Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

*Michal Derezinski, Manfred K. K. Warmuth, Daniel J. Hsu*

Suppose an n x d design matrix in a linear regression problem is given,
but the response for each point is hidden unless explicitly requested.
The goal is to sample only a small number k << n of the responses,
and then produce a weight vector whose sum of squares loss over *all* points is at most 1+epsilon times the minimum.
When k is very small (e.g., k=d), jointly sampling diverse subsets of
points is crucial. One such method called "volume sampling" has
a unique and desirable property that the weight vector it produces is an unbiased
estimate of the optimum. It is therefore natural to ask if this method
offers the optimal unbiased estimate in terms of the number of
responses k needed to achieve a 1+epsilon loss approximation.

Surprisingly we show that volume sampling can have poor behavior when we require a very accurate approximation -- indeed worse than some i.i.d. sampling techniques whose estimates are biased, such as leverage score sampling. We then develop a new rescaled variant of volume sampling that produces an unbiased estimate which avoids this bad behavior and has at least as good a tail bound as leverage score sampling: sample size k=O(d log d + d/epsilon) suffices to guarantee total loss at most 1+epsilon times the minimum with high probability. Thus, we improve on the best previously known sample size for an unbiased estimator, k=O(d^2/epsilon).

Our rescaling procedure leads to a new efficient algorithm for volume sampling which is based on a "determinantal rejection sampling" technique with potentially broader applications to determinantal point processes. Other contributions include introducing the combinatorics needed for rescaled volume sampling and developing tail bounds for sums of dependent random matrices which arise in the process.

Do not remove: This comment is monitored to verify that the site is working properly