
Appendix for On the Local Minima of the Empirical
Risk

A Efficient algorithm for optimizing the population risk

As we described in Section 4, in order to find a second-order stationary point of the population loss
F , we apply perturbed stochastic gradient on a smoothed version of the empirical loss f . Recall that
the smoothed function is defined as

f̃σ(x) = Ezf(x + z).

In this section we will also consider a smoothed version of the population loss F , as follows:

F̃σ(x) = EzF (x + z).

This function is of course not accessible by the algorithm and we only use it in the proof of conver-
gence rates.

This section is organized as follows. In section A.1, we present and prove the key lemma on the
properties of the smoothed function f̃σ(x). Next, in section A.2, we prove the properties of the
stochastic gradient g. Combining the lemmas in these two subsections, in section A.3 we prove
a main theorem about the guarantees of ZPSGD (Theorem 7). For clarity, we defer all technical
lemmas and their proofs to section A.4.

A.1 Properties of the Gaussian smoothing

In this section, we show the properties of smoothed function f̃σ(x). We first restate Lemma 13.
Lemma 1 (Property of smoothing). Assume that the function pair (F, f ) satisfies Assumption A1,
and let f̃σ(x) be as given in definition 11. Then, the following holds

1. f̃σ(x) is O(`+ ν
σ2 )-gradient Lipschitz and O(ρ+ ν

σ3 )-Hessian Lipschitz.

2. ‖∇f̃σ(x)−∇F (x)‖ ≤ O(ρdσ2 + ν
σ ) and ‖∇2f̃σ(x)−∇2F (x)‖ ≤ O(ρ

√
dσ + ν

σ2 ).

Intuitively, the first property states that if the original function F is gradient and Hessian Lipschitz,
the smoothed version of the perturbed function f is also gradient and Hessian Lipschitz (note that
this is of course not true for the perturbed function f ); the second property shows that the gradient
and Hessian of f̃σ is point-wise close to the gradient and Hessian of the original function F . We will
prove the four points (1 and 2, gradient and Hessian) of the lemma one by one, in Sections A.1.1 to
A.1.4.

In the proof, we frequently require the following lemma (see e.g. Zhang et al. [2017]) that gives
alternative expressions for the gradient and Hessian of a smoothed function.

Lemma 2 (Gaussian smoothing identities [Zhang et al., 2017]). f̃σ has gradient and Hessian:

∇f̃σ(x) = Ez[
z

σ2
f(x + z)], ∇2f̃σ(x) = Ez[

zz> − σ2I

σ4
f(x + z)].
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Proof. Using the density function of a multivariate Gaussian, we may compute the gradient of the
smoothed function as follows:

∇f̃σ(x) =
∂

∂x

1

(2πσ2)d/2

∫
f(x + z)e−‖z‖

2/2σ2

dz =
1

(2πσ2)d/2

∫
∂

∂x
f(x + z)e−‖z‖

2/2σ2

dz

=
1

(2πσ2)d/2

∫
∂

∂x
f(z)e−‖z−x‖

2/2σ2

dz =
1

(2πσ2)d/2

∫
f(z′)

x− z

σ2
e−‖z−x‖

2/2σ2

dz

=
1

(2πσ2)d/2

∫
f(z + x)

z

σ2
e−‖−z‖

2/2σ2

dz = Ez[
z

σ2
f(x + z)],

and similarly, we may compute the Hessian of the smoothed function:

∇2f̃σ(x) =
∂

∂x

1

(2πσ2)d/2

∫
z

σ2
f(x + z)e−‖z‖

2/2σ2

dz

=
1

(2πσ2)d/2

∫
∂

∂x

z− x

σ2
f(z)e−‖z−x‖

2/2σ2

dz

=
1

(2πσ2)d/2

∫
f(z)(

(z− x)(z− x)>

σ4
e−‖z−x‖

2/2σ2

− I

σ2
e−‖z−x‖

2/2σ2

)dz

=
1

(2πσ2)d/2

∫
f(z + x)(

zz> − σ2I

σ4
)e−‖z‖

2/2σ2

dz = Ez[
zz> − σ2I

σ4
f(x + z)].

A.1.1 Gradient Lipschitz

We bound the gradient Lipschitz constant of f̃σ in the following lemma.

Lemma 3 (Gradient Lipschitz of f̃σ). ‖∇2f̃σ(x)‖ ≤ O(`+ ν
σ2 ).

Proof. For a twice-differentiable function, its gradient Lipshitz constant is also the upper bound on
the spectral norm of its Hessian.

‖∇2f̃σ(x)‖ = ‖∇2F̃σ(x) +∇2f̃σ(x)−∇2F̃σ(x)‖
≤ ‖∇2F̃σ(x)‖+ ‖∇2f̃σ(x)−∇2F̃σ(x)‖

= ‖∇2Ez[F (x + z)]‖+ ‖Ez[
zz> − σ2I

σ4
(f − F )(x + z)]‖

≤ Ez‖∇2[F (x + z)]‖+
1

σ4
‖Ez[zz>(f − F )(x + z)]‖+

1

σ2
‖Ez[(f − F )(x + z)I]‖

≤ `+
1

σ4
‖Ez[zz>|(f − F )(x + z)|]‖+

1

σ2
‖Ez[|(f − F )(x + z)|I]‖

= `+
ν

σ4
‖Ez[zz>‖+

ν

σ2
= `+

2ν

σ2

The last inequality follows from Lemma 9.

A.1.2 Hessian Lipschitz

We bound the Hessian Lipschitz constant of f̃σ in the following lemma.

Lemma 4 (Hessian Lipschitz of f̃σ). ‖∇2f̃σ(x)−∇2f̃σ(y)‖ ≤ O(ρ+ ν
σ3 )‖x− y‖.

Proof. By triangle inequality:

‖∇2f̃σ(x)−∇2f̃σ(y)‖
=‖∇2f̃σ(x)−∇2F̃σ(x)−∇2f̃σ(y) +∇2F̃σ(y) +∇2F̃σ(x)−∇2F̃σ(y)‖
≤‖∇2f̃σ(x)−∇2F̃σ(x)− (∇2f̃σ(y)−∇2F̃σ(y))‖+ ‖∇2F̃σ(x)−∇2F̃σ(y)‖

≤O(
ν

σ3
)‖x− y‖+O(ρ)‖x− y‖+O(‖x− y‖2)

The last inequality follows from Lemma 10 and 11.
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A.1.3 Gradient Difference

We bound the difference between the gradients of smoothed function f̃σ(x) and those of the true
objective F .

Lemma 5 (Gradient Difference). ‖∇f̃σ(x)−∇F (x)‖ ≤ O( νσ + ρdσ2).

Proof. By triangle inequality:

‖∇f̃σ(x)−∇F (x)‖ ≤ ‖∇f̃σ(x)−∇F̃σ(x)‖+ ‖∇F̃σ(x)−∇F (x)‖.

Then the result follows from Lemma 13 and 14

A.1.4 Hessian Difference

We bound the difference between the Hessian of smoothed function f̃σ(x) and that of the true
objective F .

Lemma 6 (Hessian Difference). ‖∇2f̃σ(x)−∇2F (x)‖ ≤ O(ρ
√
dσ + ν

σ2 ).

Proof. By triangle inequality:

‖∇2f̃σ(x)−∇2F (x)‖ ≤ ‖∇2F̃σ(x)−∇2F (x)‖+ ‖∇2f̃σ(x)−∇2F̃σ(x)‖

≤ Ez‖∇2F (x + z)−∇2F (x)‖+
2ν

σ2

≤ Ez‖ρz‖+
2ν

σ2
≤ ρ
√
dσ +

2ν

σ2

The first inequality follows exactly from the proof of lemma 3. The second equality follows from
the definition of Hessian Lipschitz. The third inequality follows from Ez‖ρz‖ ≤ ρ

√
E[‖z‖2].

A.2 Properties of the stochastic gradient

We prove the properties of the stochastic gradient, g(x; z), as stated in Lemma 7, restated as follows.
Intuitively this lemma shows that the stochastic gradient is well-behaved and can be used in the
standard algorithms.

Lemma 7 (Property of stochastic gradient). Let g(x; z) = z[f(x + z) − f(x)]/σ2, where z ∼
N (0, σ2I). Then Ezg(x; z) = ∇f̃σ(x), and g(x; z) is sub-Gaussian with parameter B

σ .

Proof. The first part follows from Lemma 2. Given any u ∈ Rd, by assumption A1 (f is B-
bounded),

|〈u,g(x; z)〉| = |(f(x + z)− f(x))||〈u, z

σ2
〉| ≤ B‖u‖

σ
|〈 u

‖u‖
,
z

σ
〉|.

Note that 〈 u
‖u‖ ,

z
σ 〉 ∼ N (0, 1). Thus, for X ∼ N (0, B‖u‖σ ),

P(|〈u,g(x; z)〉| > s) ≤ P(|X| > s).

This shows that g is sub-Gaussian with parameter Bσ .

A.3 Proof of Theorem 7: SOSP of f̃σ are also SOSP of F

Using the properties proven in Lemma 7, we can apply Theorem 15 to find an ε̃-SOSP for f̃σ for
any ε̃. The running time of the algorithm is polynomial as long as ε̃ depends polynomially on the
relevant parameters. Now we will show that every ε̃-SOSP of f̃σ is an O(ε)-SOSP of F when ε′ is
small enough.

More precisely, we use Lemma 13 to show that any ε√
d

-SOSP of f̃σ(x) is also an O(ε)-SOSP of F .
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Lemma 8 (SOSP of f̃σ(x) and SOSP of F (x)). Suppose x∗ satisfies

‖∇f̃σ(x∗)‖ ≤ ε̃ and λmin(∇2f̃σ(x∗)) ≥ −
√
ρ̃ε̃,

where ρ̃ = ρ+ ν
σ3 and ε̃ = ε/

√
d. Then there exists constants c1, c2 such that

σ ≤ c1
√

ε

ρd
, ν ≤ c2

√
ε3

ρd2
.

implies x∗ is an O(ε)-SOSP of F .

Proof. By applying Lemma 13 and Weyl’s inequality, we have that the following inequalities hold
up to a constant factor:

‖∇F (x∗)‖ ≤ ρdσ2 +
ν

σ
+ ε̃

λmin(∇2F (x∗)) ≥ λmin(∇2f̃σ(x∗)) + λmin(∇2F (x∗)−∇2f̃σ(x∗))

≥ −
√

(ρ+
ν

σ3
)ε̃− ‖∇2f̃σ(x)−∇2F (x)‖

= −

√
(ρ+ ν

σ3 )
√
d

ε− (ρ
√
dσ +

ν

σ2
)

Suppose we want any ε̃-SOSP of f̃σ(x) to be a O(ε)-SOSP of F . Then satisfying the following
inequalities is sufficient (up to a constant factor):

ρ
√
dσ +

ν

σ2
≤ √ρε (1)

ρdσ2 +
ν

σ
≤ ε (2)

ρ+
ν

σ3
≤ ρ
√
d (3)

We know Eq.(1), (2) =⇒ σ ≤
√
ρε

ρ
√
d

=
√

ε
ρd and σ ≤

√
ε
ρd .

Also Eq. (1), (2) =⇒ ν ≤ σε ≤
√

ε3

ρd and ν ≤ √ρεσ2 ≤ √ρε ερd =
√

ε3

ρd2 .

Finally Eq.(3) =⇒ ν ≤ ρ
√
dσ3 ≤ ε1.5

ρ0.5d .

Thus the following choice of σ and ν ensures that x∗ is an O(ε)-SOSP of F :

σ ≤ c1
√

ε

ρd
, ν ≤ c2

√
ε3

ρd2
,

where c1, c2 are universal constants.

Proof of Theorem 7. Applying Theorem 15 on f̃σ(x) guarantees finding an c ε√
d

-SOSP of f̃σ(x)

in number of queries polynomial in all the problem parameters. By Lemma 8, for some universal
constant c, this is also an ε-SOSP of F . This proves Theorem 7.

A.4 Technical Lemmas

In this section, we collect and prove the technical lemmas used in the proofs of the above.
Lemma 9. Let λ be a real-valued random variable and A be a random PSD matrix that can depend
on λ. Denote the matrix spectral norm as ‖·‖. Then ‖E[Aλ]‖ ≤ ‖E[A|λ|]‖.

Proof. For any x ∈ Rd,
x>E[Aλ]x = x>E[Aλ|λ ≥ 0]x · P(λ ≥ 0) + x>E[Aλ|λ < 0]x · P(λ < 0)

≤ x>E[Aλ|λ ≥ 0]x · P(λ ≥ 0)− x>E[Aλ|λ < 0]x · P(λ < 0)

= x>E[A|λ|]x
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The following two technical lemmas bound the Hessian Lipschitz constants of F̃σ and (f̃σ − F̃σ)
respectively.

Lemma 10. ‖∇2F̃σ(x)−∇2F̃σ(y)‖ ≤ ρ‖x− y‖.

Proof. By the Hessian-Lipschitz property of F :

‖∇2F̃σ(x)−∇2F̃σ(y)‖ = ‖Ez[∇2F (x + z)−∇2F (y + z)]‖
≤ Ez‖∇2F (x + z)−∇2F (y + z)‖
≤ ρ‖x− y‖

Lemma 11. ‖∇2f̃σ(x)−∇2F̃σ(x)− (∇2f̃σ(y)−∇2F̃σ(y))‖ ≤ O( νσ3 )‖x− y‖+O(‖x− y‖2).

Proof. For brevity, denote h = 1

(2πσ2)
d
2

.

∇2f̃σ(x)−∇2F̃σ(x)− (∇2f̃σ(y)−∇2F̃σ(y))

= Ez[
zz> − σ2I

σ4
((f − F )(x + z)− (f − F )(y + z)]

= h

(∫
zz> − σ2I

σ4
(f − F )(x + z)e−

‖z‖2

2σ2 dz−
∫

zz> − σ2I

σ4
(f − F )(y + z)e−

‖z‖2

2σ2 dz

)
= h

∫
(f − F )(z +

x + y

2
) (ω(∆)− ω(−∆)) dz, (4)

where ω(∆) := (z+∆)(z+∆)>−σ2I
σ4 e−

‖z+∆‖2

2σ2 and ∆ = y−x
2 . Equality (4) follows from a change of

variables. Now, denote g(z) := (f − F )(z + x+y
2 ).

Using ω(∆) = (z+∆)(z+∆)>−σ2I
σ4 e−

‖∆‖2+2〈∆,z〉
2σ2 e−

‖z‖2

2σ2 , we have the following

h

∫
g(z) (ω(∆)− ω(−∆)) dz = Ez

[
g(z)

(
ω(∆)e

‖z‖2

2σ2 − ω(−∆)e
‖z‖2

2σ2

)]
.

By a Taylor expansion up to only the first order terms in ∆,

ω(∆)e
‖z‖2

2σ2 =
zz> + ∆z> + z∆> − σ2I

σ4
(1 +

1

σ2
〈∆, z〉).

We then write the Taylor expansion of Ez

[
g(z)

(
ω(∆)e

‖z‖2

2σ2 − ω(−∆)e
‖z‖2

2σ2

)]
as follows.

Ez[g(z) · zz
> − σ2I

σ4
· 2

σ2
〈∆, z〉+ g(z) · 2 · ∆z> + z∆>

σ4
]

= Ez[g(z) · zz
>

σ4
· 2

σ2
〈∆, z〉]− Ez[g(z) · σ

2I

σ4
· 2

σ2
〈∆, z〉] + Ez[g(z) · 2 · ∆z> + z∆>

σ4
].

Therefore,

‖∇2f̃σ(x)−∇2F̃σ(x)− (∇2f̃σ(y)−∇2F̃σ(y))‖

≤‖Ez[g(z) · zz
>

σ4
· 2

σ2
〈∆, z〉]‖+ ‖Ez[g(z) · I

σ4
· 2〈∆, z〉]‖+ ‖Ez[g(z) · 2 · ∆z> + z∆>

σ4
]‖+O(‖∆‖2)

=
2

σ6
‖Ez[g(z) · zz>〈∆, z〉]‖+

2

σ4
‖Ez[g(z)〈∆, z〉I]‖+

2

σ4
‖Ez[g(z)(∆z> + z∆>)]‖+O(‖∆‖2)

≤O(
ν

σ3
)‖∆‖+O(‖∆‖2).

The last inequality follows from Lemma 12.
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Lemma 12. Given z ∼ N(0, σId×d), some ∆ ∈ Rd, ‖∆‖ = 1, and f : Rd → [−1, 1],

1. ‖Ez[f(z) · zz>〈∆, z〉]‖ = O(σ3); 2. ‖Ez[f(z)〈∆, z〉I]‖ = O(σ);

3. ‖Ez[f(z)(∆z>)]‖ = O(σ); 4. ‖Ez[f(z)(z∆>)]‖ = O(σ).

Proof. For the first inequality:

‖Ez[f(z) · zz>〈∆, z〉]‖ = sup
v∈Rd,‖v‖=1

E[v>f(z) · zz>〈∆, z〉v]

= sup
v∈Rd,‖v‖=1

E[f(z)(v>z)2(∆>z)] ≤ sup
v,∆∈Rd,‖v‖=‖∆‖=1

E[f(z)(v>z)2(∆>z)]

≤ sup
v,∆∈Rd,‖v‖=‖∆‖=1

E[(v>z)2|∆>z|] ≤ sup
v,∆∈Rd,‖v‖=‖∆‖=1

E[|v>z|3 + |∆>z|3]

= 2E[|v∗>z|3] = 4

√
2

π
σ3.

For the second inequality:

‖Ez[f(z)〈∆, z〉I]‖ = |E[Xf̃(X)]| ≤ E|X| =
√

2

π
σ,

where X = 〈∆, z〉 ∼ N(0, σ2) and f̃(a) = E[f(z)|X = a] ∈ [−1, 1].
For the third inequality:

‖Ez[f(z)(∆z>)]‖ = sup
v∈Rd,‖v‖=1

Ez[f(z)v>∆z>v)]

= v∗>∆Ez[f(z)z>v∗)] ≤
√

2

π
σ,

where the last step is correct due to the second inequality we proved. The proof of the fourth
inequality directly follows from the third inequality.

Lemma 13. ‖∇f̃σ(x)−∇F̃σ(x)‖ ≤
√

2
π
ν
σ .

Proof. By the Gaussian smoothing identity,

‖∇f̃σ(x)−∇F̃σ(x)‖ = ‖Ez[
z

σ2
(f − F )(x− z)]‖ ≤

√
2

π

ν

σ
.

The last inequality follows from Lemma 15.

Lemma 14. ‖∇F̃σ(x)−∇F (x)‖ ≤ ρdσ2.

Proof. By definition of Gaussian smoothing,

‖∇F̃σ(x)−∇F (x)‖

= ‖∇Ez[F (x− z)]−∇F (x)‖ ≤ ‖Ez[

(∫ 1

0

∇2f(x + tz)dt

)
z]‖ (5)

= ‖Ez[

(∫ 1

0

∇2f(x) +∇2f(x + tz)−∇2f(x)dt

)
z]‖

≤‖Ez[∇2f(x)z]‖+ ‖Ez[

(∫ 1

0

∇2f(x + tz)−∇2f(x)dt

)
z]‖

≤Ez[

(∫ 1

0

‖∇2f(x + tz)−∇2f(x)‖dt
)
‖z‖]

≤Ez[

(∫ 1

0

ρ‖tz‖dt
)
‖z‖] = ρ‖z‖2 ≤ ρdσ2.

Inequality (5) follows by applying a generalization of mean-value theorem to vector-valued func-
tions.
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Lemma 15. Given z ∼ N(0, σId×d) and f : Rd → [−1, 1],

‖Ezf(z)‖ ≤
√

2

π
σ.

Proof. By definition of the 2-norm,

‖Ezf(z)‖ = sup
v∈Rd,‖v‖=1

E[v>zf(z)] = E[v∗>zf(z)]

= E[E[Xf(z)|X]] where X = v∗>z ∼ N(0, σ2)

= E[Xf̃(X)] where f̃(a) = E[f(z)|X = a] ∈ [−1, 1]

≤ E|X| =
√

2

π
σ.

B Overview for polynomial queries lower bound

In this section, we discuss the key ideas for proving Theorem 8. We illustrate the construction in two
steps: (1) construct a hard instance (F, f) contained in a d-dimensional ball; (2) extend this hard
instance to Rn. The second step is necessary as Problem 1 is an unconstrained problem; in non-
convex optimization the hardness of optimizing unconstrained problems and optimizing constrained
problems can be very different. For simplicity, in this section we assume ρ, ε are both 1 and focus
on the d dependencies, to highlight the difference between polynomial queries and the information-
theoretic limit. The general result involving dependency on ε and ρ follows from a simple scaling of
the hard functions.

Figure 1: Key regions in lower bound
Figure 2: Landscape of h

Constructing a lower-bound example within a ball The target function F (x) we construct con-
tains a special direction v in a d-dimensional ball Br with radius r centered at the origin. More
concretely, let F (x) = h(x) + ‖x‖2, where h (see Figure 2) depends on a special direction v, but
is spherically symmetric in its orthogonal subspace. Let the direction v be sampled uniformly at
random from the d-dimensional unit sphere. Define a region around the equator of Br, denoted
Sv = {x|x ∈ Br and |v>x| ≤ r log d/

√
d}, as in Figure 1. The key ideas of this construction

relying on the following three properties:

1. For any fixed point x in Br, we have Pr(x ∈ Sv) ≥ 1−O(1/dlog d).

2. The ε-SOSP of F is located in a very small set Br − Sv.

3. h(x) has very small function value inside Sv, that is, supx∈Sv
|h(x)| ≤ Õ(1/d).
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The first property is due to the concentration of measure in high dimensions. The latter two proper-
ties are intuitively shown in Figure 2. These properties suggest a natural construction for f :

f(x) =

{
‖x‖2 if x ∈ Sv

F (x) otherwise
.

When x ∈ Sv, by property 3 above we know |f(x)− F (x)| ≤ ν = Õ(1/d).

To see why this construction gives a hard instance of Problem 1, recall that the direction v is uni-
formly random. Since the direction v is unknown to the algorithm at initialization, the algorithm’s
first query is independent of v and thus is likely to be in region Sv, due to property 1. The queries
inside Sv give no information about v, so any polynomial-time algorithm is likely to continue to
make queries in Sv and eventually fail to find v. On the other hand, by property 2 above, find-
ing an ε-SOSP of F requires approximately identifying the direction of v, so any polynomial-time
algorithm will fail with high probability.

Extending to the entire space To extend this construction to the entire space Rd, we put the ball
(the previous construction) inside a hypercube (see Figure 1) and use the hypercube to tile the entire
space Rd. There are two challenges in this approach: (1) The function F must be smooth even at
the boundaries between hypercubes; (2) The padding region (S2 in Figure 1) between the ball and
the hypercube must be carefully constructed to not ruin the properties of the hard functions.

We deal with first problem by constructing a function F̄ (y) on [−1, 1]d, ignoring the boundary
condition, and then composing it with a smooth periodic function. For the second problem, we
carefully construct a smooth function h, as shown in Figure 2, to have zero function value, gradient
and Hessian at the boundary of the ball and outside the ball, so that no algorithm can make use of
the padding region to identify an SOSP of F . Details are deferred to section C in the appendix.

C Constructing Hard Functions

In this section, we prove Theorem 8, the lower bound for algorithms making a polynomial number
of queries. We start by describing the hard function construction that is key to the lower bound.

C.1 “Scale-free” hard instance

We will first present a “scale-free” version of the hard function, where we assume ρ = 1 and ε = 1.
In section C.2, we will show how to scale this hard function to prove Theorem 8.

Denote sinx = (sin(x1), · · · , sin(xd)). Let I{a} denote the indicator function that takes value 1
when event a happens and 0 otherwise. Let µ = 300 . Let the function F : Rd → R be defined as
follows.

F (x) = h(sinx) + ‖sinx‖2, (6)

where h(y) = h1(v>y) · h2(
√
‖y‖2 − (v>y)2), and

h1(x) = g1(µx), g1(x) =
(
−16|x|5 + 48x4 − 48|x|3 + 16x2

)
I{|x| < 1},

h2(x) = g2(µx), g2(x) =
(
3x4 − 8|x|3 + 6x2 − 1

)
I{|x| < 1},

and the vector v is uniformly distributed on the d-dimensional unit sphere.

We will state the properties of the hard instance by breaking the space into different regions:

• “ball” S = {x ∈ Rd : ‖x‖ ≤ 3/µ} be the d-dimensional ball with radius 3/µ.

• “hypercube” H = [−π2 ,
π
2 ]d be the d-dimensional hypercube with side length π.

• “band” Sv = {x ∈ S : 〈sinx,v〉 ≤ log d√
d
}

• “padding” S2 = H − S

We also call the union of S2 and Sv the “non-informative” region.
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Figure 3: Polynomials g1, g2

Define the perturbed function, f :

f(x) =

{
‖sinx‖2, x ∈ Sv

F (x), x /∈ Sv.
(7)

Our construction happens within the ball. However it is hard to fill the space using balls, so we pad
the ball into a hypercube. Our construction will guarantee that any queries to the non-informative
region do not reveal any information about v. Intuitively the non-informative region is very large
so that it is hard for the algorithm to find any point outside of the non-informative region (and learn
any information about v).

Lemma 16 (Properties of scale-free hard function pair F, f ). Let F, f,v be as defined in equations
(6), (7). Then F, f satisfies:

1. f in the non-informative region S2 ∪ Sv is independent of v.

2. supx∈Sv
|f − F | ≤ Õ( 1

d ).

3. F has no SOSP in the non-informative region S2 ∪ Sv.

4. F is O(d)-bounded, O(1)-Hessian Lipschitz, and O(1)-gradient Lipschitz.

These properties will be proved based on the properties of h(y), which we defined in (6) to be the
product of two functions.

Proof. Property 1. On Sv, f(x) = F (x) = ‖sinx‖2, which is independent of v. On S2, we
argue that h(sinx) = 0 and therefore f(x) = ‖sinx‖2 ∀x ∈ S2. Note that on S2, ‖x‖ > 3/µ and
(sinx)2 > ( 2x

π )2 ∀|x| < π
2 , so

‖sinx‖ > ‖2x

π
‖ > 6

πµ
=⇒ max

{
v> sinx,

√
‖sinx‖2 − (v> sinx)2

}
>

6√
2 · πµ

>
1

µ
.

Therefore, h(sinx) = h1(v> sinx) · h2(
√
‖sinx‖2 − (v> sinx)2) = 0.

Property 2. It suffices to show that for x ∈ Sv, |h(sinx)| = Õ( 1
d ).

9



For x ∈ Sv, we have v> sinx ∈ [− log d√
d
, log d√

d
]. By symmetry, we may just consider the case where

v> sinx > 0.

|h(sinx)| ≤ |h1(v> sinx)|
= |
(
−16|x|5 + 48x4 − 48|x|3 + 16x2

)
| where x = µv> sinx

≤ C(
log d√
d

)2

≤ C log2 d

d

Here C > 0 is a large enough universal constant.

Property 3. (Part I.) We show that there are no SOSP in S2. For x : ‖x‖ > 3/µ, we argue
that either the gradient is large, due to contribution from ‖sinx‖2, or the Hessian has large negative
eigenvalue (points close to the boundary of H). Denote G(x) = ‖sinx‖2. We may compute the
gradient of G as follows:

∂

∂xi
G(x) = 2 sin(xi) cos(xi) = sin(2xi),

‖∇G(x)‖ =

√∑
i

(sin(2xi))2 ≥
√∑

i

x2
i = ‖x‖ for all x ∈ [−ξ, ξ]d,

where ξ ≈ 0.95 is the positive root of the equation sin 2x = x. On S2, ∇F (x) = ∇G(x), so
‖∇F (x)‖ > 3

µ = 1× 10−2 for x ∈ S2 ∩ [−ξ, ξ]d. We may also compute the Hessian of G:

∇2G(x) = diag(2 cos(2x)),

λmin(∇2G(x)) = min
i
{2 cos(2xi)} ≤ 2 · (π

4
− x) < 2 · (π

4
− ξ) ∀x ∈ S2 \ [−ξ, ξ]d.

Since (π4 − ξ) < −0.15, λmin(∇2F (x)) < −0.3.

(Part II.) We argue that F has no SOSP in Sv. For y = sin(x), we consider two cases: (i)
z =

√
‖y‖2 − (v>y)2 large and (ii) z small.

Write g(x) = h(sinx), and denote ∇h(x)|sinx , ∇2h(x)
∣∣
sinx

with ∇h(y),∇2h(y). Let u ◦ v
denote the Schur product of u and v. We may compute the gradient and Hessian of g:

∇g(x) = ∇h(y) ◦ cos(x),

∇2g(x) = diag(cosx))∇2h(y)diag(cosx))−∇h(y) ◦ sin(x).

Now we change the coordinate system such that v = (1, 0, · · · , 0). ‖∇h(y)‖ and λmin(∇2h(y)) are
invariant to such a transform. Under this coordinate system, h(y) = h1(y1) · h2(

√
‖y‖2 − (y1)2)

(i): z ≥ 1
2µ . We show that ‖∇F‖ is large.

Let P−1(u) denote the projection of u onto the orthogonal component of the first standard basis
vector.

Since ∀ i 6= 1, ∂
∂yi

h(y) = h1(y1)h′2(z)yiz , we have

P−1(∇h(y)) =
h1(y1)h′2(z)

z
P−1(y) where

h1(y1)h′2(z)

z
> 0

P−1(∇F (x)) = P−1(∇g(x) +∇G(x)) = P−1(∇h(y) ◦ cos(x) + y ◦ cosx)

=

(
h1(y1)h′2(z)

z
P−1(y) + P−1(y)

)
◦ cosx

‖∇F (x))‖ ≥ ‖P−1(∇F (x))‖ ≥ ‖P−1(y) ◦ cosx‖ ≥ z ·min
i
| cos(xi)|

≥ 1

2µ
· 0.999 ≥ 1× 10−3 since |xi| ≤ 3/µ
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(ii): z < 1
2µ . We show that ∇2F (x) has large negative eigenvalue. First we compute the second

derivative of h in the direction of the first coordinate:
∂2h

∂y2
1

= h2(z)h′′1(y1) ≤ 32µ2g2(1/2) = −10µ2.

Now we use this to upper bound the smallest eigenvalue of∇2F (x).

λmin(∇2h(y)) ≤ min
i

∂2

∂y2
i

h(y) ≤ ∂2h

∂y2
1

λmin(∇2g(x)) ≤
(
λmin

(
diag(cosx)∇2h(y)diag(cosx)

)
+ λmax (−diag(∇h(y) ◦ sin(x)))

)
≤ −0.999 · 10µ2 + 0.01 ·max

y
(h2(z)h′1(y1) + h1(y1)h′2(z)) since |xi| ≤ 3/µ

≤ −0.999 · 10µ2 + 0.01 · 3µ

Finally,

∇2G(x) = diag(2 cos(2x)) =⇒ ‖∇2G(x)‖ ≤ 2,

λmin(∇2F (x)) ≤ −0.999 · 10µ2 + 0.01 · 3µ+ 2 ≤ −8× 105.

Property 4. O(1)-bounded: Lemma 17 shows that |h(y)| ≤ 1. ‖sinx‖2 ≤ d. Therefore |F | ≤
1 + d.

O(1)-gradient Lipschitz: ‖∇2F (x)‖ ≤ ‖∇2G(x)‖+ ‖∇2g(x)‖. We know ‖∇2G(x)‖ ≤ 2.

‖∇2g(x)‖ = ‖diag(cosx)∇2h(y)diag(cosx)− diag(∇h(y) ◦ sin(x))‖
≤ ‖diag(cosx)‖2 · ‖∇2h(y)‖+ ‖diag(∇h(y))‖ · ‖diag(sinx)‖
≤ 1 · 68µ2 + 3µ · 1 ≤ 7× 106 using lemma 17

O(1)-Hessian Lipschitz: First bound the Hessian Lipschitz constant of G(x).

‖∇2G(x)−∇2G(z)‖ ≤ 2‖cos(2x)− cos(2z)‖ ≤ 4‖x− z‖.

Now we bound the Hessian Lipschitz constant of g(x). Denote A(x) = diag(cosx) and B(x) =
diag(sinx).

‖A(x1)∇2h(y1)A(x1)−A(x2)∇2h(y2)A(x2)‖
≤‖A(x1)∇2h(y1)A(x1)−A(x1)∇2h(y1)A(x2)‖+ ‖A(x1)∇2h(y1)A(x2)−A(x1)∇2h(y2)A(x2)‖

+ A(x1)∇2h(y2)A(x2)−A(x2)∇2h(y2)A(x2)‖
≤68µ2‖x1 − x2‖+ 1000µ3‖x1 − x2‖+ 68µ2‖x1 − x2‖ from lemma 17.

‖diag(∇h(y1))B(x1)− diag(∇h(y2))B(x2)‖
≤‖diag(∇h(y1))B(x1)− diag(∇h(y1))B(x2)‖+ ‖diag(∇h(y1))B(x2)− diag(∇h(y2))B(x2)‖
≤(3µ+ 68µ2)‖x1 − x2‖ from lemma 17.

‖∇2g(x1)−∇2g(x2)‖
=(144µ3 + 204µ2 + 3µ)‖x1 − x2‖.

Therefore F (x) is (2.8× 1010)-Hessian Lipschitz.

Now we need to prove smoothness properties of h(y) that are used in the previous proof. In the
following lemma, we prove that h(y) as defined in equation (6) is bounded, Lipschitz, gradient-
Lipschitz, and Hessian-Lipschitz.
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Lemma 17 (Properties of h(y)). h(y) as given in Definition 6 is O(1)-bounded, O(1)-Lipschitz,
O(1)-gradient Lipschitz, and O(1)-Hessian Lipschitz.

Proof. WLOG assume v = (1, 0, · · · , 0)>. Denote u = y1,w = (y2, · · · , yd)>. Let ⊗ denote
tensor product.

Note that |h′1| ≤ 3µ, |h′2| ≤ 2µ, |h′′1 | ≤ 32µ2, |h′′2 | ≤ 12µ2, |h′′′1 | ≤ 300µ3, |h′′′2 | ≤ 48µ3. Assume
µ > 2.

1. O(1)-bounded: |h| ≤ |h1| · |h2| ≤ 1.

2. O(1)-Lipschitz: ‖∇h(y)‖ =
√
h2(‖w‖)h′1(u) + h1(u)h′2(‖w‖) ≤ 3µ ≤ O(1).

3. O(1)-gradient Lipschitz:

∇2h(y) = h1(u)∇2h2(‖w‖)+h2(‖w‖)∇2h1(u)+∇h1(u)∇h2(‖w‖)>+∇h2(‖w‖)∇h1(u)>.

‖∇h1(u)‖ ≤ 3µ. Notice that the following are also O(1):

‖∇h2(‖w‖)‖ = ‖h′2(‖w‖) w

‖w‖
‖ ≤ 2µ;

‖∇2h2(w)‖ ≤ ‖h′′2(‖w‖)ww>

‖w‖2
‖+‖h′2(‖w‖)‖w‖

2I−ww>

‖w‖3
‖ ≤ |h′′2(‖w‖)|+|h′2(‖w‖)/‖w‖| ≤ 12µ2+12µ.

Therefore, ‖∇2h(y)‖ ≤ 24µ2 + 32µ2 + 2 · 2µ · 3µ ≤ 68µ2.

4. O(1)-Hessian Lipschitz: We first argue that ∇2h2(w) is Lipschitz. For ‖w‖ ≥ 1/µ,
∇2h2(w) = 0. So we consider ‖w‖ < µ. We obtain the following by direct compu-
tation.

∇2h2(w) = h′′2(‖w‖)ww>

‖w‖2
+ h′2(‖w‖)‖w‖

2I−ww>

‖w‖3

= 24µ4ww> − 24µ3ww>

‖w‖
+ (12µ4‖w‖2 − 24µ3‖w‖+ 12µ2)I

∇3h2(w) = 24µ4(w ⊗ I + I⊗w)− 24µ3 ‖w‖2(w ⊗ I + I⊗w)−w ⊗w ⊗w

‖w‖3

+ 24µ4I⊗w − 24µ3 I⊗w

‖w‖
‖∇3h2(w)‖ ≤ 48µ3 + 72µ2 + 24µ3 + 24µ2 ≤ 144µ3

We may easily check that indeed lim‖w‖→1 ‖∇2h2(w)‖ = 0.

Therefore∇2h2(w) is 144µ3-Lipschitz.

‖h1(u1)∇2h2(‖w1‖)− h1(u2)∇2h2(‖w1‖)‖ ≤ (144µ3 + 3µ · 24µ2)‖y1 − y2‖
‖h2(‖w1‖)∇2h1(u1)− h2(‖w2‖)∇2h1(u2)‖ ≤ (32µ2 · 2µ+ 300µ3)‖y1 − y2‖

‖∇h1(u1)∇h2(‖w1‖)> −∇h1(u2)∇h2(‖w2‖)>‖ ≤ (3µ · 24µ2 + 2µ · 32µ2)‖y1 − y2‖

By triangle inequality, using the above, we obtain

‖∇2h(y1)−∇2h(y2)‖ ≤ 1000µ3‖y1 − y2‖.

This proves that h(y) is 1000µ3-Hessian Lipschitz.
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C.2 Scaling the Hard Instance

Now we show how to scale the function we described in order to achieve the final lower bound with
correct dependencies on ε and ρ.

Given any ε, ρ > 0, define

F̃ (x) = εrF (
1

r
x), f̃(x) = εrf(

1

r
x), (8)

where r =
√
ε/ρ and F, f are defined as in Equation 6. Define the ‘scaled’ regions:

• S̃ = {x ∈ Rd : ‖x‖ ≤ 3r/µ} be the d-dimensional ball with radius 3r/µ.

• H̃ = [−π2 r,
π
2 r]

d be the d-dimensional hypercube with side length πr.

• S̃v = {x ∈ S̃ : 〈sin 1
rx,v〉 ≤

log d√
d
}.

• S̃2 = H̃ − S̃.

Defined as above, (F̃ , f̃) satisfies the properties stated in lemma 18, which makes it hard for any
algorithm to optimize F̃ given only access to f̃ .

Lemma 18. Let F̃ , f̃ ,v, S̃2, S̃v be as defined in 8. Then for any ε, ρ > 0, F, f satisfies:

1. f̃ in the non-informative region S̃2 ∪ S̃v is independent of v.

2. supx∈S̃v
|f̃ − F̃ | ≤ ε1.5√

ρd up to poly-log d and constant factors.

3. F̃ has no O(ε)-SOSP in the non-informative region S̃2 ∪ S̃v.

4. F̃ is B-bounded, O(ρ)-Hessian Lipschitz, and O(`)-gradient Lipschitz.

Proof. This is implied by Lemma 16. To see this, notice

1. We have simply scaled each coordinate axis by r.

2. |F̃ − f̃ | = εr|F − f | = ε1.5√
ρ |F − f |.

3. ‖∇F̃‖ = ε‖∇F‖ and ‖∇2F̃‖ =
√
ρε‖∇2F‖. Since F has no 1×10−12-SOSP in S2∪Sv.

Taking into account the Hessian Lipschitz constant of F , F̃ has no ε
1012 -SOSP in S̃2 ∪ S̃v.

4. We must have B > d + ε1.5√
ρ . Then, F̃ is B-bounded, (7 × 106)

√
ρε- gradient Lipschitz,

and (2.8× 1010)ρ-Hessian Lipschitz.

C.3 Proof of the Theorem

We are now ready to state the two main lemmas used to prove Theorem 8.

The following lemma uses the concentration of measure in higher dimensions to argue that the
probability that any fixed point lies in the informative region S̃v is very small.

Lemma 19 (Probability of landing in informative region). For any arbitrarily fixed point x ∈ S̃,
Pr(x /∈ S̃v) ≤ 2e−(log d)2/2.

Proof. Recall the definition of S̃v: S̃v = {x ∈ S̃ : 〈sin 1
rx,v〉 ≤

log d√
d
}. Since x ∈ S̃, we have

‖x‖ ≤ 3r/µ ≤ r (as µ ≥ 3). Therefore, by inequality | sin θ| ≤ |θ|, we have:

‖sin x

r
‖2 =

d∑
i=1

| sin x
(i)

r
|2 ≤

d∑
i=1

|x
(i)

r
|2 ≤ 1.

13



Denote unit vector ŷ = sin x
r /‖sin

x
r ‖. This gives:

Pr(x /∈ S̃v) = Pr(|〈sin x

r
,v〉| ≥ log d√

d
) = Pr(|〈ŷ,v〉| ≥ log d√

d‖sin x
r ‖

)

≤ Pr(|〈ŷ,v〉| ≥ log d√
d

) since ‖sin x

r
‖ ≤ 1

=
Area({u : ‖u‖ = 1, |〈ŷ,u〉| > log d√

d
})

Area({u : ‖u‖ = 1})
≤ 2e−(log d)2/2 by lemma 22

This finishes the proof.

Thus we know that for a single fixed point, the probability of landing in S̃v is less than 2(1/d)log d/2.
We note that this is smaller than 1/poly(d). The following lemma argues that even for a possibly
adaptive sequence of points (of polynomial size), the probability that any of them lands in S̃v re-
mains small, as long as the query at each point does not reveal information about S̃v.
Lemma 20 (Probability of adaptive sequences landing in the informative region). Consider a se-
quence of points and corresponding queries with size T : {(xi, q(xi))}Ti=1, where the sequence
can be adaptive, i.e. xt can depend on all previous history {(xi, q(xi))}t−1

i=1 . Then as long as
q(xi) ⊥ v | xi ∈ S̃v, we have Pr(∃t ≤ T : xt 6∈ S̃v) ≤ 2Te−(log d)2/2.

Proof. Clearly Pr(∃t ≤ T : xt 6∈ S̃v) = 1− Pr(∀t ≤ T : xt ∈ S̃v). By product rule, we have:

Pr(∀t ≤ T : xt ∈ S̃v) =

T∏
t=1

Pr(xt ∈ S̃v|∀τ < t : xτ ∈ S̃v).

Denote Di = {v ∈ Sd−1|〈sin 1
rxi,v〉 >

log d√
d
}, where Sd−1 denotes the unit sphere in Rd centered

at the origin. Clearly, v 6∈ Di is equivalent to xi ∈ S̃v. Consider term Pr(xt ∈ S̃v|∀τ < t : xτ ∈
S̃v). Conditioned on the event that E = {∀τ < t : xτ ∈ S̃v}, we know v ∈ Sd−1 − ∪t−1

i=1Di. On
the other hand, since q(xτ ) ⊥ v|E for all τ < t, therefore, conditioned on event E, v is uniformly
distributed over Sd−1 − ∪t−1

i=1Di, and:

Pr(xt ∈ S̃v|∀τ < t : xτ ∈ S̃v) =
Area(Sd−1 − ∪ti=1Di)

Area(Sd−1 − ∪t−1
i=1Di)

.

Thus by telescoping:

Pr(∀t ≤ T : xt ∈ S̃v) =

T∏
t=1

Area(Sd−1 − ∪ti=1Di)

Area(Sd−1 − ∪t−1
i=1Di)

=
Area(Sd−1 − ∪Ti=1Di)

Area(Sd−1)
.

This gives:

Pr(∃t ≤ T : xt 6∈ S̃v) =1− Pr(∀t ≤ T : xt ∈ S̃v) =
Area(∪Ti=1Di)

Area(Sd−1)

≤
T∑
i=1

Area(Di)

Area(Sd−1)
≤ T max

i

Area(Di)

Area(Sd−1)
= T max

x
Pr(x 6∈ S̃v) ≤ 2Te−(log d)2/2.

In last inequality, we used Lemma 19, which finishes the proof.

Now we have all the ingredients to prove Theorem 8, restated below more formally.
Theorem 21 (Lower bound). For any B > 0, ` > 0, ρ > 0, there exists ε0 =
Θ(min{`2/ρ, (B2ρ)1/3}) so that for any ε ∈ (0, ε0], there exists a function pair (F, f ) satisfying
Assumption A1 with ν = Θ̃(

√
ε3/ρ · (1/d)), so that any algorithm will fail, with high probability,

to find SOSP of F given only o(d
√

log d) of zero-th order queries of f .
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Proof. Take (F̃ , f̃) to be as defined in Definition 8. The proof proceeds by first showing that no
SOSP can be found in a constrained set S̃, and then using a reduction argument. The key step of the
proof involves the following two claims:

1. First we claim that any algorithm A making o(d
√

log d) function-value queries of f to find
ε-SOSP of F in S̃, only queries points in S̃v, w.h.p., and fails to output ε-SOSP of F .

2. Next suppose if there exists A making o(d
√

log d) function-value queries of f that finds
ε-SOSP of F in Rd w.h.p. Then this algorithm also finds ε-SOSP of F on S̃ w.h.p., which
is a contradiction.

Proof of claim 1:

Note that because ‖xt‖ ≤ r/100, ‖sin 1
rxt‖ ≤ ‖xt‖/r ≤ 1/100.

Let v be an arbitrary unit vector. Suppose a possibly randomized algorithm A queries points in S̃,
{Xt}Tt=1. Let Ft denote σ(f(X1), · · · , f(Xt)). Let Xt ∼ A(t|Ft−1).

For any i, on the event that Xi ∈ S̃v, we have that f(Xi) = 0, as established in Lemma 18.
Therefore it is trivially true that f(Xi) is independent of v conditioned on {Xi ∈ S̃v}.
By Lemma 20,

Pr(Xt ∈ S̃v∀t ≤ T ) ≥ 1− 2Te−(log d)2/2

≥ 1− e−(log d)2/4 for all d large enough since T = o(d
√

log d).

Proof of claim 2:

Since f, F are periodic over d-dimensional hypercubes of side length πr, finding ε-SOSP of F on
R implies finding ε-SOSP of F in S. Given claim 1, any algorithm making only o(d

√
log d) queries

will fail to find ε-SOSP of F in Rd w.h.p.

For completeness, we now state the classical result showing that most of the surface area of a sphere
lies close to the equator; it was used in the proof of Lemma 19.

Lemma 22 (Surface area concentration for sphere). Let Sd−1 = {x ∈ Rd : ‖x‖2 = 1} denote the
Euclidean sphere in Rd. For ε > 0, let C(ε) denote the spherical cap of height ε above the origin.
Then

Area(C(ε))

Area(Sd−1)
≤ e−dε

2/2.

Proof. Let D be the spherical cone subtended at one end by C(ε) and let Bd denote the unit Eu-
clidean ball in Rd. By Pythagoras’ Theorem, we can enclose D in a sphere of radius

√
1− ε2. By

elementary calculus,

Area(C(ε))

Area(Sd−1)
=

Volume(D)

Volume(Bd)
≤ Volume(

√
1− ε2Bd)

Volume(Bd)
≤ (1− ε2)d/2 ≤ e−dε

2/2.

D Information-theoretic Limits

In this section, we prove upper and lower bounds for algorithms that may run in exponential time.
This establishes the information-theoretic limit for problem 1. Compared to the previous (polyno-
mial time) setting, now the dependency on dimension d is removed.
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Algorithm 1 Exponential Time Algorithm
Input: function value oracle for f , hyperparameter ε′

Construct (1) {xt}Nt=1, an O(ε/`)-cover in the euclidean metric of the ball of radius O(B/ε) in
Rd centered at the origin (lemma 27); (2) {vi}Vi=1, an O(ε/`)-cover in the euclidean metric of the
ball of radius O(ε) in Rd centered at the origin (lemma 27); (3) {Hj}Pj=1, an O(ε/`)-cover in the
L∞ metric of the ball of radius O(`) in Rd×d centered at the origin (lemma 28); (4) Z , an O(ε′)
cover in the euclidean metric of the unit sphere Sd−1 in Rd (lemma 27)
for t = 0, 1, . . . , N do

for i = 0, 1, . . . , V do
for j = 0, 1, . . . , P do

if |f(x)+v>i (y−x)+ 1
2 (y−x)>Hj(y−x)−f(y)| ≤ O(ρr3+ν) ∀y = x+rz, z ∈ Z

then
if ‖vi‖ ≤ O(ε) and λmin(Hj) ≥ −O(

√
ρε) then

return xt

D.1 Exponential Time Algorithm to Remove Dimension Dependency

We first restate our upper bound, first stated in Theorem 9, below.
Theorem 23. There exists an algorithm so that if the function pair (F, f ) satisfies Assumption A1
with ν ≤ O(

√
ε3/ρ) and ` >

√
ρε, then the algorithm will find an ε-second-order stationary point

of F with an exponential number of queries.

The algorithm is based on a procedure to estimate the gradient and Hessian at point x. This proce-
dure will be applied to a exponential-sized covering of a compact space to find an SOSP.

Let Z be a ε′ covering for unit sphere Sd−1, where Z is symmetric (i.e. if z ∈ Z then −z ∈ Z). It
is easy to verify that such covering can be efficiently constructed with |Z| ≤ O((1/ε′)d) (Lemma
27). Then, for each point in the cover, we solve following feasibility problem:

find g,H (9)

s.t. |f(x) + g>(y − x) +
1

2
(y − x)>H(y − x)− f(y)| ≤ O(ρr3 + ν)

∀y = x + rz, z ∈ Z,

where r is scalar in the order of O(
√
ε/ρ).

We will first show that any solution of this problem will give good estimates of the gradient and
Hessian of F .
Lemma 24. Any solution (g,H)to the above feasibility problem, Eq.(9), gives

‖g −∇F (x)‖ ≤ O(ε) and ‖H −∇2F (x)‖ ≤ O(
√
ρε)

Proof. When we have ‖f − F‖∞ ≤ ν, above feasibility problem is equivalent to solve following:

find g,H

s.t. |F (x) + g>(y − x) +
1

2
(y − x)>H(y − x)− F (y)| ≤ O(ρr3 + ν)

∀y = x + rz, z ∈ Z.

Due to the Hessian-Lipschitz property, we have |F (y) − F (x) − ∇F (x)>(y − x) − (y −
x)>∇2F (x)(y − x)| ≤ 1

6ρr
3, this means above feasibility problem is also equivalent to:

find g,H

s.t. |(g −∇F (x)>(y − x) +
1

2
(y − x)>(H−∇2F (x))(y − x)| ≤ O(ρr3 + ν)

∀y = x + rz, z ∈ Z.
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Picking y−x = ±rz, by triangular inequality and the fact that Z is an ε′-covering of Sd−1, it is not
hard to verify:

‖g −∇F (x)‖ ≤ O
(

1

1− ε′
(ρr2 +

ν

r
)

)
‖H −∇2F (x)‖ ≤ O

(
1

1− 2ε′
(ρr +

ν

r2
)

)
.

Given ν ≤ 1
c

√
ε3

ρ for large enough constant c, and picking r = c′
√

ε
ρ with proper constant c′, we

prove the lemma.

We then argue that (9) always has a solution.

Lemma 25. Consider the metric ‖·‖ : Rd × Rd×d → R, where ‖(g, H)‖ =
√
‖g‖2 + ‖H‖2.

Then (∇F (x),∇2F (x)) and a O(ε/`)-neighborhood around it with respect to the ‖·‖ metric are
the solutions to above feasibility problem.

Proof. (∇F (x),∇2F (x)) is clearly one solution to the feasibility problem Eq.(9). Then, this lemma
is true due to Hessian Lipschitz and gradient Lipschitz properties of F .

Now, since the algorithm can do an exhaustive search over a compact space, we just need to prove
that there is an ε-SOSP within a bounded distance.
Lemma 26. Suppose function f is B-bounded, then inside any ball of radius B/ε, there must exist
a O(ε/`)-ball full of 2ε-SOSP.

Proof. We can define a search path {xt} to find a ε-SOSP. Starting from an arbitrary point x0. (1) If
the current point xt satisfies ‖g‖ ≥ ε, then following gradient direction with step-size ε/` decreases
the function value by at least Ω(‖g‖ε/`); (2) If the current point xt has negative curvature γ ≤
−√ρε, moving along direction of negative curvature with step-size

√
ε/ρ decreases the function

value by at least Ω(γε/ρ).

In both cases, we decrease the function value on average by Ω(ε) per step. That is in a ball of radius
B/ε around x0, there must be a ε-SOSP. and in a O(ε/`)-ball around this ε-SOSP are all 2ε-SOSP
due to the gradient and Hessian Lipschitz properties of F .

Combining all these lemmas we are now ready to prove the main theorem of this section:

Proof of Theorem 9. We show that Algorithm 1 is guaranteed to succeed within a number of func-
tion value queries of f that is exponential in all problem parameters. First, by Lemma 26, we know
that at least one of {xt}Nt=1 must be an O(ε)-SOSP of F . It suffices to show that for any x that is an
O(ε)-SOSP, Algorithm 1’s subroutine will successfully return x, that is, it must find a solution g,H,
to the feasibility problem 9 that satisfies ‖g‖ ≤ O(ε) and λmin(H) ≥ −O(

√
ρε).

If x satisfies ‖∇F (x)‖ ≤ O(ε), then by lemma 24, all solutions to the feasibility problem 9 at x
must satisfy ‖g‖ ≤ O(ε) and we must have ‖H‖∞ ≤ ` (implied by `-gradient Lipschitz). Therefore,
by Lemma 25, we can guarantee that at least one of {vi, Hj}i=V,j=Pi=1,j=1 will be in a solution to the
feasibility problem.

Next, notice that because all the covers in Algorithm 1 have size at most O((d/ε)d
2

) must terminate
in O(ed

2 log d
ε ) steps.

In the following two lemmas, we provide simple methods for constructing an ε-cover for a ball (as
well as a sphere), and for matrices with bounded spectral norm.
Lemma 27 (Construction of ε-cover for ball and sphere). For a ball in Rd of radius R centered at
the origin, the set of points C = {x ∈ Rd : ∀i,xi = j · ε√

d
, j ∈ Z,−R

√
d

ε − 1 ≤ j ≤ R
√
d

ε + 1}
is an ε-cover of the ball, of size O((R

√
d/ε)d). Consequently, it is also an ε-cover for the sphere of

radius R centered at the origin.
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Proof. For any point y in the ball, we can find x ∈ C such that |yi − xi| ≤ ε/
√
d for each i ∈ [d].

By the Pythagorean theorem, this implies ‖y − x‖ ≤ ε.

Lemma 28 (Construction of ε-cover for matrices with `-bounded spectral norm). LetM = {A ∈
Rd×d : ‖A‖ ≤ `} denote the set of d by d matrices with `-bounded spectral norm. Then the set of
points C = {M ∈ Rd×d : ∀i, k,Mi,k = j · εd , j ∈ Z,− `dε − 1 ≤ j ≤ `d

ε + 1} is an ε-cover forM,
of size O((`d/ε)d

2

)

Proof. For any matrix M inM, we can find N ∈ C such that |Ni,k −Mi,k| ≤ ε/d for each i, k ∈
[d]. Since the Frobenius norm dominates the spectral norm, we have ‖N −M‖ ≤ ‖N −M‖F ≤
ε.

D.2 Information-theoretic Lower bound

To prove the lower bound for an arbitrary number of queries, we base our hard function pair on
our construction in definition 6, except f̃ now coincides with F̃ only outside the sphere S. With
this construction, no algorithm can do better than random guessing within S, since f is completely
independent of v.

Theorem 29 (Information-theoretic lower bound). For f̃ , F̃ defined as follows:

F̃ (x) = εrF (
1

r
x), f̃(x) =

{
εr‖sin 1

rx‖
2 ,x ∈ S

F̃ (x) ,x /∈ S

where F is as defined in definition 6. Then we have supx |F̃ (x)− f̃(x)| ≤ O( ε
1.5
√
ρ ) and no algorithm

can output SOSP of F with probability more than a constant.

Proof. supx |F̃ (x)− f̃(x)| = supx∈S |F̃ (x)− f̃(x)| ≤ εr. Any solution output by any algorithm
must be independent of v with probability 1, since h = 0 outside of S. Suppose the algorithm
A outputs x. Then Pr(x is ε-SOSP of F̃ ) ≤ Pr(x /∈ Sv) ≤ 2e−(log d)2/2. The upper bound on
probability of success does not depend on the number of iterations. Therefore, no algorithm can
output SOSP of F with probability more than a constant.

E Extension: Gradients pointwise close

In this section, we present an extension of our results to the problem of optimizing an unknown
smooth function F (population risk) when given only a gradient vector field g : Rd → Rd that is
pointwise close to the gradient∇F . In other words, we now consider the analogous problem but for
a first-order oracle. Indeed, in some applications including the optimization of deep neural networks,
it might be possible to have a good estimate of the gradient of the population risk. A natural question
is, what is the error in the gradient oracle that we can tolerate to obtain optimization guarantees for
the true function F ? More precisely, we work with the following assumption.
Assumption A1. Assume that the function pair (F : Rd → R, f : Rd → R) satisfies the following
properties:

1. F is `-gradient Lipschitz and ρ-Hessian Lipschitz.

2. f is L-Lipschitz and differentiable, and ∇f,∇F are ν̃-pointwise close; i.e., ‖∇f −
∇F‖∞ ≤ ν̃.

We henceforth refer to ν̃ as the gradient error. As we explained in Section 2, our goal is to find
second-order stationary points of F given only function value access to g. More precisely:
Problem 2. Given function pair (F, f ) that satisfies Assumption A1, find an ε-second-order station-
ary point of F with only access to function values of g = ∇f .

We provide an algorithm, Algorithm 2, that solves Problem 2 for gradient error ν̃ ≤ O(ε/
√
d). Like

Algorithm 1, Algorithm 2 is also a variant of SGD whose stochastic gradient oracle, g(x+z) where
z ∼ N (0, σ2I), is derived from Gaussian smoothing.
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Algorithm 2 First order Perturbed Stochastic Gradient Descent (FPSGD)
Input: x0, learning rate η, noise radius r, mini-batch size m.

for t = 0, 1, . . . , do
sample (z

(1)
t , · · · , z(m)

t ) ∼ N (0, σ2I)

gt(xt)←
∑m
i=1 g(xt + z

(i)
t )

xt+1 ← xt − η(gt(xt) + ξt), ξt uniformly ∼ B0(r)
return xT

Theorem 30 (Rates for Algorithm 2). Given that the function pair (F, f ) satisfies Assump-
tion A1 with ν̃ ≤ O(ε/

√
d), then for any δ > 0, with smoothing parameter σ =

Θ(
√
ε/(ρd)), learning rate η = 1/`, perturbation r = Θ̃(ε) and large mini-batch size m =

poly(d,B, `, ρ, 1/ε, log(1/δ)), FPSGD will find an ε-second-order stationary point of F with prob-
ability 1− δ, in poly(d,B, `, ρ, 1/ε, log(1/δ)) number of queries.

Note that Algorithm 2 doesn’t require oracle access to f , only to g. We also observe the tolerance
on ν̃ is much better compared to Theorem 7, as noisy gradient information is available here while
only noisy function value is avaliable in Theorem 7. The proof of this theorem can be found in
Appendix F.

F Proof of Extension: Gradients pointwise close

This section proceeds similarly as in section A with the exception that all the results are now in
terms of the gradient error, ν̃. First, we present the gradient and Hessian smoothing identities (10
and 11) that we use extensively in the proofs. In section F.1, we present and prove the key lemma
on the properties of the smoothed function f̃σ(x). Next, in section F.2, we prove the properties of
the stochastic gradient g(x+ z). Then, using these lemmas, in section F.3 we prove a main theorem
about the guarantees of FPSGD (Theorem 30). For clarity, we defer all technical lemmas and their
proofs to section F.4.

Recall the definition of the gradient smoothing of a function given in Definition 11. In this section
we will consider a smoothed version of the (possibly erroneous) gradient oracle, defined as follows.

∇f̃σ(x) = Ez∇f(x + z). (10)

Note that indeed ∇f̃σ(x) = ∇Ezf(x + z). We can also write down following identity for the
Hessian of the smoothed function.

∇2f̃σ(x) = Ez[
z

σ2
∇f(x + z)>] (11)

The proof is a simple calculation.

Proof of Equation 11. We proceed by exchanging the order of differentiation. The last equality
follows from applying lemma 2 to the function ∂

∂xj
f(x + z)

∂

∂xi∂xj
f̃σ(x) =

∂

∂xi

∂

∂xj
Ez[f(x + z)] =

∂

∂xi
Ez[

∂

∂xj
f(x + z)] = Ez[

zi
σ2

∂

∂xj
f(x + z)]

F.1 Properties of the Gaussian smoothing

In this section, we show the properties of smoothed function∇f̃σ(x).
Lemma 31 (Property of smoothing). Assume function pair (F, f ) satisfies Assumption A1, and let
∇f̃σ(x) be as given in equation 10. Then, the following holds

1. f̃σ(x) is O(`+ ν̃
σ )-gradient Lipschitz and O(ρ+ ν̃

σ2 )-Hessian Lipschitz.
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2. ‖∇f̃σ(x)−∇F (x)‖ ≤ O(ρdσ2 + ν̃) and ‖∇2f̃σ(x)−∇2F (x)‖ ≤ O(ρ
√
dσ + ν̃

σ ).

We will prove the 4 claims of the lemma one by one, in the following 4 sub-subsections.

F.1.1 Gradient Lipschitz

We bound the gradient Lipschitz constant of f̃σ in the following lemma.

Lemma 32 (Gradient Lipschitz of f̃σ under gradient closeness). ‖∇2f̃σ(x)‖ ≤ O(`+ ν̃
σ ).

Proof. By triangle inequality,

‖∇2f̃σ(x)‖ = ‖∇2F̃σ(x) +∇2f̃σ(x)−∇2F̃σ(x)‖
≤ ‖∇2F̃σ(x)‖+ ‖∇2f̃σ(x)−∇2F̃σ(x)‖

≤ `+ ‖Ez[
z

σ2
(∇f −∇F )(x + z)>]‖

≤ O(`+
ν̃

σ
)

The last inequality follows from Lemma 38.

F.1.2 Hessian Lipschitz

We bound the Hessian Lipschitz constant of f̃σ in the following lemma.

Lemma 33 (Hessian Lipschitz of f̃σ under gradient closeness).

‖∇2f̃σ(x)−∇2f̃σ(y)‖ ≤ O(ρ+
ν̃

σ2
)‖x− y‖.

Proof. By triangle inequality:

‖∇2f̃σ(x)−∇2f̃σ(y)‖
=‖∇2f̃σ(x)−∇2F̃σ(x)−∇2f̃σ(y) +∇2F̃σ(y) +∇2F̃σ(x)−∇2F̃σ(y)‖
≤‖∇2f̃σ(x)−∇2F̃σ(x)− (∇2f̃σ(y)−∇2F̃σ(y))‖+ ‖∇2F̃σ(x)−∇2F̃σ(y)‖

=O(
ν̃

σ2
)‖x− y‖+O(ρ)‖x− y‖+O(‖x− y‖2)

The last inequality follows from Lemmas 10 and 39.

F.1.3 Gradient Difference

We bound the difference between the gradients of smoothed function f̃σ(x) and those of the true
objective F .

Lemma 34 (Gradient Difference under gradient closeness). ‖∇f̃σ(x)−∇F (x)‖ ≤ O(ρdσ2 + ν̃).

Proof. By triangle inequality:

‖∇f̃σ(x)−∇F (x)‖ ≤ ‖∇f̃σ(x)−∇F̃σ(x)‖+ ‖∇F̃σ(x)−∇F (x)‖
≤ ‖Ez[(∇f −∇F )(x + z)]‖+O(ρdσ2) (12)

≤ O(ν̃ + ρdσ2)

The inequality at (12) follows from Lemma 14.
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F.1.4 Hessian Difference

We bound the difference between the Hessian of smoothed function f̃σ(x) and that of the true
objective F .

Lemma 35 (Hessian Difference under gradient closeness). ‖∇2f̃σ(x)−∇2F (x)‖ ≤ O(ρ
√
dσ+ ν̃

σ )

Proof. By triangle inequality:

‖∇2f̃σ(x)−∇2F (x)‖ ≤ ‖∇2F̃σ(x)−∇2F (x)‖+ ‖∇2f̃σ(x)−∇2F̃σ(x)‖

≤ O(ρ
√
dσ +

ν̃

σ
)

The last inequality follows from Lemma 6 and 32.

F.2 Properties of the stochastic gradient

Lemma 36 (Stochastic gradient g(x; z)). Let g(x; z) = ∇f(x + z), z ∼ N(0, σI). Then
Ezg(x; z) = ∇f̃σ(x) and g(x; z) is sub-Gaussian with parameter L.

Proof. For the first claim we simply compute:

Ezg(x; z) = Ez∇f(x + z) = ∇Ez[f(x + z)] = ∇f̃σ(x).

For the second claim, since function f is L-Lipschitz, we know ‖g(x, z)‖ = ‖∇f(x + z)‖ ≤ L.
This implies that g(x; z) is sub-Gaussian with parameter L.

F.3 Proof of Theorem 30

Using the properties proved in Lemma 36, we can apply Theorem 15 to find an ε-SOSP for f̃σ .

We now use lemma 31 to prove that any ε√
d

-SOSP of f̃σ(x) is also an O(ε)-SOSP of F .

Lemma 37 (SOSP of f̃σ(x) and SOSP of F (x)). Suppose x∗ satisfies

‖∇f̃σ(x∗)‖ ≤ ε̃ and λmin(∇2f̃σ(x∗)) ≥ −
√
ρ̃ε̃,

where ρ̃ = ρ+ ν̃
σ2 and ε̃ = ε/

√
d. Then there exists constants c1, c2 such that

σ ≤ c1
√

ε

ρd
, ν̃ ≤ c2

ε√
d

implies x∗ is an O(ε)-SOSP of F .

Proof. By Lemma 31 and Weyl’s inequality, we have that the following inequalities hold up to a
constant factor:

‖∇F (x∗)‖ ≤ ρdσ2 + ν̃ + ε̃

λmin(∇2F (x∗)) ≥ λmin(∇2f̃σ(x∗)) + λmin(∇2F (x∗)−∇2f̃σ(x∗)) (Weyl’s theorem)

≥ −
√

(ρ+
ν̃

σ2
)ε̃− ‖∇2f̃σ(x)−∇2F (x)‖

= −

√
(ρ+ ν̃

σ2 )
√
d

ε− (ρ
√
dσ +

ν̃

σ
)

Suppose we want any ε̃-SOSP of f̃σ(x) to be a O(ε)-SOSP of F . Then the following is sufficient
(up to a constant factor):

ρ
√
dσ +

ν̃

σ
≤ √ρε (13)

ρdσ2 + ν̃ ≤ ε (14)

ρ+
ν̃

σ2
≤ ρ
√
d (15)
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We know Eq.(13), (14) =⇒ σ ≤
√
ρε

ρ
√
d

=
√

ε
ρd and σ ≤

√
ε
ρd .

Also Eq. (13), (14) =⇒ ν̃ ≤ ε and ν̃ ≤ √ρεσ ≤ √ρε
√

ε
ρd = ε√

d
.

Finally Eq.(15) =⇒ ν̃ ≤ ρ
√
dσ2 ≤ ε√

d
.

Thus the following choices ensures x∗ is an O(ε)-SOSP of F :

σ ≤
√

ε

ρd
, ν̃ ≤ ε√

d
.

Proof of Theorem 30. Applying Theorem 15 on f̃σ(x) guarantees finding an c ε√
d

-SOSP of f̃σ(x)

in number of queries polynomial in all the problem parameters. By Lemma 37, for some universal
constant c, this is also an ε-SOSP of F . This proves Theorem 30.

F.4 Technical lemmas

In this section, we collect and prove the technical lemmas used in section F.
Lemma 38. Let z ∼ N(0, σ2I), g : Rd → Rd, and ∃a ∈ R+ s.t. ‖g(x)‖ ≤ a∀x ∈ Rd. Let ∆ ∈ Rd
be fixed. Then,

‖Ez[zg(z)>]‖ ≤ σa; (16)

‖Ez[z〈z,∆〉g(z)>]‖ ≤ a

σ2
. (17)

Proof.

(16) : ‖Ez[zg(z)>]‖ = sup
v∈Rd,‖v‖=1

v>(Ez[zg(z)>])v

= Ez[v∗>zg(z)>v]

≤
√

Ez[(v∗>z)2]E[(g(z)>v∗)2]

≤
√
σ2a4 since v∗>z ∼ N(0, 1)

(17) : ‖Ez[z〈z,∆〉g(z)>]‖ = sup
v∈Rd,‖v‖=1

v>Ez[z〈z,∆〉g(z)>]v

= Ez[〈v∗, z〉〈z,∆〉〈g(z),v∗〉]
≤ aEz[|〈v∗, z〉〈z,∆〉|]

≤ a
√
Ez[〈v∗, z〉2]Ez[〈z,∆〉2]

≤ a‖∆‖σ2.

Lemma 39. ‖∇2f̃σ(x)−∇2F̃σ(x)− (∇2f̃σ(y)−∇2F̃σ(y))‖ ≤ O( ν̃σ2 )‖x− y‖+O(‖x− y‖2)

Proof. For brevity, denote h = 1

(2πσ2)
d
2

. We have:

∇2f̃σ(x)−∇2F̃σ(x)− (∇2f̃σ(y)−∇2F̃σ(y))

= Ez[
z

σ2
((∇f −∇F )(x + z)− (∇f −∇F )(y + z))>]

= h

(∫
z

σ2
(∇f −∇F )(x + z)>e−

‖z‖2

2σ2 dz−
∫

z

σ2
(∇f −∇F )(y + z)>e−

‖z‖2

2σ2 dz

)
= h

(∫ (
(z + ∆)e−

‖z+∆‖2

2σ2 − (z−∆)e−
‖z−∆‖2

2σ2

)
(∇f −∇F )(z +

x + y

2
)>dz

)
, (18)
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where ∆ = y−x
2 . The last equality follows from a change of variables. Now denote g(z) :=

(∇f −∇F )(z + x+y
2 ). By a Taylor expansion up to only the first order terms in ∆, we have

(18)−O(‖∆‖)2 = h(

∫
((z + ∆)(1− 〈z,∆〉

σ2
)− (z−∆)(1 +

〈z,∆〉
σ2

))g(z)>e−
‖z‖2

2σ2 dz

= 2h(

∫
(∆− z

〈z,∆〉
σ2

)g(z)>e−
‖z‖2

2σ2 dz

= 2Ez[(∆− z
〈z,∆〉
σ2

)g(z)>].

Therefore,

‖∇2f̃σ(x)−∇2F̃σ(x)− (∇2f̃σ(y)−∇2F̃σ(y))‖

≤ 2

σ2
‖Ez[(∆− 〈z,∆〉

σ2
)g(z)>‖+O(‖∆‖2)

≤ 2

σ2
‖Ez[∆g(z)>]‖+

2

σ4
‖Ez[〈z,∆〉g(z)>]‖+O(‖∆‖2)

≤ 2

σ2
ν̃‖∆‖+

2

σ2
ν̃‖∆‖+O(‖∆‖2).

The last inequality follows from Lemma 38.

G Proof of Learning ReLU Unit

In this section we analyze the population loss of the simple example of a single ReLU unit.

Recall our assumption that ‖w?‖ = 1 and that the data distribution is x ∼ N (0, I); thus,

yi = ReLU(x>i w
?) + ζi, ζi ∼ N (0, 1).

We use the squared loss as the loss function, hence writing the empirical loss as:

R̂n(w) =
1

2n

n∑
i=1

(yi − ReLU(x>i w))2.

The main tool we use is a closed-form formula for the kernel function defined by ReLU gates.
Lemma 40. [Cho and Saul, 2009] For fixed u,v, if x ∼ N (0, I), then

E ReLU(x>u) · ReLU(x>v) =
1

2π
‖u‖‖v‖[sin θ + (π − θ) cos θ],

where θ is the angel between u and v satisfying cos θ = u>v/(‖u‖‖v‖).

Then, the population loss has the following analytical form:

R(w) =
1

4
‖w‖2 +

5

4
− 1

2π
‖w‖[sin θ + (π − θ) cos θ],

and so does the gradient (ŵ is the unit vector along w direction):

∇R(w) =
1

2
(w −w?) +

1

2π
(θw? − ŵ sin θ).

G.1 Properties of Population Loss

We first prove the properties of the population loss, which were stated in Lemma 16 and we also
restate the lemma below. Let B = {w|w>w? ≥ 1√

d
} ∩ {w|‖w‖ ≤ 2}.

Lemma 41. The population and empirical risk R, R̂n of learning a ReLU unit problem satisfies:
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1. If w0 ∈ B, then runing ZPSGD (Algorithm 1) gives wt ∈ B for all t with high probability.

2. Inside B, R is O(1)-bounded, O(
√
d)-gradient Lipschitz, and O(d)-Hessian Lipschitz.

3. supw∈B |R̂n(w)−R(w)| ≤ Õ(
√
d/n) w.h.p.

4. Inside B, R is nonconvex function, w? is the only SOSP of R(w).

To prove these four claims, we require following lemmas.

The first important property we use is that the gradient of population loss l has the one-point convex
property inside B, stated as follows:

Lemma 42. Inside B, we have:

〈−∇R(w),w? −w〉 ≥ 1

10
‖w −w?‖2.

Proof. Note that inside B, we have the angle θ ∈ [0, π/2). Also, let Wθ = {w|∠(w,w?) = θ},
then for θ ∈ [0, π/2):

min
w∈Wθ

‖w −w?‖ = sin θ.

On the other hand, note that θ ≤ 2 sin θ holds true for θ ∈ [0, π/2); thus we have:

〈−∇R(w),w −w?〉 =〈1
2

(w −w?) +
1

2π
(θw? − ŵ sin θ),w −w?〉

=
1

2
‖w −w?‖2 +

1

2π
〈[w?(θ − sin θ) + (w? − ŵ) sin θ],w −w?〉

≥1

2
‖w −w?‖2 − 1

2π
(sin θ +

√
2 sin θ)‖w −w?‖

≥(
1

2
− 1 +

√
2

2π
)‖w −w?‖2 ≥ 1

10
‖w −w?‖2,

where the second last inequality used the fact that sin θ ≤ ‖w −w?‖ for all w ∈ B.

One-point convexity guarantees that ZPSGD stays in the region B with high probability.

Lemma 43. ZPSGD (Algorithm 1) with proper hyperparameters will stay in B with high probabil-
ity.

Proof. We prove this by two steps:

1. The algorithm always moves towards x? in the region B− {‖w −w?‖ ≤ 1/10}.

2. The algorithm will not jump from {‖w‖ ≤ 1/10} to Bc in one step.

The second step is rather straightforward since the function `(w) is Lipschitz, and the learning
rate is small. The first step is due to the large minibatch size and the concentration properties of
sub-Gaussian random variables:

‖wt+1 −w?‖2 = ‖wt − η(gt(xt) + ξt)−w?‖2

≤‖wt −w?‖2 − η〈∇fσ(xt),wt −w?〉+ η‖ζt‖‖wt −w?‖+ η2E‖gt(xt) + ξt‖2

≤‖wt −w?‖2 − η

10
‖wt −w?‖2 + ηε‖wt −w?‖+ η2E‖gt(xt) + ξt‖2

≤‖wt −w?‖2 − (
η

100
− ηε−O(η2))‖wt −w?‖ ≤ 0

The last step is true when we pick a learning rate that is small enough (although we pick η = 1/`, this
is still fine because a `-gradient Lipschitz function is clearly also a 10`-gradient Lipschitz function)
and ε is small.
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Lemma 44. Let w(t) = 1
5 (w? + te) where e is any direction so that e>w? = 0

R(w(t)) =
t2

100
− t

10π
+

1

10π
tan−1(t) + const,

which is nonconvex in domain t ∈ [0, 1]. Therefore f(w(t)) is nonconvex along this line segment
inside B.

Proof. Note that in above setup, tan θ = t, so the population loss can be calculated as:

R(w(t)) =
1

100
‖w‖2 − 1

2π
[
t

5
− tan−1(t) · 1

5
] + const

=
t2

100
− t

10π
+

1

10π
tan−1(t) + const

It’s easy to show w(t) ∈ B for all t ∈ [0, 1] and if g(t) = R(w(t)), then g′′(0.6) < 0 and thus the
function is nonconvex.

Next, we show that the empirical risk and the population risk are close by a covering argument.
Lemma 45. For sample size n ≥ d, with high probability, we have:

sup
w∈B

|R̂n(w)−R(w)| ≤ Õ

(√
d

n

)
.

Proof. Let {wj}Jj=1 be a ε-covering of B. By triangular inequality:

sup
w∈B

|R̂n(w)−R(w)| ≤ sup
w∈B

|R̂n(w)− R̂n(wj)|︸ ︷︷ ︸
T1

+ sup
j∈J
|R̂n(wj)−R(wj)|︸ ︷︷ ︸

T2

+ sup
w∈B

|R(wj)−R(w)|︸ ︷︷ ︸
T3

,

where wj is the closest point in the cover to w. Clearly, the ε-net of B requires fewer points than the
ε-net of {w|‖w‖ ≤ 2}. By the standard covering number argument, we have logNε = O(d log 1

ε ).
We proceed to bound each term individually.

Term T2: For a fixed j, we know R̂n(wj) = 1
n

∑n
i=1(yi − ReLU(x>i w

j))2, where yi −
ReLU(x>i w

j) is sub-Gaussian with parameter O(1), thus (yi−ReLU(x>i w
j))2 is sub-Exponential

with parameter O(1). We have the concentration inequality:

P(|R̂n(wj)−R(wj)| ≥ t) ≤ eO(nt
2

1+t ).

By union bound, we have:

P(sup
j∈J
|R̂n(wj)−R(wj)| ≥ t) ≤ NεeO(nt

2

1+t ).

That is, with n ≥ d, and probability 1− δ, we have:

sup
j∈J
|R̂n(wj)−R(wj)| ≤

√
1

n
(log

1

δ
+ d log

1

ε
).

Term T3: Since the population loss is O(1)-Lipschitz in B, we have:

sup
w∈B

|R(wj)−R(w)| ≤ L|wj −w| ≤ O(ε).

Term T1: Note that for a fixed pair (xi,yi), the function gi(w) = (yi − ReLU(x>i w))2 is
O(‖ζi‖‖xi‖+ ‖xi‖2)-Lipschitz. Therefore,

sup
w∈B

|R̂n(wj)− R̂n(w)| ≤O(1) · 1

n

∑
i

[
‖ζi‖‖xi‖+ ‖xi‖2

]
|wj −w|

≤O(ε) · 1

n

∑
i

[
‖ζi‖‖xi‖+ ‖xi‖2

]
.

25



With high probability, 1
n

∑
i

[
‖ζi‖‖xi‖+ ‖xi‖2

]
concentrates around its mean, O(d).

In summary, we have:

sup
w∈B

|R̂n(w)−R(w)| ≤
√

1

n
(log

1

δ
+ d log

1

ε
) +O(ε) +O(εd).

By picking ε (for the ε-covering) small enough, we finish the proof.

Finally we prove the smoothness of population risk in B, we have 1/
√
d ≤ ‖w‖ ≤ 2.

Lemma 46. For population loss R(w) = 1
4‖w‖

2 + 5
4 −

1
2π‖w‖[sin θ+ (π− θ) cos θ], its gradient

and Hessian are equal to:

∇R(w) =
1

2
(w −w?) +

1

2π
(θw? − ŵ sin θ),

∇2R(w) =

{
1
2I if θ = 0
1
2I−

sin θ
2π‖w‖ (I + ûû> − ŵŵ>) otherwise

,

where ŵ is the unit vector along the w direction, and û is the unit vector along the w? − ŵ cos θ
direction.

Proof. Note ‖w?‖ = 1. Let z(w,w?) = w>w?

‖w‖ , we have:

∇wz(w,w
?) =

w?‖w‖ − (w>w?)ŵ

‖w‖2
=

(w? − ŵ cos θ)

‖w‖
.

Since cos θ = z(w,w?), we obtain:

− sin θ · ∇θ =
(w? − ŵ cos θ)

‖w‖
.

This gives:

∇R(w) =
1

2
w − 1

2π
ŵ[sin θ + (π − θ) cos θ]− 1

2π
‖w‖[cos θ − cos θ − (π − θ) sin θ]∇θ

=
1

2
w − 1

2π
ŵ[sin θ + (π − θ) cos θ] +

1

2π
‖w‖(π − θ) sin θ · ∇θ

=
1

2
w − 1

2π
ŵ[sin θ + (π − θ) cos θ]− 1

2π
(π − θ)(w? − ŵ cos θ)

=
1

2
(w −w?) +

1

2π
(θw? − ŵ sin θ)

Therefore, the Hessian (when θ 6= 0):

∇2R(w) =∇[
1

2
(w −w?) +

1

2π
(θw? − ŵ sin θ)]

=
1

2
I +

1

2π
[∇θ · (w? − ŵ cos θ)>]− sin θ

2π‖w‖
(I− ŵŵ>)

=
1

2
I− sin θ

2π‖w‖
(I + ûû> − ŵŵ>),

where û is the unit vector along w? − ŵ cos θ direction.

And for θ = 0, Hessian∇2R(w) = 1
2I. We prove this by taking the limit. For v̂ = w?

∇2R(w) · v̂ = lim
ε→0

∇R(w + εv̂)−∇R(w)

ε
=

1

2
v̂.
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For any v̂ ⊥ w?, the angle θ between w + εv̂ and w? is Θ( ε
‖w‖ ) up to first order in ε, we have:

∇2R(w) · v̂ = lim
ε→0

∇R(w + εv̂)−∇R(w)

ε

=
1

2
v̂ +

1

2π
lim
ε→0

εw? − (w? + Θ( ε
‖w‖ )v̂) ·Θ( ε

‖w‖ ) + o(ε)

ε
=

1

2
v̂.

This finishes the proof.

Lemma 47. The population loss function R is O(1)-bounded, O(1)-Lipschitz, O(
√
d)-gradient

Lipschitz, and O(d)-Hessian Lipschitz.

Proof. The bounded, Lipschitz, and gradient Lipschitz are all very straightforward given the formula
of gradient and Hessian. We will focus on proving Hessian Lipschitz. Equivalently, we show upper
bounds on following quantity:

lim
ε→0

‖∇2R(w + εv̂)−∇2R(w)‖
ε

.

Note that the change in θ is at most O( ε
‖w‖ ), we have:

‖∇2R(w + εv̂)−∇2R(w)‖ ≤ O(
ε

‖w‖2
) + o(ε).

This gives:

lim
ε→0

‖∇2R(w + εv̂)−∇2R(w)‖
ε

≤ O(
1

‖w‖2
) ≤ O(d),

which finishes the proof.

Proof of Lemma 16. For four claims in Lemma 16, claim 1 follows from Lemma 43; claim 2 follows
from Lemma 47; claim 3 follows from Lemma 45; claim 4 follows from Lemma 44 and Lemma 42.

G.2 Proof of Theorem 17

Proof. The sample complexity Õ(d4/ε3) can be directly computed from Lemma 16 and Theorem 7.

H Proof of Stochastic gradient descent

Here for completeness we give the result for perturbed stochastic gradient descent, which is a adap-
tation of results in Jin et al. [2017] and will be formally presented in Jin et al. [2018].

Given stochastic gradient oracle g, where Eg(x; θ) = ∇f(x), and
Assumption A2. function f satisfies following property:

• f(·) is `-gradient Lipschitz and ρ-Hessian Lipschitz.

• For any x ∈ Rd, g(x; θ) has sub-Gaussian tail with parameter σ/
√
d.

Theorem 48. If function f(·) satisfies Assumption A2, then for any δ > 0, with learning rate
η = 1/`, perturbation r = Θ̃(ε) and large mini-batch size m = poly(d,B, `, ρ, σ, 1/ε, log(1/δ)),
PSGD (Algorithm 3) will find ε-second-order stationary point of F with 1−δ probability in following
number of stochastic gradient queries:

Õ

(
`∆f

ε2
·m
)
.
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Algorithm 3 Perturbed Stochastic Gradient Descent with Minibatch
Input: x0, learning rate η, noise radius r.

for t = 0, 1, . . . , do
sample {θ(1)

t , · · · θ(m)
t } ∼ D

gt(xt)←
∑m
i=1 g(xt; θ

(i)
t )/m

xt+1 ← xt − η(gt(xt) + ξt), ξt uniformly ∼ B0(r)
return xT

In order to prove this theorem, let

η =
1

`
, T =

χc

η
√
ρε
, F =

√
ε3

ρ
χ−3c−5, r = εχ−3c−6, m = poly(d,B, `, ρ, σ, 1/ε, log(1/δ)),

(19)
where c is some large constant and χ = max{1, log

d`∆f

ρεδ }

Lemma 49. for any λ > 0, δ > 0, if minibatch size m ≥ 2λ2σ2

ε2 log d
δ , then for a fixed x, with

probability 1− δ, we have:

‖∇f(x)− 1

m

m∑
i=1

g(x; θ(i))‖ ≤ ε

λ
.

This lemma means, when mini-batch size is large enough, we can make noise in the stochastic
gradient descent polynomially small.

Lemma 50. Consider the setting of Theorem 48, if ‖∇f(xt)‖ ≥ ε, then by running Algorithm 1,
with probability 1− δ, we have f(xt+1)− f(xt) ≤ −ηε2/4.

Proof. By gradient Lipschitz, and the fact ‖ξt‖ ≤ ε/20 and with minibatch size m large enough,
with high probability we have ‖∇f(xt)− gt‖ ≤ ε/20. Let ζt = gt − ∇f(xt) + ξt, by triangle
inequality, we have ‖ζt‖ ≤ ε/10 and update equation xt+1 = xt − η(∇f(xt) + ζt):

f(xt+1) ≤f(xt) + 〈∇f(xt),xt+1 − xt〉+
`

2
‖xt+1 − xt‖2

≤f(xt)− η‖∇f(xt)‖2 + η‖∇f(xt)‖‖ζt‖+
η2`

2

[
‖∇f(xt)‖2 + 2‖∇f(xt)‖‖ζt‖+ ‖ζt‖2

]
≤f(xt)− η‖∇f(xt)‖

[
1

2
‖∇f(xt)‖ − 2‖ζt‖

]
+
η

2
‖ζt‖2 ≤ f(xt)− ηε2/4

Lemma 51. Consider the setting of Theorem 48, if ‖∇f(xt)‖ ≤ ε and λmin(∇2f(xt)) ≤ −
√
ρε,

then by running Algorithm 1, with probability 1− δ, we have f(xt+T )− f(xt) ≤ −F .

Proof. See next section.

Proof of Theorem 48. Combining lemma 50 and 51, we know with probability 1− ∆f

F δ, algorithm
will find ε-second order stationary point in following iterations:

∆f

ηε2
+

∆fT

F
≤ O(

2∆f

ηε2
χ4)

Let δ′ =
∆f

F δ and substitute δ in χ with δ′, since χ = max{1, log
d`∆f

ρεδ }, this substitution only
affects constants. Finally note in each iteration, we use m queries, which finishes the proof.
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H.1 Proof of Lemma 51

Lemma 52. Let η ≤ 1
` , then we have SGD satisfies:

f(xt+1)− f(xt) ≤ −
η

4
‖∇f(xt)‖2 + 5η‖ζt‖2,

where ζt = gt −∇f(xt) + ξt.

Proof. By assumption, function f is `-gradient Lipschitz, we have:

f(xt+1) ≤f(xt) + 〈∇f(xt),xt+1 − xt〉+
`

2
‖xt+1 − xt‖2

≤f(xt)− η〈∇f(xt),∇f(xt) + ζt〉+
η2`

2
(‖∇f(xt)‖2 + 2‖∇f(xt)‖‖ζt‖+ ‖ζt‖2)

≤f(xt)−
η

2
‖∇f(xt)‖2 + 2η‖∇f(xt)‖‖ζt‖+

η

2
‖ζt‖2

≤f(xt)−
η

4
‖∇f(xt)‖2 +

9η

2
‖ζt‖2

which finishes the proof.

Lemma 53. (Improve or Localize) Suppose {xt}Tt=0 is a SGD sequence, then for all t ≤ T :

‖xt − x0‖2 ≤ 8ηT (f(x0)− f(xT )) + 50η2T

T−1∑
t=0

‖ζt‖2,

where ζt = gt −∇f(xt) + ξt

Proof. For any t ≤ T − 1, by Lemma 52, we have:

‖xt+1 − xt‖2 ≤η2‖∇f(xt) + ζt‖2 ≤ 2η2‖∇f(xt)‖2 + 2η2‖ζt‖2

≤8η(f(xt+1 − xt)) + 50η2‖ζt‖2

By Telescoping argument, we have:

T−1∑
t=0

‖xt+1 − xt‖2 ≤ 8η(f(xT )− f(x0)) + 50η2
T−1∑
t=0

‖ζt‖2

Finally, by Cauchy-Schwarz, we have for all t ≤ T :

‖xt − x0‖2 ≤(

t∑
τ=1

‖xτ − xτ−1‖)2 ≤ t
t−1∑
τ=0

‖xτ+1 − xτ‖2 ≤ T
T−1∑
τ=0

‖xτ+1 − xτ‖2

which finishes the proof.

To study escaping saddle points, we need a notion of coupling. Recall the PSGD update has two
source of randomness: gt − ∇f(xt) which is the stochasticity inside the gradient oracle and ξt
which is the perturbation we deliberately added into the algorithm to help escape saddle points. Let
SGD(t)

ξ (·) denote the update via SGD t times with perturbation ξ = {ξ2, · · · } fixed. Define Stuck
region:

X ξstuck(x̃) = {x|x ∈ Bx̃(ηr), and Pr(f(SGD(T )
ξ (x))− f(x̃) ≥ −F ) ≥

√
δ} (20)

Intuitively, the later perturbations of coupling sequence are the same, while the very first perturbation
is used to escape saddle points.

Lemma 54. There exists large enough constant c, so that if ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤
−√ρε, then the width of X ξstuck(x̃) along the minimum eigenvector direction of x̃ is at most
δηr
√

2π/d.
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Proof. To prove this, let emin be the minimum eigenvector direction of ∇2f(x̃), it suffices to show
for any x0,x

′
0 ∈ Bx̃(ηr) so that x0 − x′0 = λemin where |λ| ≥ δηr

√
2π/d, then either x0 6∈

X ξstuck(x̃) or x′0 6∈ X
ξ
stuck(x̃). Let xT = SGD(T )(x0) and x′T = SGD(T )(x′0) where two sequence

are independent. To show x0 6∈ X ξstuck(x̃) or x′0 6∈ X
ξ
stuck(x̃). We first argue showing following with

probability 1− δ suffices:

min{f(xT )− f(x̃), f(x′T )− f(x̃)} ≤ −F (21)

Since xT and x′0 are independent, we have

Pr(x1 ∈ X ξstuck(x̃) · Pr(x2 ∈ X ξstuck(x̃) = Pr(x1 ∈ X ξstuck(x̃) and x2 ∈ X ξstuck(x̃)) ≤ δ

This gives min{Pr(x1 ∈ X ξstuck(x̃),Pr(x2 ∈ X ξstuck(x̃)} ≤
√
δ i.e. x0 6∈ X ξstuck(x̃) or x′0 6∈ X

ξ
stuck(x̃)

by definition.

In the remaining proof, we will proceed proving Eq.(21) by showing two steps:

1. max{f(x0)− f(x̃), f(x′0)− f(x̃)} ≤ F

2. min{f(xT )− f(x0), f(x′T )− f(x′0)} ≤ −2F with probability 1− δ

The final result immediately follow from triangle inequality.

Part 1. Since x0 ∈ Bx̃(ηr) and ‖∇f(x)‖ ≤ ε, by smoothness, we have:

f(x0)− f(x̃) ≤ εηr +
`

2
(ηr)2 ≤ O(

ε2

`
χ−3c−6) ≤ F

The last inequality is due to `/
√
ρε ≥ 1, and constant c large enough. By symmetry, we can also

prove same upper bound for f(x′0)− f(x̃).

Part 2. Assume the contradiction min{f(xT ) − f(x0), f(x′T ) − f(x′0)} ≥ −2F , by Lemma 53
(note ‖ζt‖ ≤ ‖gt −∇f(xt)‖ + ‖ξt‖ ≤ 2r with high probability when m is large enough), with
1− δ/2 probability, this implies localization:

∀t ≤ T , max{‖xt − x̃‖, ‖x′t − x̃‖}
≤max{‖xt − x0‖+ ‖x0 − x̃‖, ‖x′t − x′0‖+ ‖x′0 − x̃‖}

≤
√

8ηT F + 50η2T ε2χ−4c−4 + ηr := S = O(

√
ε

ρ
χ−1c−2)

That is, both SGD sequence {xt}Tt=0 and {x′t}Tt=0 will not leave a local ball with radius S around
x̃. Denote H = ∇2f(x̃). By stochastic gradient update xt+1 = xt − η(gt(xt) + ξt), we can track
the difference sequence wt := xt − x′t as:

wt+1 =wt − η[∇f(xt)−∇f(x′t)]− ηht = (I− ηH)wt − η(∆twt + ht)

=(I− ηH)t+1w0 − η
t∑

τ=0

(I− ηH)t−τ (∆τwτ + hτ ),

where H = ∇2f(x̃) and ∆t =
∫ 1

0
[∇2f(x′t + θ(xt − x′t) − H]dθ and ht = gt(xt) − gt(x

′
t) −

[∇f(xt) −∇f(x′t)]. By Hessian Lipschitz, we have ‖∆t‖ ≤ ρmax{‖xt − x̃‖, ‖x′t − x̃‖} ≤ ρS .
We use induction to prove following:

‖η
t−1∑
τ=0

(I− ηH)t−1−τ (∆τwτ + hτ )wτ‖ ≤
1

2
‖(I− ηH)tw0‖

That is, the first term is always the dominating term. It is easy to check for base case t = 0; we have
0 ≤ ‖w0‖/2. Suppose for all t′ ≤ t the induction holds, this gives:

‖wt′‖ ≤ ‖(I− ηH)t
′
w0‖+ ‖η

t′−1∑
τ=0

(I− ηH)t
′−1−τ (∆τwτ + hτ )‖ ≤ 2‖(I− ηH)t

′
w0‖
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Denote γ = λmin(∇2f(x̃)), for case t+ 1 ≤ T , we have:

‖η
t∑

τ=0

(I− ηH)t−τ∆τwτ‖ ≤ηρS
t∑

τ=0

‖(I− ηH)t−τ‖‖wτ‖ ≤ ηρS
t∑

τ=0

(1 + ηγ)t‖w0‖

≤ηρS (t+ 1)‖(I− ηH)t+1w0‖ ≤ ηρS T ‖(I− ηH)t+1w0‖

≤1

4
‖(I− ηH)t+1w0‖,

where the third last inequality use the fact w0 is along minimum eigenvector direction ofH, the last
inequality uses the fact ηρS T = c−1 ≤ 1/4 for c large enough.

On the other hand, with 1− δ/2 probability, we also have:

‖η
t∑

τ=0

(I− ηH)t−τhτ‖ ≤ η
t∑

τ=0

(1 + ηγ)t−τ‖hτ‖ ≤ (1 + ηγ)t+1 maxτ ‖hτ‖
γ

≤ 1

4
‖(I− ηH)t+1w0‖,

where the last inequality requires maxτ ‖hτ‖ ≤ γ‖w0‖which can be achieved by making minibatch
size m large enough. Now, by triangular inequality, we finishes the induction.

Finally, we have:

‖wT ‖ ≥‖(I− ηH)T w0‖ − ‖η
T −1∑
τ=0

(I− ηH)T −1−τ (∆τwτ + hτ )‖

≥1

2
‖(I− ηH)T w0‖ ≥

(1 + η
√
ρε)T ‖w0‖
2

=2χc · δεχ
−3c−6

2`

√
2π

d
≥ 8

√
ε

ρ
χ−1c−2 = 2S ,

where the last inequality requires

2χc ≥ 16√
2π
· `
√
d

δ
√
ρε
χ2c4

Since χ = max{1, log
d`∆f

ρεδ }, it is easy to verify when c large enough, above inequality holds. This
gives ‖wT ‖ ≥ 2S , which contradicts with the localization fact max{‖xT − x̃‖, ‖x′T − x̃‖} ≤
S .

Proof of Lemma 51. Let r0 = δr
√

2π
d and applying Lemma 54, we know X ξstuck(xt) has at most

width ηr0 in the minimum eigenvector direction of∇2f(xt) and thus,

Vol(X ξstuck) ≤ Vol(B(d−1)
0 (ηr)) · ηr0

which gives:

Vol(X ξstuck)

Vol(B(d)
xt (ηr))

≤ ηr0 × Vol(B(d−1)
0 (ηr))

Vol(B(d)
0 (ηr))

=
r0

r
√
π

Γ(d2 + 1)

Γ(d2 + 1
2 )
≤ r0

r
√
π
·
√
d

2
+

1

2
≤ δ

Therefore with 1− δ probability, the perturbation lands in B(d)
xt (ηr)−X ξstuck, where by definition we

have with probability at least 1−
√
δ

f(SGD(T )
ξ (x))− f(x̃) ≤ −F

Therefore the probabilty of escaping saddle point is (1− δ)(1−
√
δ) ≥ 1− 2

√
δ. Reparametrizing

δ′ = 2
√
δ only affects constant factors in χ, hence we finish the proof.
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