=1

(xm − µ)>Σ̂−1(xm − µ) : (µ− µ̂)>Σ̂−1(µ− µ̂) ≤ ρ2

}
. (A.3)

Problem (A.3) is equivalent to

min
µ

max
γ≥0

{ 〈
Σ̂−1,M−1

M∑
m=1

(µ− xm)(µ− xm)>
〉

+ γ
(〈

Σ̂−1, (µ− µ̂)(µ− µ̂)>
〉
− ρ2

) }

= max
γ≥0

min
µ

{
−γρ2 +

〈
Σ̂−1,M−1

M∑
m=1

(µ− xm)(µ− xm)> + γ(µ− µ̂)(µ− µ̂)>
〉 }

,

where the equality follows from strong duality, which holds because ρ > 0 and because µ = µ̂
constitutes a Slater point for the primal problem (A.3). For any fixed γ ≥ 0, the inner minimization
problem over µ admits the optimal solution

µ?(γ) = (1 + γ)−1 (x̄+ γµ̂)

1More generally, for arbitrary parametric families of distributions, the second-order Taylor expansion of
the KL divergence is given by the FR distance because KL(P̂ ‖ P) = 1

2
FR2(P̂,P) +O(FR3(P̂,P)). See [8,

§ 7.2.2] for further details.
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with x̄ = M−1
∑M
m=1 xm. Thus, the optimal value of (A.3) equals

max
γ≥0

γ
(
µ̂>Σ̂−1µ̂− ρ2

)
− (x̄+ γµ̂)

>
Σ̂−1 (x̄+ γµ̂)

1 + γ
,

which is equivalent to the minimization problem (A.2). By strong duality, given any minimizer γ? of
problem (A.2), an optimal solution for (A.3) and also for (A.1) can be constructed as

µ? = (1 + γ?)−1 (x̄+ γ?µ̂) .

Substituting µ? into the objective function of (A.1) yields the postulated optimal value.

In the following, we provide the first- and second-order derivatives of the objective function of (A.2),
which can be used for implementing the optimization algorithm to solve for γ?. To this end, we
denote by g(γ) the objective function of (A.2). A direct calculation shows that

g′(γ) =
(
ρ2 − µ̂>Σ̂−1µ̂

)
+

((2 + γ)µ̂− x̄)>Σ̂−1(x̄+ γµ̂)

(1 + γ)2
.

Moreover, the second-order derivative of g(γ) is given by

g′′(γ) =
2µ̂>Σ̂−1µ̂

(1 + γ)
− 2[(2 + γ)µ̂− x̄]>Σ̂−1(x̄+ γµ̂)

(1 + γ)3
.

C Proofs of Section 2

To prove Lemma 2.2, we require the following preparatory lemma.
Lemma C.1 (Properties of BFR). The FR ball has the following properties:

(i) BFR is compact and complete on Sn++.
(ii) For any Σ ∈ BFR, we have λmin(Σ̂)e−

√
2ρ · In � Σ � λmax(Σ̂)e

√
2ρ · In.

Proof. To prove assertion (i), we first show that BFR is compact and complete with respect to the
topology induced by the Riemannian distance d(·, ·). Recall that Sn++ is a Hadamard manifold and
thus constitutes a complete metric space. By the Hopf-Rinow theorem [6, § 8, Theorem 2.8(b)], BFR

is compact in the usual topology because BFR is a metric ball and therefore closed and bounded.
Moreover, BFR is complete in the usual topology because any closed subset of a complete metric
space is complete as well. By [10, Theorem 13.29], the metric topology with respect to d(·, ·) on
Sn++ coincides with the subspace topology of Sn++ with respect to the usual topology on Sn. This
completes the proof of assertion (i).

To prove assertion (ii), pick any Σ ∈ BFR and let 0 ≤ λ1(A) ≤ . . . ≤ λn(A) denote the eigenvalues
of any symmetric positive definite n-by-n matrix A in increasing order. Then, we have√

log2(λi(Σ̂−
1
2 ΣΣ̂−

1
2 )) ≤

√√√√ n∑
j=1

log2(λj(Σ̂−
1
2 ΣΣ̂−

1
2 )) = ‖ log(Σ̂−

1
2 ΣΣ̂−

1
2 )‖F ≤

√
2ρ

for any i = 1, . . . , n, where the equality follows from the definition of the Frobenius norm, and the last
inequality follows from the definition of BFR. Note that λi(Σ̂−

1
2 ΣΣ̂−

1
2 ) = 1/λn−i+1(Σ−

1
2 Σ̂Σ−

1
2 ),

and hence any eigenvalue λi(Σ̂−
1
2 ΣΣ̂−

1
2 ) obeys the bounds

e−
√

2ρ ≤ λi(Σ̂−
1
2 ΣΣ̂−

1
2 ) ≤ e

√
2ρ.

This implies that

λ−1
max(Σ̂)λmax(Σ) ≤ e

√
2ρ and λ−1

min(Σ̂)λmin(Σ) ≥ e−
√

2ρ,

which completes the proof of assertion (ii).

We are now ready to prove Lemma 2.2.
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Proof of Lemma 2.2. First, assertion (i) of Lemma C.1 ensures that the feasible region BFR is
compact. Second, we note that the objective function L(·) is continuous at any positive definite
matrix. By assertion (ii) of Lemma C.1, there is a uniform positive lower bound on the eigenvalues
of all matrices in BFR. Therefore L(·) is continuous on BFR. The solvability of problem (6) then
follows from Weierstrass’ extreme value theorem [1, Corollary 2.35].

Proof of Theorem 2.5. We first show that BFR is a geodesically convex set. By [5, Proposition II.1.4],
balls in CAT(κ) spaces2 of radius less than Dκ/2 are geodesically convex, where Dκ is the diameter
of the model space of constant curvature κ (see [5, Definition I.2.10]). It is known that the smooth
manifold Sn++ is a CAT(0) space [5, Theorem II.10.39], which implies via [5, Point I.2.12] that
D0 =∞. The claim thus follows.

The proof thatL(·) is a geodesically convex function over Sn++ closely follows from [15, Lemma III.2]
and [12, Corollary 5.3] and is thus omitted.

Proof of Lemma 2.6. The claim trivially holds if ρ′ ≤ ρ. We thus prove the two statements under
the assumption that ρ′ > ρ. By [5, Theorem II.10.39], Sn++ is a CAT(0) space. Furthermore, by
Lemma C.1, the geodesic ball BFR is both complete and compact. Assertion (i) in Lemma 2.6 then
follows from [5, Proposition II.2.4].

To prove assertion (ii), we define

Σp , Σ̂
1
2 (Σ̂−

1
2 Σ′Σ̂−

1
2 )

ρ
ρ′ Σ̂

1
2 .

One readily verifies that d(Σ̂,Σp) = ρ, and hence Σp ∈ BFR. Recall that Σ′ ∈ Sn++ and d(Σ̂,Σ′) =

ρ′. Given any Σ ∈ BFR, by the triangle inequality, we thus have

d(Σ,Σ′) ≥ d(Σ̂,Σ′)− d(Σ̂,Σ) ≥ d(Σ̂,Σ′)− max
Σ′′∈BFR

d(Σ̂,Σ′′) = ρ′ − ρ.

This reasoning implies that
min

Σ∈BFR
d(Σ,Σ′) ≥ ρ′ − ρ. (A.4)

By definition, the geodesic γ(t) = Σ̂
1
2 (Σ̂−

1
2 Σ′Σ̂−

1
2 )tΣ̂

1
2 connecting Σ̂ and Σ′ has constant-speed,

that is, d(γ(t), γ(s)) = d(γ(0), γ(1)) · |t−s| for any t, s ∈ [0, 1] (see [4, Theorem 6.1.6]). Therefore,
we have

d(Σp,Σ
′) = d(γ( ρρ′ ), γ(1)) = d(Σ̂,Σ′) ·

∣∣∣∣ ρρ′ − 1

∣∣∣∣ = ρ′ − ρ,

which implies that the lower bound (A.4) is attained by Σp. The uniqueness result of assertion (i)
thus allows us to conclude that Σp is the projection of Σ′ onto BFR.

The proof of Theorem 2.7 is based on the following two technical lemmas.

Lemma C.2 (Bounded gradient). For any X ∈ TΣSn++, denote by ‖X‖Σ ,
√
〈X,X〉Σ the norm

induced by the inner product 〈·, ·〉Σ defined in (8). The Riemannian gradient of the objective function
L(·) of problem (6) satisfies

‖ grad L(Σ)‖Σ ≤
√
n · e2

√
2ρ · λ−2

min(Σ̂) ·max{|1− e
√

2ρλ−1
min(Σ̂)λmax(S)|, 1} ∀Σ ∈ BFR.

Proof. By (9) and the definition of ‖ · ‖Σ, we have

‖gradL(Σ)‖2Σ =
1

2
Tr
(
gradL(Σ) · Σ−1 · gradL(Σ) · Σ−1

)
=

1

2
Tr
(
AΣ−2AΣ−2

)
,

where A , (In − Σ−
1
2SΣ−

1
2 ). Lemma C.1(ii) thus implies that

(1− e
√

2ρλ−1
min(Σ̂)λmax(S))In � (1− λ−1

min(Σ)λmax(S))In � A � In,

2A formal definition of CAT spaces can be found in [5, Definition II.1.1], and the upper bound κ of the
curvature of a metric space is defined in [5, Definition II.1.2]
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and therefore we have

‖gradL(Σ)‖Σ ≤

√
n

2
· λ

2
max(A)

λ4
min(Σ)

≤

√
n

2
· max{1, (1− e

√
2ρλ−1

min(Σ̂)λmax(S))2}
λ4

min(Σ̂)e−4
√

2ρ

=

√
n ·max

{
1,
∣∣∣1− e√2ρλ−1

min(Σ̂)λmax(S)
∣∣∣}

√
2λ2

min(Σ̂)e−2
√

2ρ
,

where the last inequality follows from Lemma C.1(ii). This observation completes the proof.

Lemma C.3 (Lower bounded sectional curvature). The sectional curvature of the Riemannian
manifold Sn++ equipped with the FR metric (8) is lower bounded by −2.

Proof. Select Σ ∈ Sn++, and let X,Y ∈ TΣSn++ be two orthonormal tangent vectors at Σ, that is,

‖X‖Σ = 1 = ‖Y ‖Σ and 〈X,Y 〉Σ = 0.

Using the formula for the Riemannian curvature tensor R(·, ·, ·, ·) from [11, Theorem 2.1 (ii)], we
have

R(X,Y, Y,X) = −1

4
Tr
(
Y Σ−1XΣ−1XΣ−1Y Σ−1

)
+

1

4
Tr
(
XΣ−1Y Σ−1XΣ−1Y Σ−1

)
. (A.5)

Then, the sectional curvature κ(X,Y ) associated with the 2-plane spanned by {X,Y } satisfies

κ(X,Y ) =−R(X,Y,X, Y )

= − 1

4
Tr
(
Y Σ−1XΣ−1XΣ−1Y Σ−1

)
+

1

4
Tr
(
XΣ−1Y Σ−1XΣ−1Y Σ−1

)
≥ −

(
‖X‖2Σ‖Y ‖2Σ + ‖X‖2Σ‖Y ‖2Σ

)
= −2,

where the first equality follows from [9, Proposition 8.8], the second equality exploits (A.5), and the
inequality holds due to the Cauchy-Schwarz inequality.

We are now equipped with all the necessary ingredients to prove Theorem 2.7.

Proof of Theorem 2.7. The proof closely follows that of [14, Theorem 9]. The main difference is
that we replace the assumption of Lipschitz continuity of the objective function with the assumption
of a bounded Riemannian gradient. Due to Theorem 2.5, the function L(·) is geodesically convex. So
we have (see the sentence following Definition 2 in [14])

L(Σ′) ≥ L(Σ) + 〈gradL(Σ),Exp−1
Σ (Σ′)〉Σ, ∀Σ,Σ′ ∈ Sn++.

Therefore, for any k ≥ 1,

L(Σk)− L(Σ?) ≤ −〈gradL(Σk),Exp−1
Σk

(Σ?)〉Σk . (A.6)

By [14, Corollary 8], Lemma C.3 and because the diameter of the feasible region is 2ρ, the right hand
side of (A.6) is upper bounded by

1

2α

(
d2(Σk,Σ

?)− d2(Σk+1,Σ
?)
)

+
α · (2ρ) ·

√
2 · ‖gradL(Σk)‖2Σk

2 tanh((2ρ) ·
√

2)
, (A.7)

where the norm ‖ · ‖Σk is defined as in Lemma C.2. Therefore, substituting the upper bound (A.7)
into (A.6) and using C.2, we find

L(Σk)− L(Σ?) ≤ 1

2α

(
d2(Σk,Σ

?)− d2(Σk+1,Σ
?)
)

+

√
2αρΓ2

tanh(2
√

2ρ)
, (A.8)
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where Γ , 2−1/2
√
n · e2

√
2ρ · λ−2

min(Σ̂) ·max{|1− e
√

2ρλ−1
min(Σ̂)λmax(S)|, 1}. By telescoping, we

then obtain

1

K

K∑
k=1

L(Σk)− L(Σ?) ≤ 1

2αK

(
d2(Σ1,Σ

?)− d2(ΣK+1,Σ
?)
)

+

√
2αρΓ2

tanh(2
√

2ρ)

≤ 2ρ2

αK
+

√
2αρΓ2

tanh(2
√

2ρ)
=

2
7
4 ρ

3
2 Γ√

K tanh(2
√

2ρ)
,

where the second inequality follows from the bounds d2(ΣK+1,Σ
?) ≥ 0 and d(Σ1,Σ

?) ≤ 2ρ, and

the equality holds because α = 21/4
√
ρ tanh(2

√
2ρ)/(Γ

√
K). Note that although the matrix ΣK+1

is not actually computed because Algorithm 1 is terminated at k = K − 1, it is well-defined, and
inequality (A.8) is valid for k = K. If we can show that

L(Σ̄K) ≤ 1

K

K∑
k=1

L(Σk),

the desired result follows. Towards that end, we prove by induction that

L(Σ̄T ) ≤ 1

T

T∑
k=1

L(Σk) ∀T ∈ Nt. (A.9)

The inequality trivially holds for T = 1. Suppose now that the inequality in (A.9) holds for some
T ≥ 1. Then, we have

L(Σ̄T+1) = L

Σ̄
1
2
T

(
Σ̄
− 1

2
T ΣT+1Σ̄

− 1
2

T

) 1
T+1

Σ̄
1
2
T


= L

(
γT

(
1

T + 1

))
≤ T

T + 1
L
(
Σ̄T
)

+
1

T + 1
L (ΣT+1)

≤ 1

T + 1

T∑
k=1

L(Σk) +
1

T + 1
L (ΣT+1)

=
1

T + 1

T+1∑
k=1

L(Σk),

where γT denotes the geodesic from Σ̄T to ΣT+1. The first inequality follows from the geodesic
convexity of L(·) (see Theorem 2.5 and Definition 2.4), and the second inequality holds due to the
induction hypothesis (A.9). The claim now follows because T was chosen arbitrarily.

Next, we formally define the notions of geodesic strong convexity and geodesic smoothness for
functions on Sn++.
Definition C.4 (Strong convexity). Let B ⊆ Sn++ be a subset and σ > 0. A differentiable function
F : B → R is said to be (geodesically) σ-strongly convex on B if

F (Y ) ≥ F (X) + 〈gradF (X),Exp−1
X (Y )〉X +

σ

2
d2(X,Y ). (A.10)

Definition C.5 (Smoothness). Let B ⊆ Sn++ be a subset and β > 0. A differentiable function
F : B → R is said to be (geodesically) β-smooth on B if

F (Y ) ≤ F (X) + 〈gradF (X),Exp−1
X (Y )〉X +

β

2
d2(X,Y ). (A.11)

The proof of Lemma 2.8 is based on the following preparatory results.
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Lemma C.6. Let F : Sn++ → R be a twice continuously differentiable function and B ⊆ Sn++ be a
geodesically convex subset. The following implications hold.

(i) If the smallest eigenvalue of the Riemannian Hessian hessF (X) (interpreted as an operator on
TXSN++) of F at X is lower bounded uniformly on B by σ > 0, i.e.,

min
{
〈hessF (X)[V ], V 〉 : V ∈ TXSN++, ‖V ‖X = 1

}
≥ σ ∀X ∈ B, (A.12)

then F is σ-strongly convex on B.

(ii) If the largest eigenvalue of the Riemannian Hessian hessF (X) (interpreted as an operator on
TXSN++) of F at X is upper bounded uniformly on B by β > 0, i.e.,

max
{
〈hessF (X)[V ], V 〉 : V ∈ TXSN++, ‖V ‖X = 1

}
≤ β ∀X ∈ B, (A.13)

then F is β-smooth on B.

The proof of Lemma C.6 closely follows that of its Euclidean counterpart and is omitted here.

Proof of Lemma 2.8. Define f(Σ) = Tr
(
Σ−1S

)
. Because log det Σ is a geodesically linear func-

tion [13, Proposition 12], it suffices to study the smoothness and convexity properties of f(·). By [7,
Equations (28)], the Riemannian Hessian hessf(Σ) at Σ is given by

hessf(Σ)[V ] = Σ
(
∇2f(Σ)[V ]

)
Σ +

1

2
(V∇f(Σ)Σ + Σ∇f(Σ)V ) ∀V ∈ TΣSn++. (A.14)

By elementary matrix calculus, we know that

∇f(Σ) = −Σ−1SΣ−1 (A.15)

and
∇2f(Σ)[V ] = Σ−1V Σ−1SΣ−1 + Σ−1SΣ−1V Σ−1 ∀V ∈ Sn, (A.16)

where the Hessian∇2f(Σ) is interpreted as a linear operator on Sn. Noting that TΣSn++ = Sn and
combining (A.14), (A.15) and (A.16), we obtain

〈hessf(Σ)[V ], V 〉Σ = Tr
(
Σ−1SΣ−1V Σ−1V

)
∀V ∈ Sn. (A.17)

Using these preparatory results, we now demonstrate that f(·) is β-smooth and σ-strongly convex in
the geodesic sense.

Smoothness. In order to establish the smoothness properties of f(·), we consider the maximization
problem

max {〈hessf(Σ)[V ], V 〉Σ : V ∈ Sn, ‖V ‖Σ = 1} ,
which, by (A.17) and the definition of ‖ · ‖Σ, is equivalent to

max
{

Tr
(
Σ−1SΣ−1V Σ−1V

)
: V ∈ Sn, 1

2 Tr
(
Σ−1V Σ−1V

)
= 1
}
.

The optimal value of this problem is upper bounded by 2λmax(S)/λmin(Σ). Using the bound from
Lemma C.1(ii), we have

2λmax(S)

λmin(Σ)
≤ 2λmax(S)

λmin(Σ̂) exp(−
√

2ρ)
= β.

By Lemma C.6(ii), f(·) is β-smooth.

Strong convexity. In order to establish the convexity properties of f(·), we consider the minimization
problem

min {〈hessf(Σ)[V ], V 〉Σ : V ∈ Sn, ‖V ‖Σ = 1} ,
which, by (A.17) and the definition of ‖ · ‖Σ, is equivalent to

min
{

Tr
(
Σ−1SΣ−1V Σ−1V

)
: V ∈ Sn, 1

2 Tr
(
Σ−1V Σ−1V

)
= 1
}
.

The optimal value of this problem is lower bounded by 2λmin(S)/λmax(Σ). Using the bound in
Lemma C.1(ii), we have

2λmin(S)

λmax(Σ)
=

2λmin(S)

λmax(Σ̂) exp(
√

2ρ)
= σ.

Since S � 0, σ > 0. By Lemma C.6(i), f(·) is thus σ-strongly convex. This completes the proof.
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D Proofs of Section 3

Proof of Theorem 3.2. By applying the change of variables Z ← Σ−1, problem (12) can be reformu-
lated as

inf
Z

{
Tr
(
SZ
)
− log detZ : Z � 0, Tr

(
Σ̂Z
)
− log detZ ≤ ρ̄

}
, (A.18)

where ρ̄ , 2ρ+ n+ log det Σ̂. Note that (A.18) is equivalent to

inf
Z�0

sup
γ≥0

Tr
(
SZ
)
− log detZ + γ

(
Tr
(
Σ̂Z
)
− log detZ − ρ̄

)
= sup
γ≥0

inf
Z�0

−γρ̄+ Tr
(
(S + γΣ̂)Z

)
− (1 + γ) log detZ

= sup
γ≥0

{
−γρ̄+ inf

Z�0

{
Tr
(
(S + γΣ̂)Z

)
− (1 + γ) log detZ

}}
, (A.19)

where the first equality follows from strong duality, which holds because ρ > 0 and because Σ̂−1 is a
Slater point for the primal problem (A.18).

To analyze problem (A.19), assume first that S is singular. If γ = 0, then the inner minimization
problem over Z is unbounded, and thus γ = 0 is never optimal for the outer maximization problem.
For any γ > 0, the inner minimization problem over Z admits the optimal solution Z?(γ) =

(1 + γ)(S + γΣ̂)−1. Problem (A.18) is thus equivalent to

sup
γ>0

{
− γρ̄+ n(1 + γ)− (1 + γ) log det[(1 + γ)(S + γΣ̂)−1]

}
= sup
γ>0

{
− γρ̄+ n(1 + γ)− (1 + γ) log[(1 + γ)n det(S + γΣ̂)−1]

}
= sup
γ>0

{
− γρ̄+ n(1 + γ)− n(1 + γ) log(1 + γ)− (1 + γ) log det(S + γΣ̂)−1

}
. (A.20)

By strong duality, any minimizer γ? of (13) can be used to construct a minimizer

Σ? = (1 + γ?)−1(S + γ?Σ̂)

for problem (12). This observation establishes the claim if S is singular.

Assume next that S has full rank. In this case, the inner minimization problem in (A.19) admits
the optimal solution Z?(γ) = (1 + γ)(S + γΣ̂)−1 for any fixed γ ≥ 0, and thus problem (A.19) is
equivalent to

sup
γ≥0

{
− γρ̄+ n(1 + γ)− n(1 + γ) log(1 + γ)− (1 + γ) log det(S + γΣ̂)−1

}
,

which differs from (A.20) only in that it has a closed feasible set, that is, γ = 0 is feasible. Because
the objective function of the above optimization problem is continuous in γ, we can in fact optimize
over γ > 0 without reducing the supremum. The claim now follows by replacing ρ̄ with its definition
and eliminating the constant term from the objective function.

Proof of Corollary 3.3. For any Σ̂ ∈ Sn++ and γ > 0, the Woodbury formula [3, Corollary 2.8.8]
implies that

(S + γΣ̂)−1 = γ−1Σ̂−
1
2 (γ−1Σ̂−

1
2SΣ̂−

1
2 + In)−1Σ̂−

1
2 ,

and thus we have

log det(γΣ̂ + S)−1 + n log γ + log det Σ̂ = − log det
(
In + γ−1Σ̂−

1
2 ΛΛ>Σ̂−

1
2

)
= − log det

(
Ik + γ−1Λ>Σ̂−1Λ

)
= k log γ − log det

(
γIk + Λ>Σ̂−1Λ

)
,
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where the second equality follows from [3, Equation 2.8.14]. Substituting the expression for
log det(γΣ̂ + S)−1 into (13) and removing the irrelevant constant term (n + log det Σ̂) yields
the equivalent minimization problem

inf
γ>0

{
2γρ+ n(1 + γ) log (1 + γ)− (n− k)(1 + γ) log γ − (1 + γ) log det(γIk + Λ>Σ̂−1Λ)

}
.

This observation completes the proof.

E Derivatives of Problem (13)

Use g1(γ) as a shorthand for the objective function of problem (13). In the following, we provide
the first- and second-order derivatives of g1(·), which are needed by the optimization algorithm that
solves (13). In particular, the first-order derivative is given by

g′1(γ) = 2ρ+ n (log(1 + γ) + 1)− log det
(
γIn + SΣ̂−1

)
− (1 + γ) Tr

(
(γIn + SΣ̂−1)−1

)
,

and the second-order derivative can be expressed as

g′′1 (γ) =
n

1 + γ
− Tr

(
(γIn + SΣ̂−1)−1

(
2In + (1 + γ)(γIn + SΣ̂−1)−1

) )
.

Next, denote by g2 the objective function of the singular reduction problem of Corollary 3.3, that is,

g2(γ) = 2γρ+ n(1 + γ) log (1 + γ)− (n− k)(1 + γ) log γ − (1 + γ) log det(γIk + Λ>Σ̂−1Λ).

The first- and second-order derivative of g2 are given by

g′2(γ) = 2ρ+ n (log(1 + γ) + 1)− (n− k)
(
log γ + γ−1 + 1

)
− log det

(
γIk + Λ>Σ̂−1Λ

)
− (1 + γ) Tr

(
(γIk + Λ>Σ̂−1Λ)−1

)
,

and

g′′2 (γ) =
n

1 + γ
− (n− k)(γ−1 − γ−2)

− Tr
(
γIk + Λ>Σ̂−1Λ)−1

(
2Ik + (1 + γ)(γIk + Λ>Σ̂−1Λ)−1

) )
,

respectively.
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