
SUPPLEMENTARY MATERIAL

A Proof of Theorem 1

Proof: For any class k we have,

w (Pk) =
∑

j:ej∈Pk

wj (x) =
∑

j:ej∈Pk

L (1× fj (x)) +
∑

j′:ej′∈S(ej)\{ej}

L ((−1)× fj′(x))


=

∑
j:ej∈Pk

 ∑
j′:ej′∈S(ej)

L (Mk,j′ × fj′(x))

 =
∑̀
j=1

L (Mk,jfj(x)) .

The third equality in the proof follows from the path codeword representation, see for example
Figure 1.

B Proof of Lemma 2

Proof: Indeed, for LTLS we have,

argmax
k

w (Pk) = argmax
k

 ∑
j:ej∈Pk

wj (x)

 = argmax
k

 ∑
j:Mk,j=1

fj (x)


=argmax

k

2
∑

j:Mk,j=1

fj (x)−
∑
j

fj (x)︸ ︷︷ ︸
constant in k

 = argmax
k

 ∑
j:Mk,j=1

fj (x)−
∑

j:Mk,j=−1
fj (x)



=argmax
k

∑
j

Mk,jfj (x)

 = argmax
k

��
�
�∑

j

M2
k,j︸ ︷︷ ︸

=`

+

�
�

�
��∑

j

f2j (x)︸ ︷︷ ︸
constant in k

−
∑
j

(Mk,j − fj (x))2


=argmin

k

∑
j

(Mk,j − fj (x))2 (Mk,j)
2︸ ︷︷ ︸

=1

 = argmin
k

∑
j

(1−Mk,jfj (x))
2


=argmin

k

∑
j

Lsq (Mk,jfj (x))

 .

Note that we used the fact that Mk,j ∈ {−1,+1}.

13

C Extension to arbitrary K

C.1 Graph construction

The following algorithm construct graphs with any number of paths, and is not restricted to powers
of 2. See Figure 7 for examples.

Algorithm 1: Graph construction with an arbitrary K
Input :Number of labels K and slice width b.

1 Convert K to a base-b representation.
2 Store the reverse representation in an array A of size blogbKc+ 1 (i.e. the least significant b-ary

digit is in A [0]).
3 Build a trellis graph with blogbKc+ 1 inner slices, each with b vertices.
4 Add a source vertex s and connect it to the vertices of the first inner slice.
5 Add a sink vertex t.
6 For every inner slice i = 0 . . . blogbKc, connect A [i] vertices of the slice to the sink.
7 Delete any vertices from which the sink is unreachable.

del

0001reverse1000𝐾 = 27 base-3

122reverse221𝐾 = 25 base-3

del

s

s

t

t

t

t

𝑖 = 0 𝑖 = 1 𝑖 = 2

s

s

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3

𝐴 0

Figure 7: An illustration of the graph construction algorithm for two different values of K, using
b = 3. The darker edges are the ones created on stage 6 of Algorithm 1. Note that in the upper
construction, the minimum distance between any two path is actually ρ = 3 and not ρ = 4 like
previously noted. This sometimes holds minor accuracy implications.

Below we show that this construction indeed produces a graph with exactly K paths from source to
sink. We start with a technical lemma.

Lemma 3 Let v ∈ V \ {t} be a vertex in the ith inner slice (where i ∈ {0 . . . blogbKc}), and let
N (v) be the number of paths from the source to v. Then N (v) = bi.

Proof: We show this by induction on the slice index i = 0 . . . blogbKc. In the base case i = 0 and
v is in the first inner slice (see Figure 7). It has only one incoming edge from the source s, hence the
statement holds, N (v) = b0 = 1.

Next, denote in (v) , {u : ∃ (u, v) ∈ E} and suppose the theorem holds for all slices until the
kth slice. Let v be a vertex in the (k + 1)th slice. Following the graph construction, v has b
incoming edges from the vertices in in (v), all of which are in the kth slice. According to the
inductive hypothesis, ∀u ∈ in (v) : N (u) = bk. Every path from s to u ∈ in (v), could be
extended to a path from s to v by concatenating the corresponding edge, and so we get that
N (v) =

∑
u∈in(v)N (u) =

∑
u∈in(v) b

k = b · bk = bk+1.

14

Theorem 4 The number of paths from the source to the sink is K, i.e. N (t) = K.

Proof: LetA ∈ {0 . . . b− 1}blogbKc+1 be the array of the reverse base-b representation ofK. Using
the decomposition of the b-ary representation, i.e. K =

∑blogbKc
i=0 A [i] · bi, and Lemma 3, we get:

N (t) =
∑

v∈in(t)

N (v) =

blogbKc∑
i=0

 ∑
v∈slicei∩in(t)

N (v)︸ ︷︷ ︸
=bi

 =

blogbKc∑
i=0

|slicei ∩ in (t)|︸ ︷︷ ︸
=A[i]

·bi

=

blogbKc∑
i=0

A [i] · bi = K .

C.2 Loss-based decoding generalization

We now show how to adjust the generalization of loss-based decoding for graphs with an arbitrary
number of paths K, constructed using Algorithm 1.

The idea of the reduction in (2) is that going through an edge ej inflicts the loss of turning its
corresponding bit on (i.e. L (1× fj (x))), but also the loss of turning off the bits corresponding to
other edges between its slices (i.e.

∑
j′:ej′∈S(ej)\{ej}

L ((−1)× fj′ (x))), which cannot coappear
with ej in the same path (i.e. a codeword).

The only change in the general case is that an edge ej = (uj , t) that is connected to the sink t cannot
coappear with any other edge outgoing from a vertex in the same vertical slice as uj , or that is
reachable from uj .

Let δ (v) be the shortest distance from the source to v (in terms of number of edges).

We define an updated S function (which is a generalization of the one defined in Section 5), where
for every edge ej = (uj , vj) ∈ E we set:

S (ej) =

{
{(u, u′) : δ (u) = δ (uj)} vj 6= t

{(u, u′) : δ (u) ≥ δ (uj)} vj = t
, (5)

and the weights are set as in (2) but with the new S function defined in (5),

wj (x) = L (1× fj(x)) +
∑

j′:ej′∈S(ej)\{ej}

L ((−1)× fj′(x)) . (6)

For example, in the following figure we have,

S (e6) = {e6, e7, e8, e9}
S (e2) = {e2, e3, e4, e5, e13}

S (e11) = {e10, e11}
S (e12) = {e12}

S (e13) = {e2, . . . , e13} .

𝑒1

𝑒0
𝑒2

𝑒5

𝑒3

𝑒4

𝑒6

𝑒9

𝑒7

𝑒8

𝑒11

𝑒10
𝑒12

𝑒13

Figure 8: An illustration of a graph with K = 9 and b = 2.

15

Below we show that Theorem 1 is correct for any K. Let P be a path on the trellis graph from the
source s to the sink t. We start will the following lemma.

Lemma 5 Let eq = (uq, t) be the last edge in P . For every edge ej = (uj , vj) ∈ P \ {eq} we have
δ (vj) = δ (uj) + 1.

Proof: Following immediately from the graph construction – other than edges to the sink, there are
only edges between adjacent slices (without cycles). Therefore, any vertex v in a vertical slice i
(where the leftmost slice containing s is the first one, i.e. i = 0) holds δ (v) = i, and every edge
ej = (uj , vj) ∈ P \ {eq} holds δ (vj) = δ (uj) + 1.

The next corollaries follow immediately.

Corollary 6 For every two different vertices u, v ∈ V \ {t} along P we have δ (u) 6= δ (v).

Corollary 7 Let eq = (uq, t) be the last edge in P . For every edge ej = (uj , vj) ∈ P \ {eq} we
have δ (uj) < δ (uq).

Clearly, since the graph is directed and acyclic, we get the next lemma.

Lemma 8 Every vertex in V can have at most one incoming edge and one outgoing edge in P .

By using Lemma 8, Corollary 6 and Lemma 5 we have the next corollary.

Corollary 9 Set an edge ej = (uj , vj) along the path P . Then, ∀ej′ ∈ S (ej) \ {ej} we have
ej′ /∈ P .

Proof: Let ej′ = (uj′ , vj′) be any edge in S (ej) \ {ej}, and assume ej′ ∈ P . We consider two
cases:

1. vj 6= t:
By the definition of S (ej), we get δ (uj′) = δ (uj). By negating Corollary 6 we get uj′ = uj .
Therefore ej , ej′ are two edges in P outgoing from the same vertex uj , in contradiction to
Lemma 8.

2. vj = t:
By definition, ej 6= ej′ . By Lemma 8 we get that uj 6= uj′ . Also, since t is a sink it has no
outgoing edges, thus uj′ 6= t.
By the definition of S (ej), we get δ (uj′) ≥ δ (uj). Since uj′ 6= uj , we can use Corollary 6 to
rule out equivalence and get δ (uj′) > δ (uj). Following Lemma 5, uj′ must appear later than uj
in P . However, t is the only vertex in P to appear after uj (t is a sink), and since uj′ 6= t, we get
a contradiction.

16

We conclude with the main result of this section, which states that Theorem 1 is correct for any K.

Theorem 10 Following the notations of Theorem 1, assume the weights of the edges are calculated
as in Eq. (6) with the S function defined in (5). Then, the weight of any path Pk corresponding to
class k equals to the loss suffered by predicting class k, i.e. w(Pk) =

∑`
j=1 L (Mk,jfj(x)).

Proof:

For any class k, we denote the last edge in Pk by eq = (uq, t). We have,

w (Pk) =
∑

j:ej∈Pk

wj (x)

=
∑

j:ej∈Pk

L
 1︸︷︷︸

=Mk,j

×fj (x)

+
∑

j′:ej′∈S(ej)\{ej}

L

 (−1)︸︷︷︸
=Mk,j′

(Corollary 9)

×fj′(x)




=
∑

j:ej∈Pk

 ∑
j′:ej′∈S(ej)

L (Mk,j′ × fj′(x))


=

∑
j:ej∈S(eq)

L (Mk,j × fj(x)) +
∑

j:ej∈Pk\{eq}

 ∑
j′:ej′∈S(ej)

L (Mk,j′ × fj′(x))



=
∑

j:ej=(uj ,vj),
δ(uj)≥δ(uq)

L (Mk,j × fj(x)) +
∑

j:ej=(uj ,vj)∈Pk\{eq}


∑

j′:ej′=(uj′ ,vj′),
δ(uj′)=δ(uj)

L (Mk,j′ × fj′(x))


︸ ︷︷ ︸

(Corollary 7) =
∑
j:ej=(uj ,vj),
δ(uj)<δ(uq)

L(Mk,j×fj(x))

=
∑

j:ej=(uj ,vj),
δ(uj)≥δ(uq)

L (Mk,j × fj(x)) +
∑

j:ej=(uj ,vj),
δ(uj)<δ(uq)

L (Mk,j × fj(x))

=
∑

j:ej∈E
L (Mk,j × fj(x))

=
∑̀
j=1

L (Mk,jfj(x)) .

17

D Details for complexity analysis in Section 6.1

W-LTLS requires training and storing a binary function or model for every edge. Hence, we first turn
to analyze the number of edges.

Lemma 11 The number of vertices in the inner slices is at most (blogbKc+ 1) b.

Proof: Follows immediately from the construction in Appendix C.1.

Corollary 12 The number of edges is upper bounded:

|E| ≤ (b+ 1) (blogbKc+ 1) b+ b = O
(

b2

log b
logK

)
.

Proof: Each vertex in the inner slices can have at most b+ 1 outgoing edges. We use Lemma 11
and count also the b edges outgoing from the source.

For most linear classifiers (with d parameters each) we get a total model size complexity of
O
(
d b2

log b logK
)

.

Inference consists of four steps:

1. Computing the value (margin) of all binary functions on the input x. This requires
O (d |E|) = O

(
d b2

log b logK
)

time.

2. Computing the edge weights {wi (x)}`i=1 as explained in Section 5. This can be performed

in O (|V |+ |E|) = O
(

b2

log b logK
)

time using a simple dynamic programming algorithm
(e.g. implementing back recursion).

3. Finding the shortest path in the trellis graph with respect to {wi (x)}`i=1 using the Viterbi

algorithm in O (|V |+ |E|) = O
(

b2

log b logK
)

time.

4. Decoding the shortest path to a class. As explained in Section 4.1, the inference requires a
mapping function from path to code. Using data structures such as a binary tree, this can be
performed in a O (|E|) = O

(
b2

log b logK
)

time complexity.

We get that the total inference time complexity is O (d |E|) = O
(
d b2

log b logK
)

.

18

E Experiments appendix

E.1 Datasets used in experiments

DATASET CLASSES FEATURES TRAIN SAMPLES
K d m

SECTOR 105 55,197 7,793
ALOI_BIN 1,000 636,911 90,000
IMAGENET 1,000 1,000 1,125,264
DMOZ 11,947 833,484 335,068
LSHTC1 12,294 1,199,856 83,805

Table 1: Datasets used in the experiments.

E.2 Average binary training loss

We validate our hypothesis that wider graphs lead to easier binary problems. In the first row of
Figure 9 we plot the average binary training loss ε as a function of model size. The average is both
over the induced binary subproblems and over the five runs.

In all datasets we observe a decrease of the average error as the slice width b grows. The decrease is
sharp for low values of b and then practically almost converges (to zero). These plots validate our
claim – as the subproblems become more unbalanced they also become easier.

23 24

0.000
0.002
0.004
0.006
0.008
0.010

Av
er

ag
e

bi
na

ry
 lo

ss
 (

)

sector
2 4 5 7 10

27 28 29 210

0.000
0.003
0.006
0.009
0.012
0.015

aloi_bin
2 3 5 7 10 15 20

2 2 2 1 20 21 22

Model size (MB)
0.00
0.15
0.30
0.45
0.60
0.75

imageNet
2 5 10 15 20 30

28 29 210 211 212 213

0.00
0.06
0.12
0.18
0.24
0.30

Dmoz
2 3 5 10 20 30 40 50

28 29 210 211 212 213

0.00
0.04
0.08
0.12
0.16
0.20

LSHTC1
2 3 5 10 20 30 4045

23 24

Model size (MB)

10 2

10 1

Tr
ai

ni
ng

 e
rro

r

Training error bound
Training error

2 4 5 7 10

27 28 29 210

Model size (MB)

10 2

10 1

Tr
ai

ni
ng

 e
rro

r

2 3 5 7 10 15 20

2 2 2 1 20 21 22

Model size (MB)

100

101

Tr
ai

ni
ng

 e
rro

r

2 5 10 15 20 30

28 29 210 211 212 213

Model size (MB)
10 1

100

Tr
ai

ni
ng

 e
rro

r

2 3 5 10 20 30 40 50

28 29 210 211 212 213

Model size (MB)

10 1

100

Tr
ai

ni
ng

 e
rro

r
Training error bound
Training error

2 3 5 10 20 30 4045

Figure 9: First row: Average binary loss (ε) vs Model size. Second row: Multiclass training error and
multiclass training error bound (on a logarithmic scale) vs Model size. The secondary x-axes (top
axes, blue) indicate the slice widths (b) used for the W-LTLS trellis graphs.

E.3 Multiclass training error

In the second row of Figure 9 we plot the multiclass training error (when using loss-based decoding
defined in (1) with the squared hinge loss) and its bound (3) for different model sizes 5 (MBytes).

For the bound, we set the minimum distance ρ = 4 as explained in Section 6, and LSH(0) = 1. The
average binary loss ε was computed as in (4).

For all datasets, the multiclass training error follows qualitatively its bound. For the two larger
datasets, shown in the two right panels, both the error and its bound decrease to some point, and then
start to increase. This can be explained as follows: at some point, the increase in the slice widths (and
` and the model size), stops to significantly decrease ε (see first row of Figure 9), such that the term
` × ε appears in the training error bound (3) overall starts increasing (recall that the denominator
ρ × L (0) is constant). By comparing these plots to the multiclass test accuracy plots in Figure 5,
we observe that at the same point where the training error and its bound start to increase, the test
accuracy does not increase significantly anymore. For example, for LSHTC1 and Dmoz datasets, the
training error bounds start to increase at around model size of 212 , and at the same time the test
accuracy stops increasing significantly. This suggests that model size of 212 is a good point in terms
of accuracy/model size tradeoff.

5 The model size is linear in the number of predictors, which in turn depends on the slice width like b2

log b
.

19

E.4 Average predictions margin

As discussed in Section 7.1, the following Figure 10 shows that for larger values of b, the predictions
margin increases.

5 10 15 20 25
Slice width (b)

0.8

1.4

2.0

2.6

3.2

3.8

Av
g.

 a
bs

ol
ut

e
m

ar
gi

n

LSHTC1

Figure 10: The average absolute margin, i.e. 1
m`

∑m
i=1

∑`
j=1 |fj (xi)|, vs the slice width b.

20

E.5 Experimental results of the multiclass test accuracy experiments

Following are the results of Section 7.2 organized in a tabular form – the model sizes and prediction
times of the tested algorithms and their test accuracy. The results of W-LTLS are averaged on five
runs.

DATASET ALGORITHM MODEL PREDICTION TEST
SIZE (BYTES) TIME (SEC) ACCURACY (%)

SECTOR

LTLS 5.9 MB 0.14 88.45

W-LTLS

b = 2 5.9 MB 0.14 91.63
b = 4 9.7 MB 0.16 93.92
b = 5 11.6 MB 0.16 94.32
b = 7 15.4 MB 0.18 94.86
b = 10 26.5 MB 0.23 94.88

LOMTREE 17.0 MB 0.16 82.10
FASTXML 8.9 MB 0.32 86.26
OVR 41.3 MB - 94.79

ALOI.BIN

LTLS 102.1 MB 1.0 82.24

W-LTLS

b = 2 102.1 MB 1.4 85.03
b = 3 133.6 MB 1.5 89.39
b = 5 216.2 MB 1.7 92.49
b = 7 328.0 MB 2.1 93.70
b = 10 537.0 MB 2.7 94.92
b = 15 777.5 MB 3.5 94.93
b = 20 1.1 GB 5.0 95.16

LOMTREE 106.0 MB 1.6 89.47
FASTXML 522.0 MB 5.3 95.38
OVR 2.4 GB - 95.90

IMAGENET

LTLS 0.16 MB 15.0 0.75

W-LTLS

b = 2 0.16 MB 21.4 0.42
b = 5 0.34 MB 26.3 1.59
b = 10 0.84 MB 40.3 4.36
b = 15 1.2 MB 52.6 4.08
b = 20 1.8 MB 76.2 7.01
b = 30 3.7 MB 194.2 12.60

LOMTREE 35.0 MB 37.7 5.37
FASTXML 1.6 GB 172.3 6.84
OVR 3.8 MB - 15.60

DMOZ

LTLS 193.9 MB 5.2 23.04

W-LTLS

b = 2 193.9 MB 7.5 25.76
b = 3 248.0 MB 8.1 29.56
b = 5 429.2 MB 9.8 33.92
b = 10 1.1 GB 16.6 37.44
b = 20 2.8 GB 41.4 38.43
b = 30 4.3 GB 73.6 38.89
b = 40 6.3 GB 164.5 38.81
b = 50 9.0 GB 332.3 38.89

LOMTREE 1.8 GB 28.0 21.27
FASTXML 1.2 GB 60.7 38.58
OVR 38.0 GB - 35.50

LSHTC1

LTLS 256.3 MB 0.65 9.50

W-LTLS

b = 2 256.3 MB 1.1 10.56
b = 3 361.6 MB 1.1 13.72
b = 5 631.6 MB 1.3 16.58
b = 10 1.5 GB 2.2 20.44
b = 20 4.0 GB 5.1 21.76
b = 30 6.3 GB 9.9 22.08
b = 40 9.0 GB 20.4 22.30
b = 45 10.8 GB 29.3 22.47

LOMTREE 744.0 MB 6.8 10.56
FASTXML 366.6 MB 10.7 21.66
OVR 56.3 GB - 21.90

21

E.6 Experimental results of the sparsity experiments

In the following Figure 11 we show that wider graphs induce models which use less features, even
before pruning.

This may help understand the results in Section 7.3, where we show that the larger slice widths allow
pruning more weights without accuracy degradation.

0 3 6 9 12 15
Slice width (b)

55

63

71

79

87

95

No
n-

ze
ro

 w
ei

gh
ts

 (%
)

sector

0 5 10 15 20 25
Slice width (b)

30

39

48

57

66

75 aloi_bin

0 11 22 33 44 55
Slice width (b)

20

27

34

41

48

55 Dmoz

0 10 20 30 40 50
Slice width (b)

5

9

13

17

21

25 LSHTC1

Figure 11: Percentage of non-zero weights at end of training (before pruning) vs the slice width b.

In the following Table 2, the results of Section 7.3 organized in a tabular form.

22

DATASET ALGORITHM MODEL TEST
SIZE (BYTES) ACCURACY (%)

SECTOR

SPARSE W-LTLS

b = 2 λ = 0.324 1.4 MB 90.66
b = 4 λ = 0.303 1.0 MB 93.42
b = 5 λ = 0.327 1.1 MB 93.86
b = 7 λ = 0.341 1.0 MB 94.11
b = 10 λ = 0.358 0.74 MB 94.82

FASTXML

T = 25 4.5 MB 86.26
T = 50 8.9 MB 86.26
T = 75 13.4 MB 86.78
T = 100 17.9 MB 86.58
T = 150 26.8 MB 86.57
T = 200 35.8 MB 87.20

ALOI.BIN

SPARSE W-LTLS

b = 2 λ = 0.015 37.3 MB 84.09
b = 3 λ = 0.015 32.7 MB 88.59
b = 5 λ = 0.017 25.4 MB 91.74
b = 7 λ = 0.016 25.9 MB 92.89
b = 10 λ = 0.013 30.3 MB 94.48
b = 15 λ = 0.014 31.2 MB 94.27
b = 20 λ = 0.016 25.4 MB 94.55

FASTXML

T = 5 52.1 MB 92.67
T = 10 104.2 MB 94.12
T = 25 260.9 MB 95.19
T = 50 522.0 MB 95.38
T = 100 1.0 GB 95.66

DISMEC 10.7 MB 96.28
PD-SPARSE 12.7 MB 96.20
PPDSPARSE 9.3 MB 96.38

DMOZ

SPARSE W-LTLS

b = 2 λ = 0.347 43.2 MB 24.64
b = 3 λ = 0.325 56.1 MB 28.63
b = 5 λ = 0.314 69.3 MB 33.04
b = 10 λ = 0.323 93.7 MB 36.75
b = 20 λ = 0.345 126.3 MB 37.72
b = 30 λ = 0.385 145.6 MB 38.08
b = 40 λ = 0.374 193.1 MB 38.08
b = 50 λ = 0.323 324.3 MB 38.16

FASTXML

T = 1 24.5 MB 27.09
T = 2 49.2 MB 31.17
T = 5 123.0 MB 35.84
T = 10 246.5 MB 37.47
T = 50 1.2 GB 38.58
T = 300 7.4 GB 38.63

DISMEC 259.3 MB 39.38
PD-SPARSE 453.3 MB 39.91
PPDSPARSE 526.7 MB 39.32

LSHTC1

SPARSE W-LTLS

b = 2 λ = 0.288 24.7 MB 9.48
b = 3 λ = 0.237 27.6 MB 12.66
b = 5 λ = 0.271 31.5 MB 15.60
b = 10 λ = 0.226 46.3 MB 19.78
b = 20 λ = 0.207 85.0 MB 21.13
b = 30 λ = 0.192 130.5 MB 21.56
b = 40 λ = 0.183 184.7 MB 21.81
b = 45 λ = 0.246 152.1 MB 21.88

FASTXML

T = 1 7.3 MB 12.50
T = 5 36.6 MB 17.98
T = 10 73.3 MB 19.36
T = 50 366.6 MB 21.66
T = 150 1.1 GB 21.94
T = 300 2.2 GB 22.04
T = 1200 8.8 GB 21.92

DISMEC 94.7 MB 22.74
PD-SPARSE 58.7 MB 22.46
PPDSPARSE 254.0 MB 22.70

Table 2: Simulation results for the sparse models.

23

