PointCNN Supplementary Material

1 X-Conv Details

We implement MLPs(-) in Line 2 of Algorithm |1| with two fully connected (FC) layers, each followed
by ELU [[7] activation function and batch normalization (BN) [19], i.e., FC(3,Cs) —» ELU — BN —
FC(Cs5,Cs) - ELU — BN. Weset Cs to C1 /4.

MLP(-) in Line 4 of Algorithm|[T|can be implemented in a similar way: FC (3% K, K«K) — ELU — BN —
FCO(K+*K,K+«K)— ELU - BN — FC(K xK,K * K) - BN — Reshape(K x K, K x K), where
K % K denotes a vector in RX*K and K x K denotes a K -by-K square matrix. However, this implementation
results in O(K™) parameters. To reduce the parameter number and computation, as well as the overfitting risk
due to a large number of parameters, we propose to replace FC'(K * K, K x K) with a depthwise convolution
DC(R x C,C * F), which applies F different filters to each of the C' column of the input R x C matrix,
yielding a C' x F vector, where R *x C' * F parameters are involved. More specifically, MLP(-) is implemented
with FC(3x K, K+« K) - ELU — BN — Reshape(K«K, K xK) - DC(K xK,K«K) — ELU —
BN — Reshape(K * K, K x K) - DC(K x K, K x K) = BN — Reshape(K x K, K x K), which
results in O(K*®) parameters.

Conv(-,-) in Line 6 of Algorithm[] if implemented with typical convolution, has K x (Cy + Cs) * Cs trainable
parameters. We implemented it with separable convolution [6], which has K * (C1 + C5) * DM + (C1 4 Cs) *
DM x C trainable parameters, where DM is the depth multiplier, and we use DM = [C2/(C1 + Cs)] in our
implementation. Separable convolution reduces both parameter number and computation compared with that of
a typical convolution.

M LP,(-) is used to harvest the global position information of the representative points in the last X'-Conv layer.
It is implemented similar to MLPs(-), i.e., FC(3,Cy) - ELU —- BN — FC(Cy,Cy) - ELU — BN.
We set Cy to Ca /4. The C,; dimensional output of M L P,(-) is concatenated with the C> dimensional output of
the last X'-Conv layer for further processing.

In our implementation, a K nearest neighbor search is applied for extracting the K neighboring points. This
assumes a more or less uniform distribution of input points. For point clouds with non-uniform distribution, a
radius search can be applied first, and then K points can be randomly picked out of the radius search results.

In theory, the X'-transformation can be applied on either the features or the kernels. We opt to apply it on the
features, in which way the follow up operation is a standard convolution operation that is highly optimized by
popular deep learning frameworks.

2 Dataset Details

We conducted extensive evaluation of PointCNN on datasets of various types and scales. Here we introduce the
details of the datasets, as well as how we pre-process and feed them into PointCNN:

* Object datasets: ModelNet40 [52] and ShapeNet Parts [54].

— ModelNet40 is composed of 12311 3D mesh models from 40 categories, with a 9843/2468 train-
ing/testing split. Both the gravity and “facing” directions of the models are mostly aligned in the dataset.
In the “Pre-aligned” setting, the models are used for training and testing, without random horizontal
rotations. In which way, the relative consistent “facing” direction is leveraged by the network. In the
“Unaligned” setting, random horizontal rotations are explicitly applied on either the training or the testing
models, not as a data augmentation, but to “forget” the relative consistent “facing” directions thus better
approximate the scenarios in real world applications, where the “facing” direction of the objects are
often unknown. We use the point cloud conversion of ModelNet40 provided by [33]] as our input, where
2048 points are sampled from each mesh, and we further sample A/(1024, 128%) points to train a model
for testing with 1024 points on the classification task.

— ShapeNet Parts contains 16880 models (14006/2874 training/testing split) from 16 shape categories,
each annotated with 2 to 6 parts and there are 50 different parts in total. Each point sampled from
the models is associated with a part label. The task is to predict the part label for each point, thus
a segmentation task, and can be treated as a dense point-wise classification problem. The category
label for each model is given, and can be used for trimming irrelevant predictions, same as that in [12].
N (2048, 2562) points are sampled from each point cloud to train a model for testing with 2048 input
points on the segmentation task. Each testing point cloud is sampled multiple times to make sure all the
points are evaluated at least 7 (» = 10 in our experiments) times at testing time.

¢ Indoor scene datasets: S3DIS [2] and ScanNet [9]. While ModelNet40 and ShapeNet models are mostly made
by 3D modeling tools, S3DIS and ScanNet are from real scans of indoor environments.
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Figure 1: PointCNN model zoo, where (a) is used for ModelNet40 (channel number in bold) and
ScanNet classification, (b) is used for TU-Berlin sketch classification, (c¢) is used for Quick Draw
sketch classification, (d) is used for ScanNet and S3DIS segmentation, and (e) is used for ShapeNet
Parts segmentation.

— S3DIS contains 3D scans from Matterport scanners in 6 areas including 271 rooms. Each point with
RGB features in the scan is annotated with one of the semantic labels from 13 categories. The task is
segmentation. The data is firstly split by room, and then the rooms are sliced into 1.5m by 1.5m blocks,
with 0.3m padding on each side. The points in the padding areas serve as context of the internal points,
and themselves are not linked to loss in the training phase, nor used for prediction in the testing phase.
Each block is moved to a local coordinate system defined by its center. Random horizontal rotations are
applied on the sliced blocks for data augmentation. The rotated blocks are handled in the same way as
the object point clouds in ShapeNet Parts.

— ScanNet contains 1513 scanned and reconstructed indoor scenes, with 1201/312 scenes for train-
ing/testing in semantic voxel labeling of 17 categories. We firstly prepare data in the same way as
that of S3DIS to train a segmentation model, and the segmentation results on testing data are then
converted into semantic voxel labeling, as that in [35], for a fair comparison with previous methods.
The 9305,/2606 training/testing object instances from the 17 categories in ScanNet are also used for
evaluating classification task. Note that ScanNet comes with RGB information for each point. However,
they are not used in previous methods. To make fair comparisons, we do not use them either.

¢ 2D sketch datasets: TU-Berlin [11] and Quick Draw [15]]. Similar to surfaces in 3D space, line sketches in
2D are inherently of less dimension than the ambient space, and can be represented as point cloud, thus we
consider 2D sketches good arena for evaluating neural networks that are designed to consume point cloud data.
TU-Berlin has sketches from 250 categories, with 80 sketches from each category, where 2/3 are used for
training and the rest 1/3 for testing. Quick Draw is the largest available sketch dataset, with sketches from
345 categories, each with 70000/2500 training/testing samples. We sample A/ (512, 64%) points from the
sketch stokes to train a model for testing with 512 points on sketch classification task.

* Image datasets: MNIST and CIFAR10. MNIST and CIFAR10 are widely used for sanity check of image
CNNs. Since PointCNN is a generalization of CNNs, we would like to evaluate PointCNN on the point
cloud representation of MNIST and CIFAR10. For MNIST, we randomly sample 160 foreground pixels
and convert them into point cloud representation, with the gray-scale pixel value as the input feature. For
CIFAR10, we randomly sampled 512 pixels out of the 32 x 32 pixels for converting into point cloud with
RGB features. Note that there is “shape” information in the MNIST point cloud, sine the point cloud follow
the digits’ structure, but this is not the case for the CIFAR10 point cloud, where the points are mostly the same
blob for all the data samples.

3 PointCNN Model Zoo

In Figure|1| we list the PointCNNs used for classification and segmentation tasks on multiple benchmark datasets.
PointCNNs are easy to implement, setup, and tune. Larger C' are used for layers with more abstract/semantic
information, such as the top layers in classification networks, and middle layers in “Conv-DeConv” segmentation
networks. To relax the memory demand, smaller K's are used at layers with large number of representative
points, such as bottom layers of classification networks, and top and bottom layers of segmentation networks.
Deeper PointCNN with larger receptive field in the last X'-Conv layer are used for larger or harder datasets.
The skip-links, together with the dilation parameter D, make it easy to fuse information from different scales
(receptive fields), as illustrated in (d) and (e), which is essential for segmentation tasks.



Method ploU | mploU air bag cap car chair ear guitar | knife [ Tamp | Taptop | motor | mug [ pistol | rocket | skate | table
plane phone bike board
SyncSpecCNN [55] | 84.74 82.0 81.55 | 81.74 | 81.94 | 75.16 | 90.24 | 74.88 | 92.97 | 86.1 | 84.65 | 95.61 | 66.66 | 92.73 | 81.61 | 60.61 | 82.86 | 82.13
Pd-Network [22 85.49 82.7 83.31 | 82.42 | 87.04 | 77.92 | 90.85 | 76.31 | 91.29 | 87.25 | 84.0 | 9544 | 68.71 | 94.0 829 | 6297 | 76.44 | 83.18
SSCN [12 85.98 833 84.09 | 82.99 | 83.97 | 80.82 | 91.41 | 78.16 | 91.6 89.1 | 85.04 | 95.78 | 73.71 | 95.23 | 84.02 | 58.53 | 76.02 | 82.65
SpiderCNN [53 85.3 81.7 83.5 81 872 | 775 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
SO-Net [27 84.9 81.0 828 | 77.8 | 88.0 | 773 | 90.6 | 735 90.7 | 83.9 | 82.8 94.8 69.1 942 | 809 | 53.1 729 | 83.0
PCNN [3] 85.1 81.8 82.4 80.1 85.5 79.5 90.8 732 91.3 86.0 85.0 95.7 732 94.8 83.3 51.0 75.0 81.8
KCNet [42 83.7 82.2 828 | 81.5 | 864 | 77.6 | 90.3 | 76.8 91.0 | 872 | 845 95.5 69.2 | 944 | 81.6 | 60.1 752 | 813
Kd-Net [22] 82.3 714 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 574 86.7 78.1 51.8 69.9 80.3
3DmFV-Net [4] 84.3 81.0 82.0 | 843 | 86.0 | 76.9 | 89.9 | 739 90.8 | 857 | 826 | 952 66.0 | 940 | 82.6 | 515 735 | 81.8
RSNet [18 84.9 81.4 82.7 86.4 | 84.1 782 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
DGCNN [50 85.1 82.3 842 | 837 | 844 | 77.1 90.9 | 785 915 | 873 | 829 | 96.0 67.0 | 933 | 82.6 | 59.7 | 755 | 82.0
PointNet |33 83.7 80.4 83.4 78.7 82.5 74.9 89.6 73.0 915 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [35 85.1 81.9 824 79.0 87.7 713 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SGPN [49] 85.8 82.8 804 | 786 | 788 | 71.5 | 88.6 78 90.9 83 78.8 95.8 778 | 938 | 874 | 60.1 92.3 | 894
PointCNN 86.14 | 84.6 [ 84.11 [ 86.47 [ 86.04 [ 80.83 [ 90.62 [ 79.70 | 92.32 | 88.44 [ 85.31 | 96.11 [ 77.20 | 95.28 | 84.21 | 64.23 | 80.00 | 82.99
Table 1: Segmentation result comparisons on ShapeNet Parts [54] in part-averaged IoU (ploU, %) ,
mean per-class ploU (mploU, %) and per-class ploU (%).
Method OA | mAcc | mloU | ceiling | floor | wall | beam [ column | window | door | table | chair | sofa | bookcase | board | clutter
PointNet [33] | 785 | 66.2 | 47.6 88.0 887 | 69.3 | 424 23.1 475 51.6 | 541 | 420 9.6 382 294 | 352
SPGraph [24] | 85.5 | 73.0 | 62.1 89.9 95.1 | 764 | 62.8 47.1 553 684 | 735 | 69.2 | 63.2 45.9 8.7 529
RSNet [18] - 6645 | 56.47 | 92.48 | 92.83 | 78.56 | 32.75 | 34.37 51.62 | 68.11 | 60.13 | 59.72 | 50.22 1642 | 44.85 | 52.03
PointCNN 88.14 [ 75.61 [ 65.39 [ 94.78 | 97.3 | 75.82 | 63.25 | 51.71 58.38 | 57.18 [ 71.63 | 69.12 | 39.08 61.15 52.19 | 58.59

Table 2: Segmentation result comparisons on the S3

DIS [2] dataset in overall accuracy (OA, %),
micro-averaged accuracy (mAcc, %), micro-averaged IoU (mloU, %) and per-class IoU (%).

Method OA | mAcc | mloU | ceiling | floor | wall | beam | column | window | door | table | chair | sofa [ bookcase | board | clutter
PointNet [33] - 48.98 | 41.09 | 88.80 | 97.33 | 69.80 | 0.05 3.92 46.26 | 10.76 | 58.93 | 52.61 | 5.85 40.28 2638 | 33.22
SPGraph [24] | 86.38 | 66.50 | 58.04 | 89.35 | 96.87 | 78.12 | 0.00 | 42.81 48.93 | 61.58 | 84.66 | 75.41 | 69.84 52.60 2.10 | 52.22
SegCloud [45] - 57.35 | 48.92 | 90.06 | 96.05 | 69.86 | 0.00 18.37 38.35 | 23.12 | 70.40 | 75.89 | 40.88 58.42 12.96 | 41.60
PCCN [48] - 67.01 | 58.27 | 92.26 | 96.20 | 75.89 | 0.27 5.98 6949 | 63.45 | 66.87 | 65.63 | 47.28 68.91 59.10 | 46.22
PointCNN 8591 | 63.86 | 57.26 | 92.31 [ 98.24 | 79.41 | 0.00 17.60 2277 | 62.09 | 7439 | 80.59 | 31.67 66.67 62.05 | 56.74

Table 3: Segmentation result comparisons on the S3DIS [2] Area 5 in overall accuracy (OA, %),
micro-averaged accuracy (mAcc, %), micro-averaged IoU (mloU, %) and per-class IoU (%).

4 Detailed Segmentation Results

We show detailed segmentation result comparisons on ShapeNet Parts in Table [I] we can see our approach
achieves the best overall performance and are best on 7 of the 16 categories.

We show detailed segmentation result comparisons on S3DIS in Table[2| we can see our approach achieves the
best overall performance and are best on 6 of the 13 categories. The detailed segmentation result comparisons
on S3DIS Area 5 are summarized in Table[3] as some of the literatures only report the performance on this area.
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