
Efficient Stochastic Gradient Hard Thresholding

Pan Zhou∗ Xiao-Tong Yuan† Jiashi Feng∗
∗ Learning & Vision Lab, National University of Singapore, Singapore

† B-DAT Lab, Nanjing University of Information Science & Technology, Nanjing, China
pzhou@u.nus.edu xtyuan@nuist.edu.cn elefjia@nus.edu.sg

Abstract

This supplementary document contains the technical proofs of convergence results
and some additional numerical results of the NeurIPS’18 paper entitled “Efficient
Stochastic Gradient Hard Thresholding”. It is structured as follows. The proof of
the results in Section 3, including Theorems 1 and 2 and Corollary 1, is presented
in Appendix B. Then Appendix C provides the proof of the results in Section 4,
including Theorems 3 and Corollary 2. Next, Appendix D gives the proof of auxil-
iary lemmas. Finally, the detailed descriptions of datasets and more experimental
results are provided in Appendix E.

A Auxiliary Lemmas

In this section, we introduce auxiliary lemmas which will be used for proving the results in the
manuscript. For readability, we defer the proofs of some lemmas into Appendix D.
Lemma 1. [1] When Φk(x) : Rd → Rd is a vector hard thresholding operator that keeps the
largest (in absolute value) k entries in x and sets other entries to zero, we have that for any x∗ with
‖x∗‖0 = k∗ < k,

‖Φk(x)− x∗‖2 ≤

(
1 +

2
√
k∗√

k − k∗

)
‖x− x∗‖2. (3)

On the other hand, when Φk(x) : Rd1×d2 → Rd1×d2 is a matrix hard thresholding operator that
keeps the largest k top singular values of matrix x and sets other singular values to zero, we have
that the property (3) still holds for any x∗ with rank (x∗) = k∗ < k.

Lemma 2. [2] Let Φk(x) : Rd → Rd be a vector hard thresholding operator and y = Φk(x). Then
for any y∗ with ‖y∗‖0 = k∗ < k, we have

‖y − x‖2 ≤ d− k
d− k∗

‖y∗ − x‖2.

On the other hand, when Φk(x) : Rd1×d2 → Rd1×d2 is a matrix hard thresholding operator, we have
that for any y∗ with rank (y∗) = k∗ < k,

‖y − x‖2 ≤ r − k
r − k∗

‖y∗ − x‖2.

where r = rank (x).
Lemma 3. [3] Assume that gt is the sampled gradient in Algorithm 1 for sparsity- or rank-
constrained problem. Then the gradient variance of the gradient estimation gt can be bounded as
follows

E‖gt −∇f(xt)‖2 ≤ n− st
n

1

st
Bt,

where Bt = 1
n−1

∑n
i=1 ‖∇fi(xt)−∇f(xt)‖2 and xt denotes the variable at the t-th iteration.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Lemma 4. Assume that gt is the sampled gradient in Algorithm 1 for the sparsity- or rank-constrained
problem. Then we can bound E‖gtI‖2 as follows

E‖gtI‖2 ≤
3

st
Bt + 6`s

(
f(xt)− f(x∗) + 〈∇If(x∗),xt − x∗〉

)
+ 3‖∇If(x∗)‖2,

where Bt = 1
n−1

∑n
i=1 ‖∇fi(xt)−∇f(xt)‖2, I = supp(x∗)

⋃
supp(xt)

⋃
supp(xt+1) and `s

denotes the smooth parameter with s = 2k + k∗. Here k∗ denotes the cardinality of the support set
supp(x∗).

Proof. We defer the proof of Lemma 4 to Appendix D.1.

Lemma 5. For both vector variable x in sparsity-constrained problem or matrix variable x in
rank-constrained problem, we have

‖xt − x∗‖2 ≤ 4

ρs
(f(x∗)− f(xt)) +

8

ρ2s
‖gtIt∪I∗‖2 +

8

ρ2s
‖∇f(xt)− gt‖2,

where It = supp(xt) and I∗ = supp(x∗).

Proof. See the proof of Lemma 5 in Appendix D.2.

Let us denote ρ(A) the spectral radius of a square matrix A, i.e., the largest (in magnitude) eigenvalue
of A.

Lemma 6. Let A ∈ Rd×d. Assume that µI � A � `I for some 0 < µ < `. Then the following
inequality holds

ρ

([
(1 + ν)I − ηA −νI

I 0

])
≤ max

{
|1−√ηµ|, |1−

√
η`|
}

for ν = max
{
|1−√ηµ|2, |1−

√
η`|2

}
.

Proof. We defer the proof of Lemma 6 to Appendix D.3.

B Proofs for Section 3

B.1 Proof of Theorem 1

Proof. Here we also first consider the sparsity-constrained problem. Assume v = xt − ηgtI and
I = I∗ ∪ It ∪ It+1, where I∗ = supp(x∗), It = supp(xt) and It+1 = supp(xt+1). Then we
have

E‖v − x∗‖2

=E‖xt − ηgtI − x∗‖2

=E‖xt − x∗‖2 + η2E‖gtI‖2 − 2ηE〈xt − x∗, gtI〉 (4)
¬
≤E‖xt − x∗‖2 + η2E‖gtI‖2 − 2ηE

(
f(xt)− f(x∗)

)
­
≤E‖xt − x∗‖2+η2

[
3

st
Bt+6`s

(
f(xt)−f(x∗)+〈∇If(x∗),xt−x∗〉

)
+3‖∇If(x∗)‖2

]
− 2ηE

[
f(xt)−f(x∗)

]
®
=E‖xt−x∗‖2+2η(3η`s−1)

[
f(xt)−f(x∗)

]
+6η2`s〈∇If(x∗),xt−x∗〉+ 3η2

st
Bt+3η2‖∇If(x∗)‖2,

where ¬ holds by using ‖(xt − x∗)Ic‖ = 0 and the convexity of f(x), namely, f(x∗)− f(xt) ≥
〈x∗ − xt,∇f(xt)〉 = 〈x∗ − xt,∇If(xt)〉, and ­ holds by using Lemma 4, and ® holds by using
‖∇If(x∗)‖22 ≤ ‖∇Ĩf(x∗)‖22 where Ĩ = supp(Φ2k(∇f(x∗))) ∪ supp(x∗).

2

Next, we apply Lemma 1 and obtain

E‖xt+1 − x∗‖2 ≤αE‖v − x∗‖2 (5)

≤α
[
E‖xt − x∗‖2 + 2η(3η`− 1)

[
f(xt)− f(x∗)

]
+ 6η2`s〈∇If(x∗),xt − x∗〉

]
+ α

[
3η2

st
Bt + 3η2‖∇If(x∗)‖2

]
,

where α = 1 + 2
√
k∗√

k−k∗ . On the other hand, we have

f(xt)− f(x∗) ≥ 〈∇f(x∗),xt − x∗〉+
ρs
2
‖xt − x∗‖2. (6)

By setting η ≤ 1
3`s

and plugging Eqn. (6) into Eqn. (5), we can obtain

E‖xt+1 − x∗‖2

≤α [1+ρη(3η`s−1)]E‖xt−x∗‖2+2αη(6η`s−1)〈∇f(x∗),xt − x∗〉+ 3αη2

st
Bt+3αη2‖∇If(x∗)‖2

¬
≤α [1 + ρη(3η`s − 1)]E‖xt − x∗‖2 +

3αη2

st
B + 3αη2‖∇If(x∗)‖2,

(7)

where ¬ holds since we set η = 1
6`s

and B = maxtBt. Then we let

β := α [1 + ρη(3η`s − 1)] = α

(
1− 1

12κs

)
∈ (0, 1) where κs =

`s
ρs
.

We further set st = τ/ωt and assume that τ is large enough such that

γ :=
3αη2B

τ
=

αB

12τ`2s
≤ δ‖x0 − x∗‖2, (8)

where δ is a positive constant and will be discussed later. Now we use mathematical induction to
prove

E‖xt − x∗‖2 ≤ θt‖x0 − x∗‖2 +
α

12(1− β)`2s
‖∇If(x∗)‖2, (∀t), (9)

where θ < 1 is a constant and will be given below.

Obviously, when t = 0, Eqn. (9) holds. Now assume that for all k ≤ t, Eqn. (9) holds. Then for
k = t+ 1, we have

E‖xt+1 − x∗‖2 ≤βE‖xt − x∗‖2 + δωt‖x0 − x∗‖2 +
α

12`2s
‖∇If(x∗)‖2

≤(βθt + δωt)‖x0 − x∗‖2 +
α

12`2s

[
β

1− β
+ 1

]
‖∇If(x∗)‖22

¬
≤θt+1‖x0 − x∗‖2 +

α

12(1− β)`2s
‖∇If(x∗)‖22

where ¬ holds since we let
ω = θ = β + δ. (10)

This means that if Eqn. (8) holds, then Eqn. (9) always holds. So the conclusion holds.

Finally, we discuss the value of k such that β ∈ (0, 1). It is easily to check that if k ≥(
6400
9 κ2s + 1

)
k∗, where κs = `s/ρs, then we have β = α

(
1− 1

12κs

)
< 1 − 1

120κs
− 1

160κ2
s

.
So we just let

k ≥
(
712κ2s + 1

)
k∗, and β = α

(
1− 1

12κs

)
≤ 1− 1

120κs
.

3

Then let τ ≥ 40αB
3`sρs‖x0−x∗‖2 . We have

ω = θ = β + δ ≤ 1− 1

120κs
+

3

480κs
= 1− 1

480κs
.

Therefore, we have

E‖xt − x∗‖2 ≤ θt‖x0 − x∗‖2 +
α

12(1− β)`2s
‖∇If(x∗)‖2, (∀t), (11)

where β = α
(

1− 1
12κs

)
≤ 1− 1

120κs
and θ ≤ 1− 1

480κs
. Then we can further derive

E‖xT − x∗‖ ≤
√
E‖xT − x∗‖2 ≤

√
θT ‖x0 − x∗‖2 +

α

12(1− β)`2s
‖∇Ĩf(x∗)‖2

≤θ T2 ‖x0 − x∗‖+

√
α

`s
√

12(1− β)
‖∇Ĩf(x∗)‖,

where θ ≤ 1− 1
480κs

. So we obtain the result on sparsity-constrained problem.

For rank-constrained problem, its proof is very similar to the proof for sparsity-constrained problem.
Firstly, assume that the skinny SVDs of xt, xt+1, x∗ are respectively xt = UtΣtV

T
t , xt+1 =

Ut+1Σt+1V
T
t+1 and x∗ = U∗Σ∗V

T
∗ . Then we have xt = UtU

T
t x

t, xt+1 = Ut+1U
T
t+1x

t+1 and
x∗ = U∗U

T
∗ x
∗. We further define the projection operation PU (x) = UUTx which projects x

in the subspace spanned by U . Then let v = xt − ηgtI and I = I∗ ∪ It ∪ It+1, where I∗ =
supp(x∗), It = supp(xt) and It+1 = supp(xt+1). The notation xtIt = UtU

T
t x

t = PUt (xt).
For the specifical notation gtI , it denotes gtI = PI (gt) = (UtU

T
t + Ut+1U

T
t+1 + U∗U

T
∗ −

UtU
T
t Ut+1U

T
t+1 −UtU

T
t U∗U

T
∗ −Ut+1U

T
t+1U∗U

T
∗ + UtU

T
t Ut+1U

T
t+1U∗U

T
∗)gt where PI is

a projection.

Then we prove the result similar to Eqn. (4) as follows:

E‖v − x∗‖2

=E‖xt − ηgtI − x∗‖2

=E‖xt − x∗‖2 + η2E‖gtI‖2 − 2ηE〈xt − x∗, gtI〉
¬
≤E‖xt − x∗‖2 + η2E‖gtI‖2 − 2ηE

(
f(xt)− f(x∗)

)
­
≤E‖xt − x∗‖2+η2

[
3

st
Bt+6`s

(
f(xt)−f(x∗)+〈∇If(x∗),xt−x∗〉

)
+3‖∇If(x∗)‖2

]
− 2ηE

[
f(xt)−f(x∗)

]
®
=E‖xt−x∗‖2+2η(3η`s−1)

[
f(xt)−f(x∗)

]
+6η2`s〈∇If(x∗),xt−x∗〉+ 3η2

st
Bt+3η2‖∇If(x∗)‖2,

where ¬ holds since we have PI(xt−x∗) = (UtU
T
t +Ut+1U

T
t+1 +U∗U

T
∗ −UtU

T
t Ut+1U

T
t+1−

UtU
T
t U∗U

T
∗ −Ut+1U

T
t+1U∗U

T
∗ + UtU

T
t Ut+1U

T
t+1U∗U

T
∗)(UtU

T
t x

t −U∗U
T
∗ x
∗) = xt − x∗

which gives ‖(xt−x∗)Ic‖ = ‖(I−PI)(xt−x∗)‖ = 0 and E〈xt−x∗, gtI〉 = E〈xt−x∗,PI (gt)〉 =
E〈PI (xt − x∗) ,PI (gt)〉 = E〈xt − x∗, gt〉 = E〈xt − x∗,∇f(xt)〉 ≤ f(x∗) − f(xt). ­
still uses the results in Lemma 4. ® holds by using ‖∇If(x∗)‖22 ≤ ‖∇Ĩf(x∗)‖22 where
Ĩ = supp(Φ2k(∇f(x∗))) ∪ supp(x∗).

Before we apply Lemma 1 to obtain similar result in Eqn. (5). We first establish

Φk(v) =Ut+1U
T
t+1(xt − ηgtI) = Ut+1U

T
t+1x

t − ηUt+1U
T
t+1[(UtU

T
t + Ut+1U

T
t+1 + U∗U

T
∗

−UtU
T
t Ut+1U

T
t+1 −UtU

T
t U∗U

T
∗ −Ut+1U

T
t+1U∗U

T
∗ + UtU

T
t Ut+1U

T
t+1U∗U

T
∗)]gt

=Ut+1U
T
t+1x

t − ηUt+1U
T
t+1g

t = Ut+1U
T
t+1(xt − ηgt) = Φk(xt − ηgt) = xt+1.

(12)

4

Then we apply Lemma 1 to establish

‖xt+1 − x∗‖2 =‖Φk(v)− x∗‖2 ≤

(
1 +

2
√
k∗√

k − k∗

)
‖v − x∗‖2

≤α
[
E‖xt − x∗‖2 + 2η(3η`− 1)

[
f(xt)− f(x∗)

]
+ 6η2`s〈∇If(x∗),xt − x∗〉

]
+ α

[
3η2

st
Bt + 3η2‖∇If(x∗)‖2

]
,

where α = 1 + 2
√
k∗√

k−k∗ .

Next by using Assumption 1 in which we have f(xt)−f(x∗) ≥ 〈∇f(x∗),xt−x∗〉+ ρs
2 ‖x

t−x∗‖2,
we can establish the result in Eqn. (7). Finally, since the deduction after Eqn. (7) does not rely on
the rank-constrained problem, we can just follow the above proof and obtain the desired result on
rank-constrained problem. The proof is completed.

B.2 Proof of Corollary 1

Proof. Here we use the result in Eqn. (11) in Section B.1:

E‖xt − x∗‖2 ≤ θt‖x0 − x∗‖2 +
α

12(1− β)`2s
‖∇If(x∗)‖2, (∀t),

where θ ≤ 1− 1
480κs

and β = α
(

1− 1
12κs

)
. Then to achieve θT ‖x0 − x∗‖2 ≤ ε, we have

T ≥ log1/θ

(
‖x0 − x∗‖2

ε

)
In this way, we have

E‖xT − x∗‖2 ≤
√
E‖xT − x∗‖22 ≤

√
θT ‖x0 − x∗‖2 +

α

12(1− β)`2s
‖∇Ĩf(x∗)‖2

≤
√
ε+

α

12(1− β)`2s
‖∇Ĩf(x∗)‖22 ≤

√
ε+

√
α

`s
√

12(1− β)
‖∇Ĩf(x∗)‖.

Therefore, the IFO complexity is

τ

[
1 +

1

ω
+ · · ·+ 1

ωT−1

]
=τ

(1/ω)
log1/θ

(
‖x0−x∗‖2

ε

)
− 1

1/ω − 1

¬
=

τ

1/ω − 1

[
‖x0 − x∗‖2

ε
− 1

]
­
≤6400αB

ρs`s
· κs
ε

®
= O

(κs
ε

)
,

where ¬ uses ω = θ = 1− 1
480κs

; ­ uses τ ≥ 40αB
3ρs`s‖x0−x∗‖2 ; ® holds since (1) the parameter ρs is

the strong convex parameter at sparsity/low-rank level s and thus is not very small since s is much
smaller than the feature dimension, (2) we can always scale the problem such that ρs is not small.
Notice, such a scale does not affect the ratio B/`s since they always scale at the same order. Thus,
we have the IFO complexity O

(
κs
ε

)
.

On the other hand, we have

log1/θ

(
1

ε

)
=

log
(
1
ε

)
log
(
1
θ

) =
log
(
1
ε

)
log
(

1 + 1
480κs−1

) =
log
(
1
ε

)
log
(

1 + 1
480κs−1

) ¬
≤ O

(
κs log

(
1

ε

))
,

where holds since we have log(1 + x) ≥ log(2) · x for x ∈ [0, 1]. The proof is completed.

B.3 Proof of Theorem 2

Proof. We first prove the result for sparsity-constrained problem. In this case, the variable x is vector.
Let I = It+1 ∪ It ∪ I∗, where I∗ = supp(x∗), It = supp(xt) and It+1 = supp(xt+1). Recall

5

that xt+1 = Φk(xt − ηgt). Then we have

f(xt+1)

≤f(xt) + 〈∇f(xt),xt+1 − xt〉+
`s
2
‖xt+1 − xt‖2

≤f(xt) + 〈gt,xt+1 − xt〉+
`s
2
‖xt+1 − xt‖2 + ‖∇f(xt)− gt‖‖xt+1 − xt‖

=f(xt)+
1

2η
‖xt+1
I −x

t
I+ηgtI‖2−

η‖gtI‖2

2
− 1−η`s

2η
‖xt+1 − xt‖2+‖∇f(xt)− gt‖‖xt+1 − xt‖

=f(xt)+
1

2η
‖xt+1
I −x

t
I+ηgtI‖2−

η‖gtI\(It∪I∗)‖
2

2
−
η‖gtIt∪I∗‖2

2
− 1− η`s

2η
‖xt+1 − xt‖2

+ ‖∇f(xt)− gt‖‖xt+1 − xt‖

=f(xt)+
1

2η

(
‖xt+1
I −x

t
I + ηgtI‖2−η2‖gtI\(It∪I∗)‖

2
)
−
η‖gtIt∪I∗‖2

2
− 1−η`s

2η
‖xt+1 − xt‖2

+ ‖∇f(xt)− gt‖‖xt+1 − xt‖.
(13)

Now we bound the second term ‖xt+1
I − xtI + ηgtI‖2 − η2‖gtI\(It∪I∗)‖

2. Here we adopt similar
strategy in [2]. Since we have I \ (It ∪ I∗) = It+1 \ (It ∪ I∗) ⊆ It+1, then we can establish
xt+1
I\(It∪I∗) = xtI\(It∪I∗) − ηgtI\(It∪I∗). On the other hand, we have xtI\(It∪I∗) = 0 which

further yields xt+1
I\(It∪I∗) = −ηgtI\(It∪I∗). Next, we choose a set R ⊆ It \ It+1 such that

|R| = |It+1 \ (It ∪ I∗)|. We can find such a set R because we have |It+1 \ (It ∪ I∗)| =
|It \ It+1| − |(It+1 ∩ I∗) \ It|. Besides, since xt+1 = Φk(xt − ηgt), we can establish:

η2‖gtI\(It∪I∗)‖
2 = ‖xt+1

I\(It∪I∗)‖
2 ≥ ‖xtR − ηgtR‖2. (14)

Then combining Eqn. (14) and the fact that xt+1
R = 0, we have

‖xt+1
I − xtI + ηgtI‖2 − η2‖gtI\(It∪I∗)‖

2 ≤‖xt+1
I − xtI + ηgtI‖2 − ‖xt+1

R − xtR + ηgtR‖2

=‖xt+1
I\R − xtI\R + ηgtI\R‖

2. (15)

Next, we bound the size of I \ R as |I \ R| ≤ |It+1|+ |(It \ It+1) \ R|+ |I∗| ≤ k + |(It+1 ∩
I∗) \ It|+ k∗ ≤ k + 2k∗. Also, since It+1 ⊆ (I \ R), we have xt+1

I\R = Φk(xtI\R − ηg
t
I\R). By

combining Eqn. (15) and Lemma 2, we can obtain

‖xt+1
I − xtI + ηgtI‖2 − η2‖gtI\(It∪I∗)‖

2

≤ 2k∗

k + k∗
‖x∗I\R − xtI\R + ηgtI\R‖

2

≤ 2k∗

k + k∗
‖x∗I − xtI + ηgtI‖2

=
2k∗

k + k∗
(
‖x∗ − xt‖2 + 2η〈gt,x∗ − xt〉+ η2‖gtI‖2

)
¬
=

2k∗

k + k∗
(
‖x∗ − xt‖2 + 2η〈∇f(xt),x∗ − xt〉+ η2‖gtI‖2

)
+ ξ〈gt −∇f(xt),x∗ − xt〉

≤ 2k∗

k + k∗

[
‖x∗−xt‖2+2η

(
f(x∗)−f(xt)− ρs

2
‖x∗−xt‖2

)
+η2‖gtI‖2

]
+ξ〈gt−∇f(xt),x∗−xt〉

=
4ηk∗

k + k∗
(f(x∗)−f(xt))+

2(1−ηρs)k∗

k+k∗
‖x∗−xt‖2+

2η2k∗

k + k∗
‖gtI‖2+ξ〈gt−∇f(xt),x∗−xt〉

=
4ηk∗

k + k∗
(f(x∗)−f(xt))+

2(1−ηρs)k∗

k + k∗
‖x∗−xt‖2+

2η2k∗

k + k∗
‖gtI\(It∪I∗)‖

2+
2η2k∗

k + k∗
‖gtIt∪I∗‖2

+ ξ〈gt −∇f(xt),x∗ − xt〉,

6

where ξ = 4ηk∗

k+k∗ in ¬. By substituting the above inequality into Eqn. (13), we can further obtain

f(xt+1)

≤f(xt) +
2k∗

k + k∗
(f(x∗)− f(xt)) +

(1− ηρs)k∗

η(k + k∗)
‖x∗ − xt‖2 +

ηk∗

k + k∗
‖gtI\(It∪I∗)‖

2

+

(
ηk∗

k + k∗
− η

2

)
‖gtIt∪I∗‖2 −

1− η`s
2η

‖xt+1 − xt‖2 +
ξ

2η
〈gt −∇f(xt),x∗ − xt〉

+ ‖∇f(xt)− gt‖‖xt+1 − xt‖
¬
≤f(xt)+

2k∗

k + k∗
(f(x∗)−f(xt))+

(1−ηρs)k∗

η(k + k∗)
‖x∗−xt‖2−

[
1−η`s

2η
− k∗

η(k+k∗)

]
‖xt+1−xt‖2

+

(
ηk∗

k + k∗
− η

2

)
‖gtIt∪I∗‖2 +

ξ

2η
〈gt −∇f(xt),x∗ − xt〉+ ‖∇f(xt)− gt‖‖xt+1 − xt‖

­
≤f(xt) +

2k∗

k + k∗
(f(x∗)− f(xt)) +

(1− ηρs)k∗

η(k + k∗)
‖x∗ − xt‖2 −

(
η

2
− ηk∗

k + k∗

)
‖gtIt∪I∗‖2

+
ξ

2η
〈gt −∇f(xt),x∗ − xt〉+

η(k + k∗)

2 ((1− η`s)k − (1 + η`s)k∗)
‖∇f(xt)− gt‖2,

where in ¬ we used ‖xt+1 − xt‖ ≥ η‖gtI\(It∪I∗)‖, and in ­ we have used the basic inequality

ab ≤ a2

4c + cb2,∀c > 0. By invoking Lemma 5 in the above we further get

f(xt+1)

≤f(xt)+
2k∗

k + k∗

(
1+

2(1− ηρs)
ηρs

)
(f(x∗)−f(xt))−

(
η

2
− (η2ρ2s+8(1− ηρs))k∗

ηρ2s(k + k∗)

)
‖gtIt∪I∗‖2

+
ξ

2η
〈gt−∇f(xt),x∗− xt〉+

(
η(k + k∗)

2 ((1− η`s)k−(1 + η`s)k∗)
+

8(1− ηρs)k∗

ηρ2s(k + k∗)

)
‖∇f(xt)−gt‖2.

Let us now consider η = 1
2`s

in the above inequality, which leads to

f(xt+1) ≤f(xt)+
2(4`s − ρs)k∗

ρs(k + k∗)
(f(x∗)−f(xt))−

(
1

4`s
− (ρ2s − 16ρs`s+32`2s)k

∗

2`sρ2s(k + k∗)

)
‖gtIt∪I∗‖2

+ `sξ〈gt −∇f(xt),x∗ − xt〉+

(
k + k∗

2`s(k − 3k∗)
+

8(2`s − ρs)k∗

ρ2s(k + k∗)

)
‖∇f(xt)− gt‖2.

Since k ≥
(

1 +
64`2s
ρ2s

)
k∗, with algebra manipulation we can further show that

f(xt+1) ≤f(xt)+
ρs
8`s

(f(x∗)−f(xt))+`sξ〈gt−∇f(xt),x∗−xt〉+
(

5

4`s
+

8`s
ρ2s

)
‖∇f(xt)−gt‖2

≤f(xt)+
ρs
8`s

(f(x∗)−f(xt))+`sξ〈gt−∇f(xt),x∗−xt〉+ 37`s
4ρ2s
‖∇f(xt)−gt‖2.

Taking expectation (conditioned on xt) on both sides of the above we arrive at

E[f(xt+1) | xt] ≤f(xt) +
ρs
8`s

(f(x∗)− f(xt)) +
37`s
4ρ2s

E[‖∇f(xt)− gt‖2 | xt]

¬
≤f(xt) +

ρs
8`s

(f(x∗)− f(xt)) +
37`s
4ρ2sst

B,

where ¬ uses Lemma 3, in which B = maxtBt and Bt = 1
n−1

∑n
i=1 ‖∇fi(xt)−∇f(xt)‖2. By

further taking expectation on xt we obtain

E[f(xt+1)− f(x∗)] ≤
(

1− ρs
8`s

)
E[f(xt)− f(x∗)] +

37`s
4ρ2sst

B.

7

We further set β = 1− 1
8κs

and st = τ/ωt, and then assume that τ is large enough such that

γ :=
37`sB

4τρ2s
≤ δ[f(x0)− f(x∗)], (16)

where δ is a positive constant and will be discussed later. Now we use mathematical induction to
prove

E[f(xt)− f(x∗)] ≤ θt[f(x0)− f(x∗)], (∀t), (17)

where θ < 1 is a constant and will be given below.

Obviously, when t = 0, Eqn. (17) holds. Now assume that for all k ≤ t, Eqn. (17) holds. Then for
k = t+ 1, we have

E[f(xt+1)− f(x∗)] ≤βE[f(xt)− f(x∗)] + δωt[f(x0)− f(x∗)]

≤(βθt + δωt)[f(x0)− f(x∗)]
¬
≤ θt+1[f(x0)− f(x∗)],

where ¬ holds since we let

ω = θ = β + δ. (18)

This means that if Eqn. (16) holds, then Eqn. (17) always holds. So the conclusion holds.

Then let τ ≥ 148Bκ2
s

ρs[f(x0)−f(x∗)] which gives δ ≤ 1
16κs

. We have

ω = θ = β + δ ≤ 1− 1

8κs
+

1

16κs
= 1− 1

16κs
.

Therefore, we have

E[f(xt)− f(x∗)] ≤
(

1− 1

16κs

)t
[f(x0)− f(x∗)].

The proof is completed.

C Proofs for Section 4

C.1 Proofs of Theorem 3

Proof. Here we also first consider the sparsity-constrained problem. Let us consider I = It+1 ∪
It ∪ It−1 ∪ I∗ and yt+1 = xt − ηgtI + ν(xt − xt−1). Since f(x) is quadratic with Hessian H ,
we know that

yt+1
I − x∗ =xt − x∗ − η∇If(xt) + η∇If(x∗) + ν(xt − xt−1) + η(∇If(xt)− gtI)− η∇If(x∗)

=((1 + ν)I − ηHII)(xt − x∗)− ν(xt−1 − x∗) + η(∇If(xt)− gtI)− η∇If(x∗).
(19)

Since the above iterate depends on the previous two iterates, we consider the following three-term
recurrence in matrix form:[

yt+1
I − x∗

xt − x∗

]
=

[
(1 + ν)I − ηHII −νI

I 0

][
xt − x∗

xt−1 − x∗

]
+η

[
∇If(xt)− gtI −∇If(x∗)

0

]
.

8

Since xt+1 = Φk(yt+1) = Φk(yt+1
I), based on Lemma 1 we get ‖xt+1−x∗‖ ≤

√
α‖yt+1

I −x∗‖ ≤
α‖yt+1

I −x∗‖, where α = 1+ 2
√
k∗√

k−k∗ . Let Î = supp(Φ3k(∇f(x∗)))∪supp(x∗) and ŝ = 3k+k∗.
Then

E
∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥
≤αE

∥∥∥∥[yt+1
I − x∗

xt − x∗

]∥∥∥∥
≤αE

∥∥∥∥[(1 + ν)I − ηHII −νI
I 0

]∥∥∥∥ ∥∥∥∥[xt − x∗

xt−1 − x∗

]∥∥∥∥+αηE
∥∥∥∥[∇If(xt)− gtI −∇If(x∗)

0

]∥∥∥∥
≤αE

∥∥∥∥[(1 + ν)III − ηHII −νIII
III 0

]∥∥∥∥ ∥∥∥∥[xt − x∗

xt−1 − x∗

]∥∥∥∥+αηE‖∇If(xt)− gtI‖+η‖∇If(x∗)‖

¬
≤α
√
`ŝ −

√
ρŝ√

`ŝ +
√
ρŝ

E
∥∥∥∥[xt − x∗

xt−1 − x∗

]∥∥∥∥+ αηE‖∇If(xt)− gtI‖+ αη‖∇If(x∗)‖

­
≤α

(
1−

√
ρŝ
`ŝ

)
E
∥∥∥∥[xt − x∗

xt−1 − x∗

]∥∥∥∥+ αηE‖∇If(xt)− gtI‖+ αη‖∇If(x∗)‖

®
≤
(

1− 1

2

√
ρŝ
`ŝ

)
E
∥∥∥∥[xt − x∗

xt−1 − x∗

]∥∥∥∥+ αηE‖∇If(xt)− gtI‖+ αη‖∇If(x∗)‖

¯
≤
(

1− 1

2

√
ρŝ
`ŝ

)
E
∥∥∥∥[xt − x∗

xt−1 − x∗

]∥∥∥∥+ αη

√
B

st
+ αη‖∇Îf(x∗)‖,

(20)

where ¬ follows from Lemma 6 with η = 4
(
√
ρŝ+
√
`ŝ)2

and ν = max
{
|1−√ηρŝ|2, |1−

√
η`ŝ|2

}
(For the sake of readability, we have assumed without loss of generality that

ρ

([
(1 + ν)III − ηHII −νIII

III 0

])
=

∥∥∥∥[(1 + ν)III − ηHII −νIII
III 0

]∥∥∥∥. Otherwise,

we may simply run sufficient rounds of heavy-ball iteration over I before applying the hard
thresholding operation and similar complexity bounds can be obtained with more involved
arguments), ­ follows from the fact `ŝ ≥ ρŝ, ® follows from the condition k ≥

(
1 + 16`ŝ

ρŝ

)
k∗

which implies α ≤ 1+ 1
2

√
ρŝ
`ŝ

, ¯ uses Lemma 3 withB = maxtBt and ‖∇If(x∗)‖ ≤ ‖∇Îf(x∗)‖

where Î = supp(Φ3k(∇f(x∗))) ∪ supp(x∗).

Now we let

β := 1− 1

2
√
κs

where κs =
`s
ρs
.

We further set st = τ/ωt and assume that τ is large enough such that

γ :=
αη
√
B√
τ
≤ 8

√
B

√
τ(
√
ρŝ +

√
`ŝ)2

≤ δ(‖x0 − x∗‖+ ‖x−1 − x∗‖), (21)

where δ is a positive constant and will be discussed later. Now we use mathematical induction to
prove

E
∥∥∥∥[xt − x∗

xt−1 − x∗

]∥∥∥∥ ≤ θt ∥∥∥∥[x0 − x∗

x−1 − x∗

]∥∥∥∥+
8

(1− β)(
√
ρŝ +

√
`ŝ)2
‖∇Îf(x∗)‖, (∀t), (22)

where θ < 1 is a constant and will be given below.

9

Obviously, when t = 0, Eqn. (22) holds. Now assume that for all k ≤ t, Eqn. (22) holds. Then for
k = t+ 1, we have

E
∥∥∥∥[xt − x∗

xt−1 − x∗

]∥∥∥∥ ≤βE∥∥∥∥[xt−1 − x∗

xt−2 − x∗

]∥∥∥∥+ δω
t
2

∥∥∥∥[x0 − x∗

x−1 − x∗

]∥∥∥∥+
8

(
√
ρŝ +

√
`ŝ)2
‖∇Îf(x∗)‖

≤(βθt + δω
t
2)E

∥∥∥∥[x0 − x∗

x−1 − x∗

]∥∥∥∥+
8

(
√
ρŝ +

√
`ŝ)2

[
β

1− β
+ 1

]
‖∇Îf(x∗)‖

¬
≤θtE

∥∥∥∥[x0 − x∗

x−1 − x∗

]∥∥∥∥+
8

(1− β)(
√
ρŝ +

√
`ŝ)2
‖∇Îf(x∗)‖

where ¬ holds since we let
ω = θ2 and θ = β + δ. (23)

This means that if Eqn. (23) holds, then Eqn. (22) always holds. So the conclusion holds.

Then let τ ≥ 81Bκs
4(
√
ρs+
√
`s)4‖x0−x∗‖2 . Recall x−1 = x0, we have

θ = β + δ ≤ 1− 1

2
√
κs

+
4

9
√
κs

= 1− 1

18
√
κs
.

Therefore, we have

E‖xt − x∗‖ ≤2θt‖x0 − x∗‖+
8

(1− β)(
√
ρŝ +

√
`ŝ)2
‖∇Îf(x∗)‖

=2θt‖x0 − x∗‖+
16
√
κŝ

(
√
ρŝ +

√
`ŝ)2
‖∇Îf(x∗)‖, (∀t)

where β = 1− 1
2
√
κs

and θ ≤ 1− 1
18
√
κs

with ω = θ2. So the result on sparsity-constrained problem
holds.

Now we consider the rank-constrained problem. Since the proof accesses the Hessian, here we
need to vectorize the matrix variable x. For notation simplicity, we use x̃ ∈ Rd1d2 to denote
the vectorization of x ∈ Rd1×d2 . Assume that the skinny SVDs of xt, and x∗ are respectively
xt = UtΣtV

T
t and x∗ = U∗Σ∗V

T
∗ . Then we have xt = UtU

T
t x

t and x∗ = U∗U
T
∗ x
∗. We

further define the projection operation PU (x) = UUTx which projects x in the subspace spanned
by U . Then let I = I∗ ∪ It−1 ∪ It ∪ It+1, where I∗ = supp(x∗), It−1 = supp(xt−1),
It = supp(xt) and It+1 = supp(xt+1). The notation xtIt = UtU

T
t x

t = PUt (xt). For
the specifical notation yI , it denotes yI = PI (yI) = (Ut−1U

T
t−1 + UtU

T
t + Ut+1U

T
t+1 +

U∗U
T
∗ −Ut−1U

T
t−1UtU

T
t Ut+1U

T
t+1−Ut−1U

T
t−1UtU

T
t U∗U

T
∗ −Ut−1U

T
t−1Ut+1U

T
t+1U∗U

T
∗ −

UtU
T
t Ut+1U

T
t+1U∗U

T
∗ + Ut−1U

T
t−1UtU

T
t Ut+1U

T
t+1U∗U

T
∗)gt where PI is a projection. Here y

can be x, gt and ∇f(x).

Then we also prove Eqn. (19) holds. Let ỹt, x̃∗, x̃t and∇f̃(x) respectively denotes the vectorization
of yt, x∗, xt and ∇f(x). The notation x̃I denotes the vectorization of UIUT

I x̃. Then we have

ỹt+1
I − x̃∗ =x̃t − x̃∗ − η∇I f̃(xt) + η∇I f̃(x∗) + ν(x̃t − x̃t−1) + η(∇I f̃(xt)− g̃tI)− η∇I f̃(x∗)

=((1 + ν)I − ηH)(x̃t − x̃∗)− ν(x̃t−1 − x̃∗) + η(∇I f̃(x̃t)− g̃tI)− η∇I f̃(x∗),

where H = PI(∇2f̃(z̃)). Here ∇2f̃(z̃) comes from the fact that ∇I f̃(xt) − ∇I f̃(x∗) =

PI(∇f̃(xt) − ∇f̃(x∗))
¬
= PI∇2f̃(z̃)(x̃t − x̃∗) in which ¬ uses the second differential prop-

erty of f(x) and thus there exists a matrix z such that∇f̃(xt)−∇f̃(x∗) = ∇2f̃(z̃)(x̃t− x̃∗). Then
by Assumptions 1 and 2, we have ρŝI � PI(H) � `ŝI since ‖PI‖2 ≤ 1. We obtain ‖PI‖2 ≤ 1
since we have PTI PI = PI .

On the other hand, we can follow Eqn. (12) in Section B.1 to prove

Φk(yt+1
I) =Ut+1U

T
t+1[xt − ηgtI + ν(xt − xt−1)]

=Ut+1U
T
t+1[xt + ν(xt − xt−1)] + ηUt+1U

T
t+1PI(gt)

¬
=Ut+1U

T
t+1[xt + ν(xt − xt−1)] + ηUt+1U

T
t+1g

t = xt+1,

10

where ¬ plugs PI defined above and obtains Ut+1U
T
t+1PI = Ut+1U

T
t+1. Then we apply Lemma 1

to establish

‖xt+1 − x∗‖2 =‖Φk(yt+1
I)− x∗‖2 ≤

(
1 +

2
√
k∗√

k − k∗

)
‖yt+1
I − x∗‖2,

where α = 1 + 2
√
k∗√

k−k∗ . Therefore, we can establish

E
∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥ ≤ αE∥∥∥∥[yt+1
I − x∗

xt − x∗

]∥∥∥∥ .
Then we can establish the first inequality in Eqn. (20). The following proof does not depend the
property on rank-constrained problem. So we can just follow the above proof sketch for sparsity-
constrained problem to prove the result on the rank-constrained problem. The proof is completed.

C.2 Proof of Corollary 2

Proof. To achieve ε-accurate solution, let
2θt‖x0 − x∗‖ ≤

√
ε

where β̃ = 1− 1
2
√
κŝ

and θ ≤ 1− 1
18
√
κŝ

with ω = θ2, we have

T ≥ log1/θ

(
2‖x0 − x∗‖√

ε

)
.

Therefore, the IFO complexity is

τ

[
1 +

1

ω
+ · · ·+ 1

ωT−1

]
= τ

(1/ω)
log1/θ

(
2‖x0−x∗‖√

ε

)
− 1

1/ω − 1

¬
=

τ

1/ω − 1

[
4‖x0 − x∗‖2

ε
− 1

]
≤ τ

1/ω − 1

[
‖x0 − x∗‖2

ε

]
­
≤ 81Bκŝ

4(
√
ρŝ +

√
`ŝ)4ε

1

1/
√

1− 1
18
√
κŝ
− 1

®
≤

81B · 36
√
κŝ

ρŝ(
√
ρŝ +

√
`ŝ)2ε

`s

(
√
ρŝ +

√
`ŝ)2

≤
81B · 36

√
κŝ

ρŝ(
√
ρŝ +

√
`ŝ)2ε

`ŝ

(
√
ρŝ +

√
`ŝ)2

= O
(√

κŝB

ρs`ŝε

)
¯
= O

(√
κŝ
ε

)
where ¬ uses ω = θ2; ­ uses θ ≤ 1 − 1

18
√
κŝ

and τ ≥ 81Bκŝ
4(
√
ρŝ+
√
`ŝ)4‖x0−x∗‖2 ; ® uses

1

1/
√

1− 1
18
√
κŝ
−1
≤ 1

1−
√

1− 1
18
√
κŝ

≤ 36
√
κŝ since we have 1 −

√
1− a ≥ 1

2a for a ∈ (0, 1); ¯

holds since (1) the parameter ρŝ is the strong convex parameter at sparsity/low-rank level s and thus
is not very small since ŝ is much smaller than the feature dimension, (2) we can always scale the
problem such that ρŝ is not small. Notice, such a scale does not affect the ratio B/`ŝ since they
always scale at the same order. Thus, we have the IFO complexity O

(√
κŝ
ε

)
.

On the other hand, we have

log1/θ

(
1√
ε

)
=

log
(

1√
ε

)
log
(
1
θ

) =
log
(

1√
ε

)
log
(

1 + 1
18
√
κŝ−1

) =
log
(

1√
ε

)
log
(

1 + 1
18
√
κŝ−1

) ¬
≤ O

(
√
κŝ log

(
1√
ε

))
,

where holds since we have log(1 + x) ≥ log(2) · x for x ∈ [0, 1]. The proof is completed.

D Proof of Auxiliary Lemmas

D.1 Proof of Lemma 4

Proof. Firstly, for both vector x and matrix variable x we can decompose E‖gt‖2 and bound it as
follows:

E‖gtI‖2 =E‖gtI −∇If(xt) +∇If(xt)−∇If(x∗) +∇If(x∗)‖2

≤3E‖gtI −∇If(xt)‖2 + 3E‖∇If(xt)−∇If(x∗)‖22 + 3‖∇If(x∗)‖2

¬
≤ 3

st
Bt + 3E‖∇If(xt)−∇If(x∗)‖2 + 3‖∇If(x∗)‖2,

11

where ¬ use Lemma 3. Now we bound the second term. We define a function
hi(x) = fi(x)− fi(x∗)− 〈∇Ifi(x∗),x− x∗〉.

It is easy to check that ∇hi(x∗) = 0, which implies hi(x∗) = minx hi(x). In this way, for vector
variable x, we have

0 = hi(x
∗) ≤ min

η
hi(x− η∇Ihi(x)) ≤min

η
hi(x)− η〈∇hi(x),∇Ihi(x)〉+

η2`s
2
‖∇Ihi(x)‖22

¬
= min

η
hi(x)− η‖∇Ihi(x)‖2 +

η2`s
2
‖∇Ihi(x)‖2

­
=hi(x)− 1

2`s
‖∇Ihi(x)‖22,

(24)

where ¬ holds since for vector x, we have 〈∇hi(x),∇Ihi(x)〉 = ‖∇Ihi(x)‖2 and ­ holds by
optimizing η = 1

`s
.

Now we consider the matrix variable x. Firstly, assume that the skinny SVDs of xt, xt+1,
x∗ are respectively xt = UtΣtV

T
t , xt+1 = Ut+1Σt+1V

T
t+1 and x∗ = U∗Σ∗V

T
∗ . Then we

have xt = UtU
T
t x

t, xt+1 = Ut+1U
T
t+1x

t+1 and x∗ = U∗U
T
∗ x
∗. We further define the pro-

jection operation PU (x) = UUTx which projects x in the subspace spanned by U . Then
let v = xt − ηgtI and I = I∗ ∪ It ∪ It+1, where I∗ = supp(x∗), It = supp(xt) and
It+1 = supp(xt+1). The notation xtIt = UtU

T
t x

t = PUt (xt). For the specifical notation gtI ,
it denotes gtI = PI (gt) = (UtU

T
t + Ut+1U

T
t+1 + U∗U

T
∗ −UtU

T
t Ut+1U

T
t+1 −UtU

T
t U∗U

T
∗ −

Ut+1U
T
t+1U∗U

T
∗ + UtU

T
t Ut+1U

T
t+1U∗U

T
∗)gt where PI is a projection. Then we also have

〈∇hi(x),∇Ihi(x)〉 = 〈∇hi(x),PI (∇hi(x))〉 ¬
= 〈PI (∇hi(x)) ,PI (∇hi(x))〉 = ‖∇Ihi(x)‖2,

where ¬ holds since 〈PI (∇Ihi(x)) ,PI(∇Ihi(x))〉 = 〈∇hi(x),PTI PI(∇Ihi(x))〉 =
〈∇hi(x),PI(∇Ihi(x))〉 due to PTI PI = PI .

Thus, Eqn. (24) holds for both vector variable x and matrix variable x. It further yields

‖∇Ifi(x)−∇Ifi(x∗)‖22 ≤ 2`s (fi(x)− fi(x∗)− 〈∇Ifi(x∗),x− x∗〉) .
Then we are ready to bound the second term:

E‖∇If(xt)−∇If(x∗)‖2 =
1

n

n∑
i=1

‖∇Ifi(xt)−∇Ifi(x∗)‖2

≤ 1

n

n∑
i=1

2`s
(
fi(x

t)− fi(x∗)− 〈∇Ifi(x∗),xt − x∗〉
)

=2`s
(
f(xt)− f(x∗) + 〈∇If(x∗),xt − x∗〉

)
.

Therefore, for both vector variable x and matrix variable x we have

E‖gtI‖2 ≤
3

st
Bt + 6`s

(
f(xt)− f(x∗) + 〈∇If(x∗),xt − x∗〉

)
+ 3‖∇If(x∗)‖2.

This completes the proof.

D.2 Proof of Lemma 5

Proof. We first consider vector variable x. From the strong convexity we get

f(x∗) ≥f(xt) + 〈∇f(xt),x∗ − xt〉+
ρs
2
‖x∗ − xt‖2

¬
=f(xt) + 〈∇It∪I∗f(xt)− gtIt∪I∗ + gtIt∪I∗ ,x

∗ − xt〉+
ρs
2
‖x∗ − xt‖2

­
≥f(xt)− 2

ρs
‖∇f(xt)− gt‖2 − 2

ρs
‖gtIt∪I∗‖2 −

ρs
4
‖x∗ − xt‖2 +

ρs
2
‖x∗ − xt‖2

=f(xt)− 2

ρs
‖f(xt)− gt‖2 − 2

ρs
‖gtIt∪I∗‖2 +

ρs
4
‖x∗ − xt‖2,

(25)

12

where ­ holds since we use 〈x,y〉 ≥ −
(

1
2c‖x‖

2
2 + c

2‖y‖
2
2

)
for arbitrary c ≥ 0. By rearranging both

sides of the above we get the desired bound.

Then we consider the matrix variable x ∈ Rd1×d2 for rank-constrained problem. Firstly, assume that
the skinny SVDs of xt and x∗ are respectively xt = UtΣtV

T
t and x∗ = U∗Σ∗V

T
∗ . Then we have

xt = UtU
T
t x

t and x∗ = U∗U
T
∗ x
∗. We further define the projection operation PU (x) = UUTx

which projects x in the subspace spanned by U . Then let I = I∗ ∪ It, where I∗ = supp(x∗) and
It = supp(xt). The notation xtIt = UtU

T
t x

t = PUt (xt). For the specifical notation ∇If(xt),
it denotes ∇If(xt) = PI (∇f(xt)) = (UtU

T
t + U∗U

T
∗ − UtU

T
t U∗U

T
∗)∇f(xt) where PI is a

projection. Then we have

PI(x∗ − xt) =(UtU
T
t + U∗U

T
∗ −UtU

T
t U∗U

T
∗)(U∗U

T
∗ x
∗ −UtU

T
t x

t) = x∗ − xt,

which further gives

〈∇f(xt),x∗ − xt〉 =〈∇f(xt),PI(x∗ − xt)〉 ¬
= 〈PI(∇f(xt)),PI(x∗ − xt)〉

=〈∇If(xt),x∗ − xt〉,

where ¬ holds since 〈PI(∇f(xt)),PI(x∗ − xt)〉 = 〈∇f(xt),PTI PI(x∗ − xt)〉 =
〈∇f(xt),PI(x∗ − xt)〉 due to PTI PI = PI .

In this way, ¬ in Eqn. (25) holds. Thus, the above result also hold for matrix variable in rank-
constrained problem. The proof is completed.

D.3 Proof of Lemma 6

Proof. Let λ1 ≤ λ2 ≤ · · · ≤ λd be the eigenvalues of A and Λ be a diagonal matrix whose diagonal
entries are {λi} in a non-decreasing order. By proper manipulation we get

ρ

([
(1 + ν)I − ηA −νI

I 0

])
= ρ

([
(1 + ν)I − ηΛ −νI

I 0

])
= max

i∈[d]
ρ

([
1 + ν − ηλi −ν

1 0

])
,

where in the second equality we have used the fact that it is possible to permute the matrix to a block
diagonal matrix with 2× 2 blocks. For each i ∈ [d], the eigenvalues of the 2× 2 matrices are given
by the roots of

λ2 − (1 + ν − ηλi)λ+ ν = 0.

Given that ν ≥ |1−
√
ηλi|2, the roots of the above equation are imaginary and both have magnitude√

ν. Since ν = max{|1 − √ηµ|2, |1 −
√
η`|2}, the magnitude of each root is at most max{|1 −√

ηµ|, |1−
√
η`|}. This proves the desired spectral norm bound.

E Additional Experimental Results

E.1 Descriptions of Testing Datasets

We briefly introduce the seven testing datasets in the manuscript. Among them, three datasets are
provided in the LibSVM website1, including rcv1, real-sim and epsilon. We also evaluate our
algorithms on mnist2 for handwritting recognition, news203 for news classification, coil1004 and
caltech2565 for image classification. Their detailed information is summarized in Table 2. We can
observe that these datasets are different from each other in feature dimension, training samples, and
class numbers, etc. It should be mentioned that for caltech256 including 256 kinds of objects and one
background class, we use its OverFeat feature, while for other datasets, we all use their raw data.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://yann.lecun.com/exdb/mnist/
3http://qwone.com/ jason/20Newsgroups/
4http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
5https://authors.library.caltech.edu/7694/

13

Table 2: Descriptions of the ten testing datasets.
#class #sample #feature #class #sample #feature

rcv1 2 20,242 47,236 news20 20 62,061 15,935
real-sim 2 72,309 20,958 coil100 100 7,200 1,024
epsilon 2 100,000 2,000 caltech256 257 5,140 2,000
mnist 10 60,000 784

E.2 More Experiments on A Single Pass over Data

Finally, we give more experimental results on a single pass over data. Following the setting in Sec-
tion 5 in manuscript, here we test the considered algorithms on logistic regression with regularization
parameters λ = 10−5. We follow our theoretical results to exponentially expand the mini-batch
size sk in HSG-HT and AHSG-HT and set τ = 1. Figure 3 summarizes the numerical results in
this setting. One can observe that on these optimization problems, most algorithms still achieve
high accuracy after one pass over data, while HSG-HT and AHSG-HT also converge significantly
faster than the other algorithms. These observations are consistent with the results in Figure 1 in the
manuscript. All these results demonstrate the high efficiency of HSG-HT and AHSG-HT and also
confirm the theoretical implication of Corollary 1 and 2 that HSG-HT and AHSG-HT always have
lowest hard thresholding complexity than the compared algorithms and have lower in IFO complexity
than other considered variance-reduced algorithms linearly depending on the sample size n, when the
desired accuracy is moderately small and data scale is large.

0 10000 20000
−10

−8

−6

−4

−2

0

2

4

6

8

#IFO

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f −
 f

*)

FG−HT
SG−HT
SVRG−HT
HSG−HT
AHSG−HT

0 10000 20000
−10

−8

−6

−4

−2

0

2

4

6

8

#Hard Thresholding

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f −
 f

*)

FG−HT
SG−HT
SVRG−HT
HSG−HT
AHSG−HT

rcv1, k=500

0 50000 100000
−12

−10

−8

−6

−4

−2

0

2

4

#IFO

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f −
 f

*)

FG−HT
SG−HT
SVRG−HT
HSG−HT
AHSG−HT

0 50000 100000
−12

−10

−8

−6

−4

−2

0

2

4

#Hard Thresholding

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f −
 f

*)

FG−HT
SG−HT
SVRG−HT
HSG−HT
AHSG−HT

epsilon, k=500

Figure 3: Single-epoch processing: comparison among hard thresholding algorithms for a single pass
over data on sparse logistic regression with regularization parameter λ = 10−5.
Since the objective loss decreases fast along with the hard thresholding iteration, here we magnify
the subfigures in Figure 1 in the manuscript and the above Figure 3 which display the objective
loss decrease along with the hard thresholding iteration. In this way, the objective loss decrease
along with the hard thresholding iteration can be viewed better. From Figure 4, one can easily
observe that AHSG-HT and HSG-HT converge much faster than the compared algorithms. Moreover,
AHSG-HT achieves higher optimization accuracy which demonstrates that AHSG-HT is superior over
HSG-HT in hard thresholding complexity. All these results confirm the our theoretical implication of
Corollary 1 and 2.

0 50 100 150 200
−10

−8

−6

−4

−2

0

2

4

6

8

#Hard Thresholding

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f −
 f

*)

FG−HT
SG−HT
SVRG−HT
HSG−HT
AHSG−HT

rcv1, k=200

0 100 200 300

−10

−8

−6

−4

−2

0

2

4

6

#Hard Thresholding

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f −
 f

*)

FG−HT
SG−HT
SVRG−HT
HSG−HT
AHSG−HT

real−sim, k=500

0 50 100 150 200
−10

−8

−6

−4

−2

0

2

4

6

8

#Hard Thresholding

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f −
 f

*)

FG−HT
SG−HT
SVRG−HT
HSG−HT
AHSG−HT

rcv1, k=500

0 100 200 300 400
−12

−10

−8

−6

−4

−2

0

2

4

#Hard Thresholding

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f −
 f

*)

FG−HT
SG−HT
SVRG−HT
HSG−HT
AHSG−HT

epsilon, k=500

(a) (b)
Figure 4: Comparison of hard thresholding complexity in single-epoch processing. (a) magnifies
the hard thresholding iterations in Figure 1 in the manuscript. (b) magnifies the hard thresholding
iterations in Figure 3 above.

14

References
[1] X. Li, R. Arora, H. Liu, J. Haupt, and T. Zhao. Nonconvex sparse learning via stochastic optimization with

progressive variance reduction. Proc. Int’l Conf. Machine Learning, 2016. 1

[2] P. Jain, A. Tewari, and P. Kar. On iterative hard thresholding methods for high-dimensional M-estimation.
In Proc. Conf. Neutral Information Processing Systems, pages 685–693, 2014. 1, 6

[3] M. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting. SIAM Journal on
Scientific Computing, 34(3):A1380–A1405, 2012. 1

15

