
Neural Nearest Neighbors Networks
Supplemental Material

Tobias Plötz Stefan Roth
Department of Computer Science, TU Darmstadt

Preface. In this supplemental material we give more details on the training protocol for single image
super-resolution (SISR) and on the architectures for SISR and Gaussian denoising. Furthermore, we
provide further analyses on Gaussian image denoising and show extended quantitative and visual
results for SISR.

1 Architectures and Training Details

A detailed summary of the used architectures can be found in the following tables:1

• Tables 7 and 8 show the architecture of embedding network and the temperature network
within an N3 block, respectively.

• Table 9 shows the architecture of a DnCNN block used as local processing network in our
N3Net for denoising. The architecture of the whole N3Net can be found in Table 10.

• Table 11 shows the architecture of a VDSR block used as local processing network in our
N3Net for single image super-resolution. The architecture of the whole N3Net can be found
in Table 12.

Analogously to image denoising, the N3 blocks for super-resolution extract 10× 10 patches with a
stride of 5 and patches are matched to other patches in a 80× 80 region.

Training details for super-resolution. We follow the training protocol of [20]. Our training set
consists of 291 images: The 200 images of the BSD500 training set and 91 images from [55]. In
each of the 80 training epochs, we randomly crop 3833 patches of size 80× 80 from each image and
apply data augmentation by flipping and using a rotation ∈ {0◦, 90◦, 180◦, 270◦}. Our batchsize is
32. As in [20], we use the SGD optimizer with momentum of 0.9 and a weight decay of 10−4. The
initial learning rate is set to 0.1 and decayed by a factor of 10 every 20 epochs. Like [20], we apply
gradient clipping to stabilize training.

Table 7. Architecture of the embedding block.

Type Ker., Str., Pad. Feat.

Input 8
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv 3× 3, 1, 1 8

Table 8. Architecture of the block for predicting
the temperature parameter.

Type Ker., Str., Pad. Feat.

Input 8
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv 3× 3, 1, 1 1

1“Ker.”, “Str.”, “Pad.”, and “Feat.” refer to the kernel size, stride, padding and number of feature channels,
respectively.
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Table 9. Architecture of the 6 layer DnCNN blocks used for N3Net
for image denoising.

Type Ker., Str., Pad. Feat.

Input 1 if first block / 64 else
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv 3× 3, 1, 1 1 if last block / 8 else
Skip

Table 10. Architecture of N3Net
for image denoising.

Type k Feat.

Input 1
DnCNN block 8
N3 block 7 64
DnCNN block 8
N3 block 7 64
DnCNN block 1

Table 11. Architecture of the 7 layer VDSR blocks used for N3Net
for super resolution.

Type Ker., Str., Pad. Feat.

Input 1 if first block / 64 else
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv/BN/ReLU 3× 3, 1, 1 64
Conv 3× 3, 1, 1 1 if last block / 8 else
Skip

Table 12. Architecture of N3Net
for super resolution.

Type k Feat.

Input 1
VDSR block 8
N3 block 7 64
VDSR block 8
N3 block 7 64
VDSR block 1

2 Further Analyses on Gaussian Denoising

Extended ablation study. We first conduct further ablation studies on the task of removing additive
white Gaussian noise, extending the results of Sec. 5.1 of the main paper. We basically want to discern
the effect of adding a single KNN or N3 block, respectively, and the effect of training the baseline
model on bigger patch sizes. Table 13 shows these results. We make the following observations:
First, for d = 6 our N3 block outperforms simple stacking of DnCNN networks as well as using a
KNN block by a significant margin, for both σ = 25 and 70. Second, for d = 17 stacking two full
networks performs poorly as training becomes more difficult with the increased depth. Interestingly,
N3 can remedy some of the ill effects. Third, increasing the receptive field for the baseline DnCNN
using more layers does not always help (cf. 2 × DnCNN, d = 17 in Table 13). This is in contrast to
our approach that allows increasing the receptive field without having many layers or parameters.
Fourth, training on larger patch sizes does not benefit the baseline DnCNN model, cf. baseline (i) in
Table 1 of the main paper.

Runtime overhead. For denoising, the runtime of our full model with N3 increases by 3.5×
compared to the baseline DnCNN model (d = 17). For KNN this overhead is 2.5×.

Learned strength of the continuous relaxation. To look into what the network has learned, we
consider the maximum weight w̃j = maxi w̄

j
i (cf. Eq. 11) for the jth neighbors volume. For the first

N3 block of our full network for denoising (σ = 25), we have w̃1 ≈ 0.21 and w̃7 ≈ 0.11 on average,
while for the 2nd block w̃1 ≈ 0.04 and w̃7 ≈ 0.03. Thus the network learned that at a lower level a
“harder” N3 selection is beneficial while for higher level features the network tends to learn a more
uniform weighting. A completely uniform weighting would correspond to w̃ = 1/224 ≈ 0.004.

3 Super-Resolution Results

Table 14 shows results for single image super-resolution on two further datasets: The full BSD500
validation set consisting of 100 images (BSD100), and Urban100. We observe a consistent gain of
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Table 13. PSNR (dB) on Urban100 for different architectures on gray-scale image denoising. Models are trained
on 80× 80 patches.

Model d=6, σ=25 d=6, σ=70 d=17, σ=25 d=17, σ=70

1 × DnCNN 29.04 23.39 29.74 24.36
2 × DnCNN 29.59 24.19 29.48 13.77
2 × DnCNN, KNN block (k=7) 29.82 24.63 29.85 22.49
2 × DnCNN, N3 block (k=7) 29.99 24.91 29.82 24.18

Table 14. PSNR (dB) values for single image super-resolution on Urban100 and BSD100. WSD-SR does not
provide results for BSD100.

Dataset Bicubic SelfEx WSD-SR MemNet MDSR VDSR N3Net

Urban100
×2 26.88 29.54 30.29 31.31 32.84 30.76 30.80
×3 24.46 26.44 26.95 27.56 28.79 27.14 27.19
×4 23.14 24.79 25.16 25.50 26.67 25.18 25.23

BSD100
×2 29.56 31.18 – 32.05 32.29 31.90 31.98
×3 27.21 28.29 – 28.95 29.25 28.82 28.91
×4 25.96 26.84 – 27.38 27.72 27.29 27.34

N3Net compared to the very strong baseline VDSR on both datasets and all super-resolution factors.
Moreover, the performance of the other non-local methods falls short compared to both the baseline
and our N3Net. Figure 4 shows visual results for our method and VDSR. We can see that N3Net
produces sharper details than VDSR, leading to perceptually more pleasing images despite the PSNR
values being relatively close.
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Clean Bicubic (19.75 dB) VDSR (20.86 dB) NN3D (20.99 dB)

Clean Bicubic (22.53 dB) VDSR (23.44 dB) NN3D (23.47 dB)

Clean Bicubic (27.65 dB) VDSR (29.01 dB) NN3D (29.10 dB)

Clean Bicubic (20.03 dB) VDSR (21.23 dB) NN3D (21.43 dB)

Figure 4. Super-resolution results (cropped for better display) and PSNR values on four images from Urban100
with a super-resolution factor of 4.
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