
9 Appendix

9.1 Proof of Proposition 1

We first show Part 1 of the result. Recall �a(t) is the probability that the arrival at time t prefers arm
a, given the past. Thus, from the definition, we have

E[�⇤
T] = µa⇤E

"
TX

t=1

�a⇤
(t)

#

= µa⇤E
"

TX

t=1

N↵
a⇤(t� 1)

N↵
a⇤(t� 1) + ✓↵

#

= µa⇤E
"

TX

t=1

✓
1� ✓↵

N↵
a⇤(t� 1) + ✓↵

◆#

= µa⇤T � µa⇤E
"

TX

t=1

✓↵

N↵
a⇤(t� 1) + ✓↵

#
.

Using the fact that the maximum reward obtainable at each time is 1, we obtain that N↵
a (t� 1) 

✓a + (t� 1). Thus,

E[�⇤
T]  µa⇤T � µa⇤

TX

t=1

✓↵

(✓a⇤
+ t� 1)

↵
+ ✓↵

,

from which Part 1 follows.

We now show Part 2 of the result. Let ⌧1 = inf(t : Sa⇤
(t) = 1), i.e., it is the first time instant

at which positive reward is obtained. For each k > 1 let ⌧k = inf(t : Sa⇤
(t) = k) � ⌧k�1,

i.e., it represents the time between (k � 1)

th and kth success. By definition, ⌧k has distribution
Geometric(µa⇤f(k+✓a⇤)

f(k+✓a⇤)+
P

a 6=a⇤ f(✓a)
). One can view �

⇤
T as the minimum n such that

Pn+1
k=1 ⌧k exceeds

T . Thus, we have

T  E

2

4
�⇤
T+1X

k=1

⌧k

3

5 .

Since ⌧1, ⌧2, . . . is a sequence of independent random variables, and since �

⇤
T + 1 is a stopping time

on this sequence, we obtain the following from Wald’s lemma:

T  E

2

4
�⇤
T+1X

k=1

E[⌧k]

3

5

 E

2

4
�⇤
T+1X

k=1

f(k + ✓a⇤
) +

P
a 6=a⇤ f(✓a)

µa⇤f(k + ✓a⇤
)

3

5

= E

2

4
�⇤
T+1X

k=1

(k + ✓a⇤
)

↵
+

P
a 6=a⇤ ✓↵a

µa⇤
(k + ✓a⇤

)

↵

3

5

= E

2

4
�⇤
T+1X

k=1

✓
1

µ⇤
a

+

P
a 6=a⇤ ✓↵a

µa⇤
(k + ✓a⇤

)

↵

◆3

5

12

Thus we obtain,

T  1

µa⇤
E[�⇤

T + 1] + E

2

4
�⇤
T+1X

k=1

P
a 6=a⇤ ✓↵a

µa⇤
(k + ✓a⇤

)

↵

3

5

 1

µa⇤
E[�⇤

T + 1] + E
"

TX

k=1

✓↵

µa⇤
(k + ✓a⇤

)

↵

#

By rearranging we get,

E[�⇤
+ 1] � µa⇤T � ✓↵

TX

k=1

1

(k + ✓a⇤
)

↵
,

from which the result follows.

9.2 Proof of Theorem 1

We show the result for ↵ = 1 and m = 2. For other values of ↵ and m, the result follows in a similar
fashion.

Consider a problem instance where A = {a, b}, with expected rewards µa and µb respectively.
Without loss of generality, assume that µb < µa < 1. The rewards obtained by a policy can be
simulated as follows. Let X1,a, X2,a, . . . be a sequence of i.i.d. Bernoulli(µa) random variables.
Similarly, let X1,b, X2,b, . . . be a sequence of i.i.d. Bernoulli(µb) random variables. Let Jt represent
the set of arms preferred by the arrival at time t. Recall that It repesents the arm pulled at time t.
Then the rewards obtained until time t, denoted �t, are given by:

�t =

tX

k=1

⇣
(Ik = a) (a 2 Jk)Xk,a + (Ik = b) (b 2 Jk)Xk,b

⌘
.

First, we study the following Oracle, and in particular characterize the maximum payoff achievable.
We then use this device to rule out the possibility of policies achieving the performance in the theorem
statement.
Definition 6 (Oracle(t0)). Fix time t0. The values µa, µb are revealed to the Oracle(t0) after time t0.

Lemma 1. Suppose t0 = o(T). Suppose the Oracle(t0) pulls arm a at all times after t0. Then the total
expected rewards obtained after time t0 by the Oracle is E[�T��t0] = µa(T�t0)�O(E[Nb(t

0
)] lnT).

Proof of Lemma 1. The lemma is analogous to Part (ii) of Proposition 1, with ✓↵ replaced by Nb(t
0
),

and measuring rewards at times greater than t0; thus the lemma can be proved using arguments
similar to those used in the theorem. ⇤

The following lemma bounds the payoff achievable by the Oracle after time t0.
Lemma 2. Suppose t0 = o(T). Any policy used by the Oracle(t0) satisfies E[�T � �t0] = µa(T �
t0)� E[Nb(t

0
)]⌦(lnT).

Proof of Lemma 2. Consider any other policy for the Oracle. Let Ua(t
0
) be the set of times at which

arm a is pulled after t0 and the arrival preferred arm a: Ua(t
0
) = {t � t0 : It = a, a 2 Jt}. Let

Ua(t
0
) = |Ua(t

0
)|. It is clear that if Ua(t

0
) is T � t0 � ⌦(T), then the rewards obtained satisfy

E[�T � �t0] = µa(T � t0)� ⌦(T). Thus, we assume without loss of generality that after time t’,
the Oracle follows a policy with Ua(t

0
) = T � t0 � o(T).

Using arguments similar to those used in Lemma 6, we obtain:

E[�T � �t0]  µaUa(t
0
)�

X

t2Ua(t0)

E[Nb(t
0
)]

t+ (t0 + ✓b)
+ µb(T � t0 � Ua(t

0
)).

13

Since µb(T � t0 � Ua(t
0
))  µa(T � t0 � Ua(t

0
)), we obtain:

E[�T � �t0]  µa(T � t0)�
X

t2Ua(t0)

E[Nb(t
0
)]

t+ (t0 + ✓b)

 µa(T � t0)�
Ua(t

0)X

t=t0

E[Nb(t
0
)]

t+ (t0 + ✓b)

= µa(T � t0)� E[Nb(t
0
)]⌦(lnUa(t

0
)).

Since Ua(t
0
) = O(T), the lemma follows.

The preceding two lemmas establish that for any t0 = o(T), it is asymptotically optimal for the
Oracle(t0) to always pull the best arm after time t0. Since the Oracle(t0) has access to more informa-
tion, it places a bound on the best achievable regret performance after any time t0.

Now suppose we are given any policy that has E[RT] = O(ln

2 T). Consider time t0 = T � ,
� > 0. For any time t let Ta(t) = {s  t : Is = a, a 2 Js}; these are the times prior to
t when arm a was preferred by the arrival, and was subsequently pulled, and similarly define
Tb(s) = {s  t : Is = b, b 2 Js}. Further, define ˜Ta(t) = |Ta(t)| and ˜Tb(t) = |Tb(t)|.
Fix a constant µ0

b such that µa < µ0
b < 1. Consider the following three events, where c1 =

1
2
µb

µ0
b
�:

E1 := {Na(t
0
)  c1 lnT}; (2)

E2 := {Na(t
0
) > c1 lnT,Nb(t

0
) > c1 lnT}; (3)

E3 := {Na(t
0
) > c1 lnT,Nb(t

0
)  c1 lnT}. (4)

First, note that Rt0 = ⌦(1) since the Oracle as defined in Section 3.2 is asymptotically optimal. Thus,
it suffices to study E[RT �Rt0].

We trivially have:

E[RT �Rt0] = E[(RT �Rt0) (E1)] + E[(RT �Rt0) (E2)] + E[(RT �Rt0) (E3)].

We analyze each of these terms in turn.

Under E1, the total rewards obtained satisfy E[�T��t0]  µbO(T �
)+µa(T�T �

). By our preceding
analysis, the Oracle(t0) obtains reward µaT �⇥(lnT) in the same period. Since µa > µb, we have
that E[RT �Rt0 |E1] = ⌦(T �

). In particular, this implies that for any policy with E[RT] = O(ln

2 T),
we must have P(E1) = o(1).

Under E2, we have E[Nb(t
0
)] � c1 lnT . From Lemma 2 we have that E[RT �Rt0 |E2] = ⌦(ln

2 T).

Thus, we have that

E[RT �Rt0] � ⌦(ln

2 T)P(E2) + E[RT �Rt0 |E3]P(E3),

where P(E1) = o(1). To conclude the proof, therefore, it suffices to show that P(E3) = o(1) as well,
since we have that |E[RT �Rt0 |E2]| = O(log

2 T) from Lemma 2.

We prove this by considering a modified setting where the reward distribution for arm a is
Bernoulli(µa) (as in the original setting), and where the reward distribution for arm b is Bernoulli(µ0

b).
Recall, µa < µ0

b < 1. Thus, for the modified setting, arm b is optimal.

We let P (E) and P0 (E0) denote the probability measure (resp., expectation) corresponding to the
original and modified settings, respectively.

It is elementary to show that:

P0
(E3) = E[(E3)e

�K̂t0 (µb,µ
0
b)
]

where:
ˆKt(µb, µ

0
b) =

X

s2Tb(t)

✓
Xs,b ln

µb

µ0
b

+ (1�Xs,b) ln
1� µb

1� µ0
b

◆
.

14

Under the modified setting, again using our analysis of the Oracle(t0), we know the regret incurred
conditioned on E3 is ⌦(T �

). Thus for our candidate algorithm we have:

O(ln

2 T) = E[RT �Rt0] � P0
(E3)⌦(T

�
).

Thus we obtain P0
(E3) = O(T��

ln

2 T). Therefore, E[(E3)e
�K̂t0 (µb,µ

0
b)
]  O(T��

ln

2 T).

But under E3 we have that ˆKt0(µb, µ
0
b) � c1 lnT ln

µb

µ0
b
, where the right hand side is the value

obtained when Xt,b for each t 2 Tb(t0) is 1. Thus, we get

P(E3)  e
c1 lnT ln

µb
µ0
b O(T��

ln

2 T) = O(T
c1

µ0
b

µb
��

ln

2 T). (5)

But recall that c1 =

1
2
µb

µ0
b
�. Thus we get P (E3) = o(1), and in turn, E[RT � Rt0] = ⌦(ln

2 T), as
required.

This completes the proof for ↵ = 1. For 0 < ↵ < 1, following along the lines of Lemma 2, we obtain
that any policy used by the Oracle(t0) satisfies E[�T � �t0] = µa(T � t0)� E[(Nb(t

0
))

↵
]⌦(T 1�↵

),
and similarly for 0 < ↵ < 1 we have E[�T � �t0] = µa(T � t0) � E[Nb(t

0
)

↵
]⌦(1). Further, for

0 < ↵ < 1, we set � > 1� ↵, c1 =

1
2
µb

µ0
b
(� � 1 + ↵) so that bound equivalent to (5) on P(E3) for

this case is o(1). Rest of the proof follows from arguments similar to that ↵ = 1.

9.3 Proof of Theorem 2

We first prove the result for the setting with two arms, i.e., m = 2, and then generalize later. Suppose
A = {a, b}. Without loss of generality, let µa > µb.

Let ⌧k be the time at which arm a is pulled for the kth time.

Let Qk be the event that the first k pulls of arm a each saw a user which did not prefer arm a.

Let Ek be the event that µ̂b(⌧k � 1) > ✓bµb

3 .

Then, under Qk�1 \ Ek�1, we have the following for each time t s.t. ⌧k�1 < t  e

⇣
✓bµb

4

⌘2 k�1
� :

ua(t) <

vuut� ln e

⇣
✓bµb

4

⌘2 k�1
�

k � 1

=

✓bµb

4

<
✓bµb

3

< µ̂b(t) < ub(t).

Thus, under Qk�1 \ Ek�1, arm b is pulled for each time t s.t. ⌧k�1 < t  e

⇣
✓bµb

4

⌘2 k�1
� , which in

turn implies that ⌧k � e

⇣
✓bµb

4

⌘2 k�1
� .

We now show that there exists an ✏0 > 0 such that lim inf

k!1
P(Qk \ Ek) � ✏0 from which the result

would follow.

Using law of total probability we have,

P(Qk \ Ek) � P(Qk�1 \ Ek�1)P(Qk \ Ek|Qk�1, Ek�1).

Thus, we have

P(Qk \ Ek) � P(Qk�1 \ Ek�1)P(Ek|Qk�1, Ek�1)P(Qk|Qk�1, Ek�1, Ek). (6)

Note that, under Qk�1, arm b is pulled at least k � 1 times before ⌧k. Using standard Chernoff
bound techniques it is easy to show that there exists a constant �0 such that P(Ek, Ek�1|Qk�1) �
1� e��0(k�1). (This can be shown using the standard approach for deriving Chernoff bounds, but
with the following version of Markov inequality: P (X > a, Y > b)  E[XY]/(ab).) Thus, we get

P(Ek|Qk�1, Ek�1) � P(Ek, Ek�1|Qk�1) � 1� e��0(k�1). (7)

15

Under Qk�1 \ Ek�1 \ Ek, we have that Na(⌧k � 1) = ✓a and

Nb(⌧k � 1) = ✓b + Sb(⌧k � 1) = ✓b + µ̂b(⌧k � 1)Tb(⌧k � 1).

Further, since ⌧k � e

⇣
✓bµb

4

⌘2 k�1
� , we have

Tb(⌧k � 1) � max

✓
k � 1, e

⇣
✓bµb

4

⌘2 k�1
� � k + 1

◆
.

Thus, we have

Nb(⌧k � 1) � ✓b +
✓bµb

3

max

✓
k � 1, e

⇣
✓bµb

4

⌘2 k�1
� � k + 1

◆
.

Thus there exists a constant c > 0 such that the following holds for each k � 2: under Qk�1 \
Ek�1 \ Ek we have that

Nb(⌧k � 1) � ec(k�1).

Thus, under Qk�1 \ Ek�1 \ Ek, we have

�a(⌧k � 1) =

✓a
f (Nb(⌧k � 1)) + ✓a

 ✓a

f
�
ec(k�1)

�
+ ✓a

.

Thus, from definition of Qk we have

P(Qk|Qk�1, Ek�1, Ek) � 1� ✓a

f
�
ec(k�1)

�
+ ✓a

=

f
�
ec(k�1)

�

f(✓a) + f
�
ec(k�1)

� . (8)

Substituting (8) and (7) in (6), we obtain

P(Qk \ Ek) � P(Qk�1 \ Ek�1)

⇣
1� e��0(k�1)

⌘ f
�
ec(k�1)

�

f(✓a) + f
�
ec(k�1)

�
!
.

Computing recursively, we obtain

P(Qk \ Ek) � P(Q2 \ E2)

kY

l=2

⇣
1� e��0(k�1)

⌘ kY

l=2

f
�
ec(l�1)

�

f(✓a) + f
�
ec(l�1)

�
!
.

Thus, we would be done if we show that lim infk!1
Pk

l=2 ln

⇣
1� e��0(k�1)

⌘
and

lim infk!1
Pk

l=2 ln

✓
f
(

ec(l�1)
)

f(✓a)+f
(

ec(l�1)
)

◆
are both greater than �1. We show this below. We use

the fact that ln(1� x) � �x for each x > 0. We have,

kX

l=2

ln

⇣
1� e��0(k�1)

⌘
� �

kX

l=2

e��0(k�1),

which tends to a constant a k ! 1.

Further,

kX

l=2

ln

f
�
ec(l�1)

�

f(✓a) + f
�
ec(l�1)

�
!

� �
kX

l=2

f (✓a)

f(✓a) + f
�
ec(l�1)

�
!

which tends to a constant a k ! 1 since f(x) is ⌦
�
ln

1+✏
(x)
�
. This completes the proof for m = 2.

For m > 2, we can generalize the argument to show that only the worst arm will see non-zero rewards
with positive probability by appropriately generalizing the notions of ⌧k, Ek, and Qk and arguing
along the above lines.

16

9.4 Proof of Proposition 2

We start with a technical result for the algorithm that indefinitely pulls arms independently and
uniformly at random. For the case where f is linear, we can model the cumulative rewards obtained
at each arm via the generalized Friedman’s urn process. These processes are studied by embedding
them into multitype continuous-time Markov branching processes [4, 12], where the expected lifetime
of each particle is one at all times.

Here, since we are interested in rewards obtained for more general f , we study this by considering
multitype branching processes with state-dependent expected lifetimes. For technical reasons, we
will assume that ✓a for each arm a is integer valued and greater than or equal to 1. This allows us
to map our problem into an urn type process with initial number of balls of color a in the urn being
equal to ✓a. We obtain the following result.
Proposition 3. Suppose that ✓a for each a 2 A is a positive integer. Suppose at each time step t an
arm is pulled independently and uniformly at random. The following statements hold:

(i) If f(x) = x↵ for 0 < ↵ < 1 then for each b 6= a⇤, we have that Na⇤ (t)
Nb(t)

! ✓a
✓b

⇣
µa⇤
µb

⌘ 1
1�↵

almost surely as t ! 1.

(ii) If f(x) = x then for each b 6= a⇤, we have that Na⇤ (t)

(Nb(t))
µa⇤
µb

converges almost surely to a random

variable Y with 0 < Y < 1 w.p. 1.

(iii) If f(x) = x↵ for ↵ > 1 then there is a positive probability that Na⇤
(t) is O(1) while for some

b 6= a⇤ we have Nb(t) ! 1 as t ! 1.

Proof. For ease of exposition we will assume that A = {a, b}. The argument for the more general
case is more or less identical.

For now, suppose that ✓a = ✓b = 1. We will study the process N = (Na(t), Nb(t))t2Z+
by

analyzing a multitype continuous time Markov branching process Z = (Za(s), Zb(s))s2R+
such that

its embedded Markov chain, i.e., the discrete time Markov chain corresponding to the state of the
branching process at its jump times, is statistically identical to N(t). By jump time we mean the
times at which a particle dies; upon death it may give birth to just one new particle, in which case, the
size of the process may not change at the jump times.

We construct Z as follows. Both Za and Zb are themselves independently evolving single dimensional
branching processes. Initially, Za and Zb have one particle each, i.e., |Za(0)| = |Zb(0)| = 1. Each
particle dies at a rate dependent on the size of the corresponding branching processes as follows: at
time s each particle of Za dies at rate f(|Za(s)|)

|Za(s)| . At the end of its lifetime, the particle belonging
to Za dies and gives birth to one new particle with probability 1�µa

2 and two new particles with
probability µa

2 . Similarly for the particles belonging to Zb.

We will use notation |Z| to denote (|Za(st)|, |Za(st)|). We now show that the embedded Markov
chain of |Z| is statistically identical to N . Let s1, s2, . . . , st, . . . represent the jump times of Z.
We show that the conditional distribution of N(t) given N(t � 1) is identical to the conditional
distribution of |Z(st)| given |Z(st�1)|. Since at each time t an arm is chosen at random, we have

P
�
(Na(t), Nb(t)) = (Na(t� 1) + 1, Nb(t))

��N(t� 1)

�
=

1

2

f(Na(t� 1))µa

f(Na(t� 1)) + f(Nb(t� 1))

.

Similarly, we can compute the conditional probability for the other values which N(t) can take. Now
consider process Z(⌧). After the (t � 1)

th jump of Z, the rate at which Za jumps is f(|Za(st)|).
Thus, the probability that the (t + 1)

th jump of Z belongs to Za is f(|Za(st)|)
f(|Za(st)|)+f(|Zb(st)|) . Further,

each jump at Za results into an increment with probability µa

2 . Thus we have,

P
�
(|Za(st)|, |Za(st)|) = (|Za(st�1) + 1|, |Za(st�1)|)

��Z(t� 1)

�
=

µa

2

f(|Za(st)|)
f(|Za(st)|) + f(|Zb(st)|)

.

Further, it is easy to check that |Z(s1)| and N(1) are identically distributed. Thus, by induction, the
embedded Markov chain of |Z| is statistically identical to N .

17

Now, we obtain the following lemma from Theorem 1 in [14]. We say that f is sublinear if there
exists 0 < � < 1 such that f(x)  x� .

Lemma 3. If f(x) is linear or sublinear, then

|Za(s)| ! wa(s)(W + o(1)),

where wa(s) is the inverse function of

ga(s) =
2

µa

Z s

0

1

f(x)
dx,

and W is a random variable with 0 < W < 1 w.p.1. Moreover, W = 1 is f is sublinear.

Now, consider f(x) = x↵ for 0 < ↵ < 1. Then, it follows that wa(s) =
⇣

µa

s(1�↵)

⌘ 1
1�↵

. Thus, we
have

|Za(s)|
✓
2s(1� ↵)

µa

◆ 1
1�↵

! 1 a.s.,

and

|Zb(s)|
✓
2s(1� ↵)

µb

◆ 1
1�↵

! 1 a.s..

Thus, part (i) of the theorem follows for the case where ✓a = ✓b = 1. For general ✓a and ✓b, we
construct as many independent branching processes, apply the above lemma, and the result follows.

Part (ii) follows in a similar fashion and noting that wa(s) = e
µa
2 s.

We now argue for part (iii). We assume that ✓a = ✓b = 1, the argument for general ✓a and ✓b is similar.
We show that if f(x) = x↵ for ↵ > 1 then there exists a time s < 1 such that P(|Zb(s)| = 1) > 0.
Our result follows from this since for each finite s we have that P(Za(s) = 1) � e�s > 0. For each
k � 1 let �k = inf{s 2 R+ : |Zb(s)| = k}. Clearly, �k � �k�1 is the sum of a random number
(with distribution Geometric(2

µb
)) of Exponential(f(k � 1)) distributed random variables. Thus,

E[�k] = 2
µa

Pk�1
l=1

1
l↵ , which tends to a constant, say �0, as k ! 1. Thus, P(|Zb(�

0
)| = 1) > 0.

Hence part (iii) follows. This completes the proof of Proposition 3.

We now continue with proof of Proposition 2. Recall the Definition 3 for Random(⌧) policy. We
assume ⌧ = o(T), since if not, E[RT] is O(T) as arms are picked at random during exploration
phase.

Part (iii) thus follows from Proposition 3 and noting that P(â⇤ 6= a⇤) is ⌦(1) while the exploitation
phase runs for T � ⌧ = O(T) time.

We now show Part (ii). We first show the following lemma.

Lemma 4. For ↵ = 1, under Random(⌧) policy we have P(â⇤ 6= a⇤) = ⌦(⌧
� ✓a⇤µa⇤

µb
).

To prove the lemma, for now suppose that ✓a = 1 for each arm a. Recall the continuous time
Markov-chain branching process construction in the proof of Proposition 3. It is easy to generalize
the construction for m � 2. For general m, in process Za(s) for each arm a the probability that
upon death of a particle it gives birth to two new particles is µa

m . For ↵ = 1 the process Za(s) is a
equivalent to the well-known Yule Process [25] and |Za(s)| has distribution Geometric(e�sµa/m) for
each s. Thus, for each positive real s and positive integer k we have

P(|Za(s)| > k) = (1� e�sµa/m
)

k.

Using k = ⌧ and s = m ln ⌧
µa

we obtain,

P(|Za(s)| > ⌧) = (1� e� ln ⌧
)

⌧
= (1� 1

⌧
)

⌧

18

Now, let s0 = sup(s : Za⇤
(s) = 0). Clearly, s0 has Exponential(µa⇤

m) distribution. Thus, for arm b,
we have

P
✓
s0 >

m ln ⌧

µb

◆
= e

�µa⇤ ln ⌧

µb
= ⌧

�µa⇤
µb .

Now, note that the event {s0 > m ln ⌧
µb

} \ {|Zb(s)| > ⌧} is a subset of the event Sa⇤
(⌧) = 0. Thus,

P(â⇤ 6= a⇤) � P(s0 >
m ln ⌧

µb
, |Zb(s)| > ⌧) = (1 � 1

⌧
)

⌧ ⌧
�µa⇤

µb
= ⌦(⌧

�µa⇤
µb

).

Hence, the lemma follows for the case where ✓a = 1 for each arm a. For the general values of ✓a,
note that we only get an upper bound on P(â⇤ 6= a⇤) if we assume that ✓a = 1 for each a 6= a⇤.
Hence, we assume that ✓a = 1 for each a 6= a⇤. Then, the lemma follows by the same arguments as
above and nothing that s0 now has Exponential(✓a⇤µa⇤

m) distribution.

We now consider two cases seperately: Case 1 consists of ⌧  T
µb

µb+✓a⇤µa⇤ , and Case 2 consists of
⌧ � T

µb
µb+✓a⇤µa⇤ .

Case 1 (⌧  T
µb

µb+✓a⇤µa⇤): By Law of Total Expectation, we have

E[RT] � E[RT |â 6= â⇤]P(â 6= â⇤).

Since ⌧ = o(T) we have that E[RT |â 6= â⇤] = O(T). Thus,

E[RT] = ⌦(T)P(â 6= â⇤) = ⌦(T ⌧
�µa⇤

µb
),

where the last inequality follows from Lemma 4. Since ⌧  T
µb

µb+✓a⇤µa⇤ , we have

E[RT] � ⌦(T ⇥ T
� µa⇤

µb+✓a⇤µa⇤
),

from which the result follows.

Case 2 (⌧ > T
µb

µb+✓a⇤µa⇤): Clearly, regret is ⌦(⌧). Thus, we again get E[RT] = ⌦(T
µb

µb+✓a⇤µa⇤
),

from which the result follows.

This completes the proof of Part (ii).

We now show Part (i). Here again we bound P(â⇤ 6= a⇤) from below by P(Sa⇤
(⌧) = 0), but we use

a more direct approach than considering continuous time branching processes.

Lemma 5. For 0 < ↵ < 1, there exists a constant c such that under Random(⌧) policy we have
P(â⇤ 6= a⇤) � e�c

(

⌧1�↵
)

).

Consider an experiment where each arm is pulled at random at each time t = 1, 2, . . . ,1. Let
⌧1, ⌧2, . . .1. be the times at which the reward obtained is 1 while the arm being pulled is either arm
a⇤ or arm b. Since arms are pulled at random, we have

P(I⌧1 = b) =
✓↵b

✓↵b + ✓↵a⇤
.

Note that this probability does not depend on the ✓a for a /2 {a⇤, b}. Similarly, for each k � 1,

P

I⌧k+1 = b

����
k\

l=1

I⌧l = b

!
=

(✓b + k)↵

(✓b + k)↵ + ✓↵a⇤
.

19

Thus,

P

⌧\

k=1

I⌧k = b

!
=

⌧Y

k=1

P

I⌧k = b

����
k�1\

l=1

I⌧l = b

!

=

⌧Y

k=1

(✓b + k � 1)

↵

(✓b + k � 1)

↵
+ ✓↵a⇤

=

⌧Y

k=1

e
� ln

(✓b+k�1)↵+✓↵
a⇤

(✓b+k�1)↵

= e
�

P⌧
k=1 ln

(✓b+k�1)↵+✓↵
a⇤

(✓b+k�1)↵

= e
�

P⌧
k=1 ln(1+

✓↵
a⇤

(✓b+k�1)↵)

� e
�

P⌧
k=1

✓↵
a⇤

(✓b+k�1)↵

� e�
P⌧

k=1

✓↵
a⇤

(1+k�1)↵

� e�⇥
(

⌧1�↵
).

Under Random(⌧) policy, the maximum number of successes possible by either arm a⇤ or b in the
exploration phase is ⌧ . Thus, P(

T⌧
k=1 I⌧k = b) as computed above is a lower bound on P (â⇤ 6= a⇤).

This complete the proof of the lemma.

Similar to ↵ = 1, here again we consider two cases: Case 1 consists of ⌧  c
2↵ ln

1
1�↵T , and Case 2

consists of ⌧ � c
2↵ ln

↵
1�↵T , where c is the constant from Lemma 5.

Case 1 (⌧ < c
2↵ ln

1
1�↵ T): Using argument similar to that for ↵ = 1, we have

E[RT] � ⌦(T)P(â 6= â⇤) = ⌦(Te�c⌧1�↵

) = ⌦(Te�
↵
2 lnT

) = ⌦(T 1�↵
2
) = ⌦(T 1�↵

ln

↵
1�↵ T),

from which the result follows.

Case 2 (⌧ � c
2↵ ln

1
1�↵ T): From Part (i) of Proposition 3, as ⌧ ! 1 we have that N↵

a (⌧)
N↵

a0 (⌧)
tends to a

constant for each pair of arms a, a0. Further,
P

a Na(⌧)  ⌧ . Thus, we have E[N↵
a (⌧)] = ⌦(⌧↵) for

each arm a. In other words, there exists a positive constants, say �, such that E[Na(⌧)] � �⌧↵ for
each ⌧ .

Now consider the exploitation phase. Let �0 be the rewards accrued during this phase. We provide
below a bound on E[�0

].

Lemma 6. The rewards accrued during exploitation phase satisfies:

E[�0
]  µa⇤

(T � ⌧)�
TX

t=⌧+1

�⌧↵

t↵ + (⌧ + ✓b)↵
.

20

The lemma can be shown as follows.

E[�0
]  µa⇤E[

TX

t=⌧+1

�a(t)]

= µa⇤E[
TX

t=⌧+1

N↵
a⇤(t� 1)P

a N
↵
a⇤(t� 1)

]

 µa⇤E[
TX

t=⌧+1

N↵
a⇤(t� 1)

N↵
a⇤(t� 1) +N↵

b (t� 1)

]

= µa⇤E[
TX

t=⌧+1

✓
1� N↵

b (t� 1)

N↵
a⇤(t� 1) +N↵

b (t� 1)

◆
]

= µa⇤
(T � ⌧)�

TX

t=⌧+1

E[N↵
b (t� 1)

N↵
a⇤(t� 1) +N↵

b (t� 1)

]

 µa⇤
(T � ⌧)�

TX

t=⌧+1

E[N↵
b (⌧)

Na⇤
(t� 1) +N↵

b (⌧)
]

 µa⇤
(T � ⌧)�

TX

t=⌧+1

E[N↵
b (⌧)

t↵ + (⌧ + ✓b)↵
]

 µa⇤
(T � ⌧)�

TX

t=⌧+1

�⌧↵

t↵ + (⌧ + ✓b)↵

Hence the lemma follows. Further, the maximum rewards accrued during exploration phase if µa⇤⌧ .
Thus, the overall expected rewards E[�] satisfies

E[�]  µa⇤⌧ + E[�0
]  µa⇤T �

TX

t=⌧+1

�⌧↵

t↵ + (⌧ + ✓b)↵
.

Thus, from above inequality and from Proposition 1 we have

E[RT] = E[�⇤
]� E[�] � �⇥(T 1�↵

) + �⌧↵
TX

t=⌧+1

1

t↵ + (⌧ + ✓b)↵

Thus, we have

E[RT] � �⇥(T 1�↵
) + �⌧↵

TX

t=⌧+1

t↵ � (⌧ + ✓b)
↵

t2↵ � (⌧ + ✓b)2↵

= �⇥(T 1�↵
) + �⌧↵

TX

t=⌧+1

t↵ � (⌧ + ✓b)
↵

t2↵

= �⇥(T 1�↵
) + �⌧↵

TX

t=⌧+1

1

t↵
� �⌧↵

TX

t=⌧+1

(⌧ + ✓b)
↵

t2↵

= �⇥(T 1�↵
) + �⌧↵⇥(T 1�↵

)�⇥(⌧2↵T 1�2↵
)

= ⇥(⌧↵⇥(T 1�↵
)),

where we use ⌧ = o(T) for the last equality. Recall that we are considering the case where
⌧ � c

2↵ ln

1
1�↵ T . Note that the above bound takes the smallest value when ⌧ =

c
2↵ ln

1
1�↵ T . This

completes the proof of the theorem.

21

9.5 Proof of Theorem 3

To analyze the BE algorithm we will, as a stepping stone, analyze a slightly more general policy
where n is chosen arbitrarily, but still sub-linearly in T , as follows.
Proposition 4. Consider a variant of Balanced-Exploration algorithm where n is allowed to be
chosen arbitrarily while ensuring that it is o(T). For each ↵, there exists a constant c↵ such that the
regret under Balanced-Exploration policy satisfies the following:

1. If 0 < ↵ < 1 then regret is O(n↵T 1�↵
+ Te�c↵n

).

2. If ↵ = 1 then regret is O(n lnT + Te�c1n
)).

3. If ↵ > 1 then regret is O(n↵
+ Te�c↵n

)).

We now prove this proposition, and later use it to prove the theorem.

By Law of Total Expectation, we have

E[RT] = E[RT |â⇤ = a⇤]P(â⇤ = a⇤) + E[RT |â 6= â⇤]P(â⇤ = a⇤)

 E[RT |â⇤ = a⇤] + TP(â⇤ 6= a⇤). (9)

We first obtain a bound on E[RT |â⇤ = a⇤] and then on P(â⇤ 6= a⇤), from which the proposition
would follow.

From the definition of cumulative regret we have

E[RT |â⇤ = a⇤] = E[�⇤
T]� E[�T |â⇤ = a⇤]

We can lower-bound total rewards obtained by only counting rewards obtained during from time
⌧n + 1 to T , i.e.,

E[�T |â⇤ = a⇤] � E[�exploit|â⇤ = a⇤],

where �exploit represents cumulative rewards obtained during the exploitation phase.

Thus, we get

E[RT |â⇤ = a⇤]  E[�⇤
T]� E[�exploit|â⇤ = a⇤]. (10)

We now obtain a lower bound on E[�exploit|â⇤ = a⇤]. Note that Na(⌧n) = n + ✓a for each arm
a. A lower bound on E[�exploit|â = â⇤, ⌧n] is obtained using an argument same as to that used for
obtaining the lower bound on E[�⇤

] in Proposition 1, with ✓↵ replaced with
P

a 6=a⇤(n+ ✓a)
↵ and

looking at times ⌧n + 1 to T instead of times 1, . . . , T . Thus, we get

E[�exploit|â⇤ = a⇤, ⌧n] � µa⇤
(T � ⌧n)�

0

@
X

a 6=a⇤

(n+ ✓a)
↵

1

A
TX

k=⌧n

1

(k + ✓a⇤
)

↵
� 1.

Taking expectation w.r.t. ⌧n, we get

E[�exploit|â⇤ = a⇤] � µa⇤
(T � E[⌧n])

�

0

@
X

a 6=a⇤

(n+ ✓a)
↵

1

AE
"

TX

k=⌧n

1

(k + ✓a⇤
)

↵

#
� 1.

� µa⇤
(T � E[⌧n])�

0

@
X

a 6=a⇤

(n+ ✓a)
↵

1

A
"

TX

k=1

1

(k + ✓a⇤
)

↵

#
� 1.

Using the above bound and Part 1. of Proposition 1 in (10) we obtain,

22

E[R|â⇤ = a⇤]  Tµa⇤ � µa⇤✓↵
TX

k=1

1

(µa⇤k)↵ + ✓↵

� µa⇤
(T � E[⌧n]) +

0

@
X

a 6=a⇤

(n+ ✓a)
↵

1

A
TX

k=1

1

(k + ✓a⇤
)

↵
+ 1.

Thus, we obtain

E[R|â⇤ = a⇤]  µa⇤E[⌧n]� µa⇤✓↵
TX

k=1

1

(µa⇤k)↵ + ✓↵
+

0

@
X

a 6=a⇤

(n+ ✓a)
↵

1

A
TX

k=1

1

(k + ✓a⇤
)

↵
+ 1.

We now show that E[⌧n] = O(n). During exploration phase, the algorithm operates in n cycles,
where at the beginning of cycle k the Na for each arm a is equal to k+ ✓a� 1, and it equals to k+ ✓a
at the end of the cycle. Thus, when arm a is pulled, the probability that it obtains a unit reward is
at least (✓a+k�1)P

b2A(✓b+k)µa. Thus, it takes O(1) expected number of attempts on an arm to obtain a unit
reward in each cycle. Thus, to obtain n rewards at all arms it takes E[⌧n] = O(n) time.

Thus, for 0 < ↵ < 1 we have

E[R|â⇤ = a⇤]  µa⇤O(n)� ⌦(T 1�↵
) +O(n↵T 1�↵

)

= O(n↵T 1�↵
).

Similarly we obtain that E[R|â⇤ = a⇤] is O(n lnT) for ↵ = 1 and it is O(n) for ↵ > 1.

Thus, the proposition would follow if we show that P(â⇤ 6= a⇤)  e�c↵n for some positive constant
c↵. We show that below. We start with special case where ✓a = 1 for each a.
Lemma 7. Suppose ✓a = 1 for each a 2 A. Let � = mina 6=a⇤

(µa⇤ � µa). For each arm b, there
exists a constant cb independent of n such that

P
✓
µ̂b(⌧n) > µb +

�

2

◆
 e�cbn.

Similarly, there exists a constant c0b independent of n such that

P
✓
µ̂a⇤

(⌧n) < µa⇤ � �

2

◆
 e�c0bn.

To prove the lemma, note that for each small constant ✏ > 0 there exists an integer constant k✏ such
that for each time t after the kth

✏ cycle, we have (1 � ✏)/m  �b(t)  (1 + ✏)/m for each arm b.
Thus, after a constant k �

4µb

number of pulls of arm b, we have that each pull of arm b results into

a success with probability no larger than µb(1 +

�
4µb

)/m which equals 1
m (µb +

�
4). Thus, when

arm b is pulled, time to each success is a Geometric random variable with rate less than or equal to
1
m (µb +

�
4). Thus, the first part of the lemma follows from standard exponential concentration result

for independent Geometric random variables [10]. Second part of the lemma follows similarly.

Thus, the proposition follows for the case where ✓a = 1 for each a. For general values of ✓a
essentially the same argument applies by observing that for each small constant ✏ > 0 there exists an
integer constant k✏ such that for each time t after kth

✏ cycle, we have (1� ✏)/m  �a(t)  (1+ ✏)/m
for each arm a. Since k✏ does not depend on n, the concentration arguments above still hold. This
completes the proof for the proposition.

Now, recall that in the statement of Theorem 3 where we set n = wT lnT . Since wk is !(k), there
exists k such that wk � 2c↵. Thus, P(â⇤ 6= a⇤) = O(1/T 2

). This completes the proof of Theorem 3.

9.6 Proof of Theorem 4

We will prove the result for ↵ < 1. The result for general ↵ follows using essentially the same
argument. Similar to the BE algorithm, the BE-AE algorithm can be thought of as containing

23

exploration phase and exploitation phase. The exploration phase consists of times t = 0 . . . ˜t where
˜t = max(t  T : |A(t)| � 2), and the exploitation phase consists of times t > ˜t. Let the arm active
during the exploitation phase be denoted by â⇤. Then, similar to proof of Proposition 4, we have

E[RT]  E[RT |â⇤ = a⇤] + TP(â⇤ 6= a⇤) (11)


X

a 6=a⇤

E[Ta(˜t)] +
X

a 6=a⇤

E[Na(˜t)]T
1�↵

+ TP(â⇤ 6= a⇤) (12)


X

a 6=a⇤

E[Ta(T)] +
X

a 6=a⇤

E[Ta(T) + ✓a]T
1�↵

++TP(â⇤ 6= a⇤) (13)

(14)

Thus, it is sufficient to show that P (â⇤ 6= a⇤) = O(T�1
) and that E[Ta(T)] = O(lnT). In turn, it

sufficient to show that P(9t s.t. a⇤ /2 A(t)) = O(T�1
) and that E[Ta(T)] = O(lnT). We do that

below. We will use the following lemmas, proven in Section 9.6.1.
Lemma 8. We have �a(t) � c for each t and each a 2 A(t).

Lemma 9. For each arm a 2 A we have

1. P(9t  T s.t. ua(t)  µa)  T�1

2. P(9t  T s.t. la(t) � µa)  T�1

Lemma 10. Let � = mina 6=a⇤
(µa⇤ � µa). There exists a constant � such that we have

1. P(9t  T s.t. Ta(t) � � lnT, ua(t) � µa + �/2)  T�1

2. P(9t  T s.t. Ta(t) � � lnT, la(t)  µa � �/2)  T�1

Lemma 11. Recall � from Lemma 10. For a large enough positive constant � we have that for
t0 = � lnT we have P(Ta(t

0
)  � lnT, a 2 A(t0))  T�2 for each arm a 2 A.

Now, using union bound we get,

P(9t s.t. a⇤ /2 A(t)) 
X

a 6=a⇤

P(9t s.t. ua⇤
(t) < la(t))


X

a 6=a⇤

(9t s.t. P(ua⇤
(t)  µa⇤

) + P(9t s.t. la(t) � µa))

= O(1/T),

where the last bound follows from Lemma 9. Thus, it is now sufficient to show that E[Ta(T)] for
each a 6= a⇤ is O(lnT). Let � > 0 be a constant to be determined. Let t0 = � lnT . We have,

E[Ta(T)]  E[Ta(T)|a /2 A(t0)] + TP(a 2 A(t0))

 t0 + TP(a 2 A(t0))

= � lnT + TP(a 2 A(t0))

Thus, we will be done if we show that P(a 2 A(t0)) = O(T�1
) for a large enough �. We do that

below. By Law of Total Probability and the fact that P(9t s.t. a⇤ /2 A(t)) = O(T�1
) as shown above,

we have

P(a 2 A(t0))  P(a 2 A(t0), a⇤ 2 A(t0))+P(a⇤ /2 A(t0)) = P(a 2 A(t0), a⇤ 2 A(t0))+O(T�1
).

Further,

P(a 2 A(t0), a⇤ 2 A(t0))  P(Ta(t
0
)  � lnT, a 2 A(t0)) + P(Ta⇤

(t0)  � lnT, a⇤ 2 A(t0))

+ P(a 2 A(t0), a⇤ 2 A(t0), Ta(t
0
) � � lnT, Ta⇤

(t0) � � lnT)

= O(1/T 2
) + P(a 2 A(t0), a⇤ 2 A(t0), Ta(t

0
) � � lnT, Ta⇤

(t0) � � lnT),

24

where the last equality follows from Lemma 11. We now provide a bound on the last term of the
above inequality. Event a, a⇤ 2 A(t0) implies that ua(t

0
) < la⇤

(t0). Thus, we get

P(a 2 A(t0), a⇤ 2 A(t0), Ta(t
0
) � � lnT, Ta⇤

(t0) � � lnT)

 P(ua(t
0
) < la⇤

(t0), Ta(t
0
) � � lnT, Ta⇤

(t0) � � lnT),

 P(ua(t
0
) < µa + �/2, Ta(t

0
) � � lnT) + P(la⇤

(t0), Ta⇤
(t0) � � lnT),

= O(1/T),

where the last inequality follows from Lemma 10. Hence the result follows.

9.6.1 Proof of lemmas used in proof of Theorem 4

Lemma 8. We have �a(t) � c for each t and each a 2 A(t).

Proof. From the definition of the algorithm, we have |Sa(t) � Sb(t)|  1 for each a, b 2 A(t).
Further, for each a 2 A(t) and b /2 A(t) we have Sa(t) � Sb(t)� 1. Let b0 2 argmaxa ✓a. Thus,
for each a 2 A(t) we have

�a(t) =
Sa(t) + ✓aP
b(Sb(t) + ✓b)

� Sa(t) + ✓aP
b(Sa(t) + 1 + ✓b)

� Sa(t) + ✓a
m(Sa(t) + 1 + ✓b0)

� ✓a
m(1 + ✓b0)

.

Hence, the lemma holds since c = mina
✓a

m(1+✓b0)
.

Lemma 9. For each arm a 2 A we have

1. P(9t  T s.t. ua(t)  µa)  T�1

2. P(9t  T s.t. la(t) � µa)  T�1

Proof. We first prove the first part 1. We will use the following result, known as Freedman’s inequality
for martingales.

Theorem 5 (Freedman [11]). Let (Wt,Ft)i=0,..,T be a real valued martingale. Let (⇠t,Ft)t=0,..,T

be the sequence of corresponding martingale differences, i.e., Wt =

Pt
i=0 ⇠t, s.t. ⇠0 = 0. Let

Vk =

Pt
i=1 E[⇠2|Fi�1]. Suppose ⇠t  ✏ for a some positive ✏. Then, the following holds for all

positive w and v.

P (9t s.t. Wt � w and Vt  v)  exp

✓
� w2

2(v + w✏)

◆
.

Let M0 = 0 and for each t � 1 let Mt = µaTa(t) � µ̂a(t)Ta(t). Let {Ft}t�0 represent the
filtration where F0 = {;,⌦} and Ft captures what is known to the platform at each time t. Then,
it is easy to check that (Mt,Ft)i=0,..,T forms a martingale. Consider stopping times ⌧k where
⌧k = inf{t : Ta(t) = k} if Ta(T)  k else ⌧k = T . Let Y0 = 0 and Yk = M⌧k . From Optional
Sampling Theorem (see Chapter A14 in [24]) we get that (Yk,F⌧k)k�0 is a martingale.

We now provide bound on P(9t s.t. ua(t)  µa). Note that if Ta(t) < 25c�1
lnT then 5

q
lnT

cTa(t)
>

1 � µa and ua(t) > µa. Thus, we get,

P(9t s.t. ua(t)  µa) = P

9t s.t. Ta(t) � 25c�1

lnT, µ̂a(t) + 5

s
lnT

cTa(t)
 µa

!

= P

9t s.t. Ta(t) � 25c�1

lnT,Mt � 5Ta

s
lnT

cTa(t)

!

= P
⇣
9k � 25c�1

lnT s.t. Yk � 5

p
c�1k lnT

⌘

Let Dk = Yk � Yk�1 = µa �
X⌧k

�a(⌧k)
. From Lemma 8 we have �c�1  Dk  µa  1 for each k.

25

From the definition of BE-AE algorithm, since ties are broken deterministically, we have that
It 2 Ft�1. Thus, ⌧k � 1 is a stopping time. Thus, F⌧k�1 is well defined. Now, E[D2

k|F⌧k�1] =

E[E[D2
k|F⌧k�1]|F⌧k�1], where

E[D2
k|F⌧k�1] =

µa

�a(⌧k)
� µ2

a  1

�a(⌧k)
 c�1.

Thus for each k we have
Pk

i=1 E[D2
i |F⌧i�1]  c�1k with probability t.

Fix a k such that 25c�1
lnT  k  T . Using Freedman’s inequality we get

P

0

@9i s.t. Yi � 5

p
c�1k lnT ,

iX

j=1

E[D2
j |F⌧j�1]  c�1k

1

A
= exp

� 25kc�1

lnT

2(c�1k + 5

p
c�1k lnT)

!

 exp

�
�2c�1

lnT)
�

 T�2

Thus,

P

0

@Yk � 5

p
c�1k lnT ,

kX

j=1

E[D2
j |F⌧j�1]  c�1k

1

A  T�2.

But, as saw above,
Pk

j=1 E[D2
j |F⌧j�1]  c�1k holds w.p. 1. Thus,

P
⇣
Yk � 5

p
c�1k lnT

⌘
 T�2.

Using union bound, we get

P
⇣
9k � 25c�1

lnT s.t. Yk � 5

p
c�1k lnT

⌘
 T�1.

Hence, we get P(9t s.t. ua(t)  µa)  T�1. Proof for part 2. is similar to above, except that we
work with martingale (�Yk,F⌧k)k�0 instead of (Yk,F⌧k)k�0.

Lemma 10. Let � = mina 6=a⇤
(µa⇤ � µa). There exists a constant � such that we have

1. P(9t  T s.t. Ta(t) � � lnT, ua(t) � µa + �/2)  T�1

2. P(9t  T s.t. Ta(t) � � lnT, la(t)  µa � �/2)  T�1

Proof. We first prove the second part. Arguing along the lines similar to the proof of Lemma 9, it is
sufficient to show that there exists � such that

P(9k � � lnT s.t. Yk � �k/2� 5

p
c�1k lnT)  T�2.

For large enough �, for each k � � lnT we have �k/2� 5

p
c�1k lnT � �k/4. Further, for large

enough k, using Freedman’s inequality and the arguments similar to those in Lemma 9, we get

P(Yk � �k/4)  exp(� �2k2/16

2(c�1k + c�1�k/4)
) = exp(�c1k)

where c1 > 0. For large enough � we have c1k � 2 lnT for each k � � lnT , and thus P(Yk �
�k/4)  T�2. The result then follows by using a union bound. The second part of the result follows
in a similar fashion by using martingale (�Yk,F⌧k)k�0 instead of (Yk,F⌧k)k�0.

Lemma 11. Recall � from Lemma 10. For a large enough positive constant � we have that for
t0 = � lnT we have P(Ta(t

0
)  � lnT, a 2 A(t0))  T�2 for each arm a 2 A.

26

Proof. Let � = mina µa. Thus, P(Xt = 1) � c� for each t under the BE-AE algorithm. Thus,
using standard Chernoff bound, for a large enough � we have P(

Pt0

t=1 Xt  m� lnT+m)  e�2 lnT .
Since under BE-AE we have |Sb(t) � Sb0(t)|  1 for each b, b0 2 A(t), for a large enough �,
P(9a 2 A(t0) s.t. Sa(t

0
)  � lnT)  e�2 lnT . Thus, P(9b 2 A(t0) s.t. Tb(t

0
)  � lnT)  e�2 lnT .

Hence the lemma holds.

27

	Introduction
	Related work
	Preliminaries
	Model
	The oracle and regret

	Lower bounds
	Suboptimality of classical approaches
	UCB
	Random-explore-then-commit

	Optimal algorithms
	Balanced exploration
	Balanced exploration with arm elimination

	Simulations
	Discussion and conclusions
	Appendix
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of lemmas used in proof of Theorem 4

