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Abstract

Progress in deep learning has spawned great successes in many engineering appli-
cations. As a prime example, convolutional neural networks, a type of feedforward
neural networks, are now approaching – and sometimes even surpassing – human
accuracy on a variety of visual recognition tasks. Here, however, we show that
these neural networks and their recent extensions struggle in recognition tasks
where co-dependent visual features must be detected over long spatial ranges. We
introduce a visual challenge, Pathfinder, and describe a novel recurrent neural
network architecture called the horizontal gated recurrent unit (hGRU) to learn
intrinsic horizontal connections – both within and across feature columns. We
demonstrate that a single hGRU layer matches or outperforms all tested feedfor-
ward hierarchical baselines including state-of-the-art architectures with orders of
magnitude more parameters.

1 Introduction

Consider Fig. 1a which shows a sample image from a representative segmentation dataset [1]
(left) and the corresponding contour map produced by a state-of-the-art deep convolutional neural
network (CNN) [2] (right). Although this task has long been considered challenging because of the
need to integrate global contextual information with inherently ambiguous local edge information,
modern CNNs are capable to detect contours in natural scenes at a level that rivals that of human
observers [2–6]. Now, consider Fig. 1b which depicts a variant of a visual psychology task referred
to as “Pathfinder” [7]. Reminiscent of the everyday task of reading a subway map to plan a commute
(Fig. 1c), the goal in Pathfinder is to determine if two white circles in an image are connected by a
path. These images are visually simple compared to natural images like the one shown in Fig. 1a,
and the task is indeed easy for human observers [7]. Nonetheless, we will demonstrate that modern
CNNs struggle to solve this task.

Why is it that a CNN can accurately detect contours in a natural scene like Fig. 1a but also struggle
to integrate paths in the stimuli shown in Fig. 1b? In principle, the ability of CNNs to learn such
long-range spatial dependencies is limited by their localized receptive fields (RFs) – hence the need
to consider deeper networks because they allow the buildup of larger and more complex RFs. Here,
we use a large-scale analysis of CNN performance on the Pathfinder challenge to demonstrate that
simply increasing depth in feedforward networks constitutes an inefficient solution to learning the
long-range spatial dependencies needed to solve the Pathfinder challenge.

An alternative solution to problems that stress long-range spatial dependencies is provided by biology.
The visual cortex contains abundant horizontal connections which mediate non-linear interactions
between neurons across distal regions of the visual field [8, 9]. These intrinsic connections, popularly
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Figure 1: State-of-the-art CNNs excel at detecting contours in natural scenes, but they are strained
by a task that requires the detection of long-range spatial dependencies. (a) Representative contour
detection performance of a leading neural network architecture [23]. (b) Exemplars from the
Pathfinder challenge: a task consisting of synthetic images which are parametrically controlled for
long-range dependencies. (c) Long-range dependencies similar to those in the Pathfinder challenge
are critical for everyday behaviors, such as reading a subway map to navigate a city.

called “association fields”, are thought to form the main substrate for mechanisms of contour grouping
according to Gestalt principles, by mutually exciting colinear elements while also suppressing
clutter elements that do not form extended contours [10–15]. Such “extra-classical receptive field”
mechanisms, mediated by horizontal connections, allow receptive fields to adaptively “grow” without
additional processing depth. Building on previous computational neuroscience work [e.g., 10, 16–19],
our group has recently developed a recurrent network model of classical and extra-classical receptive
fields that is constrained by the anatomy and physiology of the visual cortex [20]. The model was
shown to account for diverse visual illusions providing computational evidence for a novel canonical
circuit that is shared across visual modalities.

Here, we show how this computational neuroscience model can be turned into a modern end-to-
end trainable neural network module. We describe an extension of the popular gated recurrent unit
(GRU) [21], which we call the horizontal GRU (hGRU). Unlike CNNs, which exhibit a sharp decrease
in accuracy for increasingly long paths, we show that the hGRU is highly effective at solving the
Pathfinder challenge with just one layer and a fraction of the number of parameters and training
samples needed by CNNs. We further find that, when trained on natural scenes, the hGRU learns
connection patterns that coarsely resemble anatomical patterns of horizontal connectivity found in
the visual cortex, and exhibits a detection profile that strongly correlates with human behavior on a
classic contour detection task [22].

Related work Much previous work on recurrent neural networks (RNNs) has focused on modeling
sequences with learnable gates in the form of long-short term memory (LSTM) units [24] or gated
recurrent units (GRUs) [21]. RNNs have also been extended to learning spatial dependencies
in static images with broad applications [25–29]. In this approach, images are transformed into
one-dimensional sequences that are used to train an RNN. In recent years, several approaches
have introduced convolutions into RNNs, using the recursive application of convolutional filters
as a method for increasing the depth of processing through time on tasks like object recognition
and super-resolution without additional parameters [30–32]. Other groups have constrained these
convolutional-RNNs with insights from neuroscience and cognitive science, engineering specific
patterns of connectivity between processing layers [33–36]. The proposed hGRU builds on this line of
biologically-inspired implementations of RNNs, adding connectivity patterns and circuit mechanisms
that are typically found in computational neuroscience models of neural circuits [e.g., 10, 16–20].

Another class of models related to our proposed approach is Conditional Random Fields (CRFs),
probabilistic models aimed at explicitly capturing associations between nearby features. The con-
nectivity implemented in CRFs is similar to the horizontal connections used in the hGRU, and has
been successfully applied as a post-processing stage in visual tasks such as segmentation [37, 38]
to smooth out and increase the spatial resolution of prediction maps. Recently, such probabilistic
methods have been successfully incorporated in a generative vision model shown to break text-based
CAPTCHAs [39]. Originally formulated as probabilistic models, CRFs can also be cast as RNNs [40].
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2 Horizontal gated recurrent units (hGRUs)

Original contextual neural circuit model We begin by referencing the recurrent neural model of
contextual interactions developed by Mély et al. [20]. Below we adapted the model notations to a
computer vision audience. Model units are indexed by their 2D positions (x, y) and feature channel
k. Neural activity is governed by the following differential equations (see Supp. Material for the full
treatment):
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Here, X ∈ RW×H×K is the feedforward drive (i.e., neural responses to a stimulus), H(1) ∈ RW×H×K

is the recurrent circuit input, and H(2) ∈ RW×H×K the recurrent circuit output. Modeling input and
output states separately allows for the implementation of a particular form of inhibition known as
“shunting” (or divisive) inhibition. Unlike the excitation in the model which acts linearly on a unit’s
input, inhibition acts on a unit’s output and hence, regulates the unit response non-linearly (i.e., given
a fixed amount of inhibition and excitation, inhibition will increase with the unit’s activity unlike
excitation which will remained constant).

The convolutional kernels WI ,WE ∈ RS×S×K×K describe inhibitory vs. excitatory hypercolumn
connectivity (constrained by anatomical data1). The scalar parameters µ and α control linear and
quadratic (i.e., shunting) inhibition by C(1) ∈ RW×H×K, γ scales excitation by C(2) ∈ RW×H×K, and
ξ scales the feedforward drive. Activity at each stage is linearly rectified (ReLU) [·]+ = max(·, 0).
Finally, η, ε, τ and σ are time constants. To make this model amenable to modern computer vision
applications, we set out to develop a version where all parameters could be trained from data. If we
let η = τ and σ = ε for symmetry and apply Euler’s method to Eq. 1 with a time step of ∆t = η/ε2,
then we obtain the discrete-time equations:
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Here, ·[t] denotes the approximation at the t-th discrete timestep. This results in a trainable convo-
lutional recurrent neural network (RNN) which performs Euler integration of a dynamical system
similar to the neural model of [20].

hGRU formulation We build on Eq. 2 to introduce the hGRU – a model with the ability to learn
complex interactions between units via horizontal connections within a single processing layer
(Fig. 2). The hGRU extends the derivation from Eq. 2 with three modifications that improve the
training of the model with gradient descent and its expressiveness2. (i) We introduce learnable gates,
borrowed from the gated recurrent unit (GRU) framework (see Supp. Material for the full derivation
from Eq. 2). (ii) The hGRU makes the operations for computing H(2) (excitation) symmetric with
those of H(1) (inhibition), providing the circuit the ability to learn how to implement linear and
quadratic interactions at each of these processing stages. (iii) To control unstable gradients, the hGRU
uses a squashing pointwise non-linearity and a learned parameter to globally scale activity at every
processing timestep (akin to a constrained version of the recurrent batchnorm [41]).

1There are four separate connectivity patterns in [20] to describe inhibition vs. excitation and near vs. far
interactions between units. We combine these into a separate inhibitory vs. excitatory kernels to simplify
notation.

2These modifications involved relaxing several constraints from the original neuroscience model that are less
useful for solving the tasks investigated here (see Supp. Material for performance of an hGRU with constrained
inhibition and excitation.)
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Figure 2: The hGRU circuit. The hGRU can learn highly non-linear interactions between spatially
neighboring units in the feedforward drive X, which are encoded in its hidden state H(2). This
computation involves two stages, which are inspired by a recurrent neural circuit of horizontal
connections [20]. First, the horizontal inhibition (blue) is calculated by applying a gain to H(2)[t− 1],
and convolving the resulting activity with the kernel W which characterizes these interactions. Linear
(+ symbol) and quadratic (× symbol) operations control the convergence of this inhibition onto
X. Second, the horizontal excitation (red) is computed by convolving H(1)[t] with W . Another
set of linear and quadratic operations modulate this activity, before it is mixed with the persistent
hidden state H(2)[t − 1]. Note that the excitation computation involves an additional “peephole”
connection, not depicted here. Small solid-line squares within the hypothetical activities that the
circuit operates on denote the unit indexed by 2D position (x, y) and feature channel k, whereas
dotted-line squares depict the unit’s receptive field (a union of both classical and extra-classical
definitions) in the previous activity.

In our hGRU implementation, the feedforward drive X corresponds to activity from a preceding
convolutional layer. The hGRU encodes spatial dependencies between feedforward units via its
(time-varying) hidden states H(1) and H(2). Updates to the hidden states are managed using two
activities, referred to as the reset and update “gates”: G(1) and G(2). These activities are derived from
convolutions, denoted by ∗, between the kernels U(1),U(2) ∈ R1×1×K×K and hidden states H(1) and
H(2), shifted by biases b(1),b(2) ∈ R1×1×K, respectively. The pointwise non-linearity σ is applied
to each activity, normalizing them in the range [0, 1]. Because these activities are real-valued, we
hereafter refer to the reset gate as the “gain”, and the update gate as the “mix”.

Horizontal interactions between units are calculated by the kernel W ∈ RS×S×K×K, where S describes
the spatial extent of these connections in a single timestep (Fig. 2; but see Supp. Material for a version
with separate kernels for excitation vs. inhibition, as in Eq. 2). Consistent with computational models
of neural circuits (e.g., [10, 16–20]), W is constrained to have symmetric weights between channels,
such that the weight Wx0+∆x,y0+∆y,k1,k2

is equal to the weight Wx0+∆x,y0+∆y,k2,k1
where x0 and

y0 denote the center of the kernel. This constraint reduces the number of learnable parameters by
nearly half vs. a normal convolutional kernel. Hidden states H(1) and H(2) are recomputed via
horizontal interactions at every timestep t ∈ [0, T ]. We begin by describing computation of H(1)[t]:

G(1)[t] = σ(U(1) ∗H(2)[t− 1] + b(1)) (3)

C
(1)
xyk[t] = (W ∗ (G(1)[t]�H(2)[t− 1]))xyk (4)

H
(1)
xyk[t] = ζ(Xxyk − C(1)

xyk[t](αkH
(2)
xyk[t− 1] + µk)) (5)
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Channels in H(2)[t− 1] are first modulated by the gain3 G(1)[t]. The resulting activity is convolved
with W to compute C(1)[t], which is the horizontal inhibition of the hGRU at this timestep. This inhi-
bition is applied to X via the parameters µ and α, which are k-dimensional vectors that respectively
scale linear and quadratic (akin to shunting inhibition described in Eq. 1) terms of the horizontal
interaction with X. The pointwise ζ is a hyperbolic tangent that squashes activity into the range
[−1, 1] (but see Supp. Material for a hGRU with a rectified linearity). Importantly, in contrast to the
original circuit, in this formulation the update to H(1)[t] (Eq. 5) is calculated by combining horizontal
connection contributions of C(1)[t] with H(2)[t−1] rather than H(1)[t−1], which we found improved
learning on the visual tasks explored here.

The updated H(1)[t] is next used to calculate H(2)[t].

G
(2)
xyk[t] = σ((U(2) ∗H(1)[t])xyk + b
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(2)
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The mix G(2)[t] is calculated by convolving U(2)[t] with H(1)[t], followed by the addition of b(2).
The activity C(2)[t] represents the excitation of horizontal connections onto the newly-computed
H(1)[t]. Linear and quadratic contributions of horizontal interactions at this stage are controlled by
the k-dimensional parameters κ, ω, and β. The parameters κ and ω control the linear and quadratic

contributions of horizontal connections to H̃
(2)

[t]. The parameter β is a gain applied to C(2)[t], giving
W an additional degree of freedom in expressing this excitation. With this full suite of interactions,
the hGRU can in principle implement both a linear and a quadratic form of excitation (i.e., to assess
self-similarity), each of which play specific computational roles in perception [42]. Note that the

inclusion of H(1)[t] in Eq. 8 functions as a “peephole” connection between it and H̃
(2)

[t]. Finally, the

mix G(2) integrates the candidate H̃
(2)

t with H(2)
t . The learnable T -dimensional parameter η, which

we refer to as a time-gain, helps control unstable gradients during training. This time-gain modulates
H(2)

t with the scalar, ηt, which as we show in our experiments below improves model performance.

3 The Pathfinder challenge

We evaluated the limits of feedforward and recurrent architectures on the “Pathfinder challenge”, a
synthetic visual task inspired by cognitive psychology [7]. The task, depicted in Fig. 1b, involves
detecting whether two circles are connected by a path. This is made more difficult by allowing
target paths to curve and introducing multiple shorter unconnected “distractor” paths. The Pathfinder
challenge involves three separate datasets, for which the length of paths and distractors are parametri-
cally increased. This challenge therefore screens models for their effectiveness in detecting complex
long-range spatial relationships in cluttered scenes.

Stimulus design Pathfinder images were generated by placing oriented “paddles” on a canvas to
form dashed paths. Each image contained two paths made of a fixed number of paddles and multiple
distractors made of one third as many paddles. Positive examples were generated by placing two
circles at the ends of a single path (Fig. 1b, left) and negative examples by placing one circle at
the end of each of the paths (Fig. 1b, right). The paths were curved and variably shaped, with the
possible number of shapes exponential to the path length. The Pathfinder challenge consisted of three
datasets, in which path and distractor length was successively increased, and with them, the overall
task difficulty. These datasets had path lengths of 6, 9 and 14 paddles, and each contained 1,000,000
unique images of 150×150 pixels. See Supp. Material for a detailed description of the stimulus
generation procedure.

3GRU gate activities are often a function of a hidden state and X[t]. Because the feedforward drive here is
constant w.r.t. time, we omit it from these calculations. In practice, its inclusion did not affect performance.
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Model implementation We performed a large-scale analysis of the effectiveness of feedforward
and recurrent computations on the Pathfinder challenge. We controlled for the effects of idiosyncratic
model specifications by using a standard architecture, consisting of “input”, “feature extraction”,
and “readout” processing stages. Swapping different feedforward or recurrent layers into the feature
extraction stage let us measure the relative effectiveness of each on the challenge. All models except
for state-of-the-art “residual networks” (ResNets) [43] and per-pixel prediction architectures were
embedded in this architecture, and these exceptions are detailed below. See Supp. Material for a
detailed description of the input and readout stage. Models were trained on each Pathfinder challenge
dataset (Fig. 3d), with 90% of the images used for training (900,000) and the remainder for testing
(100,000). We measured model performance in two ways. First, as the accuracy on test images.
Second, as the “area under the learning curve” (ALC), or mean accuracy on the test set evaluated
after every 1000 batches of training, which summarized the rate at which a model learned the task.
Accuracy and ALC were taken from the model that achieved the highest accuracy across 5 separate
runs of model training. All models were trained for two epochs except for the ResNets, which were
trained for four. Model training procedures are detailed in Supp. Material.

Recurrent models We tested 6 different recurrent layers in the feature extraction stage of the
standard architecture: hGRUs with 8, 6, and 4-timesteps of processing; a GRU; and hGRUs with
lesions applied to parameters controlling linear or quadratic horizontal interactions. Both the GRU
and lesioned versions of the hGRU ran for 8 timesteps. These layers had 15×15 horizontal connection
kernels (W ) with an equal number of channels as their input layer (25 channels).

We observed 3 overarching trends: First, each model’s performance monotonically decreased, or
“strained”, as path length increased. Increasing path length reduced model accuracy (Fig. 3a), and
increased the number of batches it took to learn a task (Fig. 3b). Second, the 8-timestep hGRU was
more effective than any other recurrent model, and it outperformed each of its lesioned variants
as well as a standard GRU. Notably, this hGRU was strained the least by the Pathfinder challenge
out of all tested models, with a negligible drop in accuracy as path length increased. This finding
highlights the effectiveness of the hGRU for processing long-range spatial dependencies, and how the
dynamics implemented by its linear and quadratic horizontal interactions are important. Third, hGRU
performance monotonically decreased with processing time. This revealed a minimum number of
timesteps that the hGRU needed to solve each Pathfinder dataset: 4 for the length-6 condition, 6 for
the length-9 condition, and 8 for the length-14 condition (first vs. second columns in Fig. 3a). Such
time-dependency in the Pathfinder task is consistent with the accuracy-reaction-time tradeoff found
in humans as the distance between endpoints of a curve increases [7].

Feedforward models We screened an array of feedforward models on the Pathfinder challenge.
Model performance revealed the importance of kernel size vs. kernel width, model depth, and
feedforward operations for incorporating additional scene context for solving Pathfinder. Model
construction began by embedding the feature extraction stage of the standard model with kernels
of one of three different sizes: 10×10, 15×15, or 20×20. These are referred to as small, medium,
and large kernel models (Fig. 3). To control for the effect of network capacity on performance, the
number of kernels given to each model was varied so that the number of parameters in each model
configuration was equal to each other and the hGRU (36, 16, and 9 kernels). We also tested two
other feedforward models that featured candidate operations for incorporating contextual information
into local convolutional activities. One version used (2-pixel) dilated convolutions, which involves
applying a stride to the kernel before convolving the input [44, 45], and has been found useful for
many computer vision problems [38, 46, 47]. The other version applied a non-local operation to
convolutional activities [48], which can introduce (non-recurrent) interactions between units in a
layer. These operations were incorporated into the first feature extraction layer of the medium kernel
(15×15 filter) model described above. We also considered deeper versions of each of the above
“1-layer” models (referring to the depth of the feature extraction stage), stacking them to build 3- and
5-layer versions. This yielded a total of 15 different feedforward models.

Without exception, the performance of each feedforward model was significantly strained by the
Pathfinder challenge. The magnitude of this straining was well predicted by model depth and size, and
operations for incorporating additional contextual information made no discernible difference to the
overall pattern of results. The 1-layer models were most effective on the 6-length Pathfinder dataset,
but were unable to do better than chance on the remaining conditions. Increasing model capacity to 3
layers rescued the performance of all but the small kernel model on the 9-length Pathfinder dataset,
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Figure 3: The hGRU efficiently learns long-range spatial dependencies that otherwise strain feedfor-
ward architectures. (a) Model accuracy is plotted for the three Pathfinder challenge datasets, which
featured paths of 6- 9- and 14-paddles. Each panel depicts the accuracy of a different model class
after training on for each pathfinder dataset (see Supp. Material for additional models). Only the
hGRU and state-of-the-art models for classification (the two right-most panels) approached perfect
accuracy on each dataset. (b) Measuring the area under the learning curve (ALC) of each model
(mean accuracy) demonstrates that the rate of learning achieved by the hGRU across the Pathfinder
challenge is only rivaled by the U-Net architecture (far right). (c) The hGRU is significantly more
parameter-efficient than feedforward models at the Pathfinder challenge, with its closest competitors
needing at least 200× the number of parameters to match its performance. The x-axis shows the
number of parameters in each model versus the hGRU, as a multiple of the latter. The y-axis depicts
model accuracy on the 14-length Pathfinder dataset. (d) Pathfinder challenge exemplars of different
path lengths (all are positive examples).

but even then did little to improve performance on the 14-length dataset. Of the 5-layer models, only
the large kernel configuration came close to solving the 14-length dataset. The ALC of this model,
however, demonstrates that its rate of learning was slow, especially compared to the hGRU (Fig. 3b).
The failures of these feedforward models is all the more striking when considering that each had
between 1× and 10× the number of parameters as the hGRU (Fig. 3c, compare the red and green
markers).

Residual networks We reasoned that if the performance of feedforward models on the Pathfinder
challenge is a function of model depth, then state-of-the-art networks for object recognition with
many times the number of layers should easily solve the challenge. We tested this possibility by
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