First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear Time

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental


Yi Xu, Rong Jin, Tianbao Yang


(This is a theory paper) In this paper, we consider first-order methods for solving stochastic non-convex optimization problems. The key building block of the proposed algorithms is first-order procedures to extract negative curvature from the Hessian matrix through a principled sequence starting from noise, which are referred to {\it NEgative-curvature-Originated-from-Noise or NEON} and are of independent interest. Based on this building block, we design purely first-order stochastic algorithms for escaping from non-degenerate saddle points with a much better time complexity (almost linear time in the problem's dimensionality). In particular, we develop a general framework of {\it first-order stochastic algorithms} with a second-order convergence guarantee based on our new technique and existing algorithms that may only converge to a first-order stationary point. For finding a nearly {\it second-order stationary point} $\x$ such that $\|\nabla F(\x)\|\leq \epsilon$ and $\nabla^2 F(\x)\geq -\sqrt{\epsilon}I$ (in high probability), the best time complexity of the presented algorithms is $\widetilde O(d/\epsilon^{3.5})$, where $F(\cdot)$ denotes the objective function and $d$ is the dimensionality of the problem. To the best of our knowledge, this is the first theoretical result of first-order stochastic algorithms with an almost linear time in terms of problem's dimensionality for finding second-order stationary points, which is even competitive with existing stochastic algorithms hinging on the second-order information.